Water Resources Data Wisconsin Water Year 1988 U.S. GEOLOGICAL SURVEY WATER-DATA REPORT WI-88-1 Prepared in cooperation with the State of Wisconsin and with other agencies #### CALENDAR FOR WATER YEAR 1988 | | | | | | | | | | | 198 | 37 | | | | | | | | | | | |----------|----------|-----|------|-----|----|----|----------|----|----|-------|-----|----|----|------|----|------|------|-----|-----|----|--| | | | OC' | тов | ER | | | | | NO | VEM. | BER | | | | | DE | CEM. | BER | | | | | S | М | Т | W | T | F | S | S | М | Т | W | Т | F | S | S | M | Т | W | T | F | S | | | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | 1 | 2 | 3 | /1 | 5 | | | 4 | 5 | 6 | 7 | 7 | | 10 | 8 | | 10 | | - | | 14 | 6 | 7 | _ | 9 | | 11 | | | | | A - 7 | | | | | 17 | | 16 | | | | | | 1913 | 14 | _ | | | 18 | | | | | | | | | | 24 | | 23 | | | | | | | | | 23 | | | | | | | | | | | | 31 | | 30 | | 20 | | | | | | | 30 | | | | | | _ | | | | | | | | | | 198 | 38 | | | | | | | | | | | | | | J | ANU | ARY | | | | | FI | E BRI | UAR | Y | | | | ı | MAR | CH | | | | | S | M | T | W | Т | F | S | S | М | Т | W | T | F | S | S | M | Т | W | Т | F | S | | | | | | | | 1 | 2 | | 1 | 2 | 3 | 4 | 5 | 6 | | | 1 | 2 | 3 | 4 | 5 | | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 14 | 15 | 16 | | 18 | | | 13 | 14 | 15 | 16 | | | | | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | | | 24
31 | 25 | 26 | 27 | 28 | 29 | 30 | 28 | 29 | | | | | | 27 | 28 | 29 | 30 | 31 | | | | | | | , | APR | IL | | | | | | MA | Y | | | | | | JUNI | E | | | | | S | M | T | W | T | F | S | S | М | T | W | Т | F | S | S | M | T | W | Т | F | S | | | | | | | | 1 | 2 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | | | 1 | 2 | 3 | 4 | | | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | | | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 19 | | | | | | | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 29 | 30 | 31 | | | | | 26 | 27 | 28 | 29 | 30 | | | | | | | | JULY | Z | | | | | ΑĮ | JGUS | ST | | | | 5 | SEPT | CEMI | BER | | | | | S | M | T | W | T | F | S | S | М | Т | W | Т | F | S | S | M | T | W | T | F | S | | | | | | | | 1 | 2 | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | | | | 4 | 5 | 6 | 7 | 8 | 9 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | | | 3 | | 10 | 13 | 14 | 15 | 16 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | | 0 [| 11 | 12 | 13 | 7.4 | 10 | 4 | - | - | | | 44 | | | | - | | | - | * 0 | | | | 10 | 11
18 | 19 | 20 | 21 | 22 | 23 | 21
28 | 22 | 23 | 24 | 25 | 26 | 27 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | | | ROUTING
D.C | READ | COPY | | IAN | 1845 | |----------------|------|------|-----|------|------| | D.C. | | - | 177 | | THE | | OPER | P | | ~ | JK | 84 | | INV | 1 | | | Vai | 127 | | ADMIN | | | | - | 1818 | | PUBS | | | | MG | 8/7 | | U.D.M. | | | | ing. | 82.1 | | NAWQA | V | | | SFA | 3/4 | DATE 8/1/89 ## Water Resources Dates Wisconsin # POST LIBRARY TOSS ## Water Year 1988 by B.K. Holmstrom, P.A. Kammerer, Jr., and R.M. Erickson U.S. GEOLOGICAL SURVEY WATER-DATA REPORT WI-88-1 Prepared in cooperation with the State of Wisconsin and with other agencies ### UNITED STATES DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., SECRETARY ## GEOLOGICAL SURVEY DALLAS L. PECK, DIRECTOR #### Prepared in cooperation with Wisconsin Department of Natural Resources Southeastern Wisconsin Regional Planning Commission U.S. Army Corps of Engineers Wisconsin Department of Transportation The University of Wisconsin-Extension, Geological and Natural History Survey Dane County Department of Public Works Dane County Regional Planning Commission City of Madison City of Middleton City of Beaver Dam City of Galena, III. City of Thorp Madison Metropolitan Sewerage District Milwaukee Metropolitan Sewerage District City of Hillsboro Illinois Department of Transportation City of Waupun City of Peshtigo Rock County Parks Department Village of Oconomowoc Lake Menominee Indian Tribe of Wisconsin Lac Courte Oreilles Governing Board Bad River Tribal Council Oneida Indian Tribe of Wisconsin Stockbridge-Munsee Tribal Council Town of Delavan District of Powers Lake Green Lake Sanitary District Morris Lake Management District Okauchee Lake Management District Wind Lake Management District Town of Norway Fowler Lake Management District City of Fond du Lac Village of Oconomowoc Lake Noquebay Lake District Little Muskego Lake District City of Muskego/Big Muskego Protection and Rehabilitation Lake District Chippewa County Wisconsin Department of Justice Wood County Board Balsam Lake Protection and Rehabilitation District #### For additional information write to: District Chief, Water Resources Division U.S. Geological Survey 6417 Normandy Lane Madison, Wisconsin 53719 #### PREFACE This volume of the annual hydrologic data report of Wisconsin is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. This report is the culmination of a concerted effort by a number of people who collected, compiled, analyzed, verified, and organized the data, and who typed, edited, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Most of the data were collected, computed and processed from area field offices. Technicians-in-charge of the field offices are: Jack T. Freshwaters, Rice Lake, northwest James W. George, Merrill, northeast Josef Habale, Madison, southwest The data were collected, computed, and processed by the following personnel: | S. | J. | Field | Η. | L. | Hanson | S. | A. | March | Ρ. | A. | Stark | |----|----|---------|----|----|---------|----|----|----------|----|----|---------| | G. | L. | Goddard | D. | E. | Housner | D. | L. | 01son | D. | A. | Wentz | | D. | J. | Graczyk | K. | J. | Hedmark | Т. | J. | Popowski | Т. | A. | Wittwer | | J. | J. | Hanig | K. | R. | Koenig | W. | J. | Rose | J. | K. | Zahn | Additional assistance in data processing and preparation of the report was provided by: | R. E | . Bodoh | L. A. | Enright | G. 1 | W. Gill | G. | L. | Patterson | |------|----------|-------|------------|------|----------|----|----|-----------| | W. G | . Batten | K. K. | Fitzgerald | L. 1 | B. House | Ρ. | J. | Redman | This report was prepared under the general supervision of Warren A. Gebert, Hydrologic Systems and Data Section Chief, James T. Krohelski, Acting Hydrogeologic Studies and Data Section Chief, and Vernon W. Norman, District Chief, Wisconsin. | 50272 | 2-101 | |-------|-------| |-------|-------| | REPORT | DOCUMENTATION | 1. REPORT NO. | 2. | 3. Recipient's Accession No. | |--------------|-------------------------|--------------------------|---------------|--------------------------------------| | | PAGE | USGS/WRD/HD-89/264 | | | | 4. Title and | Subtitle | | | 5. Report Date | | į | | | | May 1989 | | Water | Resources Dat | a - Wisconsin, Water Yea | r 1988 | 6. | | 7. Author(s) | | | | 8. Performing Organization Rept. No. | | в. к. | Holmstrom, P. | A. Kammerer, Jr., and R | . M. Erickson | USGS-WDR-WI-88-1 | | 9. Performin | g Organization Name a | nd Address | | 10. Project/Task/Work Unit No. | | U.S. (| Geological Sur | vey | | 001, 002, 003, 004 | | Water | Resources Div | vision | | 11. Contract(C) or Grant(G) No. | | 6417 1 | Normandy Lane | | | (C) | | Madis | on, WI 53719 | | | (G) | | 12. Sponsori | ing Organization Name a | and Address | | 13. Type of Report & Period Covered | | U.S. (| Geological Sur | rvey | | Annual - Oct. 1, 1987 | | Water | Resources Div | rision | | to Sept. 30, 1988 | | 6417 | Normandy Lane | | | 14. | | Madis | on, WI 53719 | | | | 15. Supplementary Notes Prepared in cooperation with the State of Wisconsin and other agencies 16. Abstract (Limit: 200 words) Water-resources data for the 1988 water year for Wisconsin include records of streamflow at gaging stations, partial-record stations, and miscellaneous sites; records of chemical, biological, and physical characteristics of surface and ground water. Records of chemical analysis of precipitation, surface and ground water associated with acid deposition are included. In addition water levels in observation wells are reported. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and local agencies and for other Federal agencies in Wisconsin. 17. Document Analysis a. Descriptors *Wisconsin, *Hydrologic data, *Surface water, *Ground water, *Water quality, *Acid deposition, Flow rate, Gaging stations, Lakes, Chemical analyses, Microbiological analyses, Sediment, Water levels b. Identifiers/Open-Ended Terms c. COSATI Field/Group | 18. Availability Statement No restriction on distribution | 19. Security Class (This Report) | 21. No. of Pages | |---|----------------------------------|------------------| | This report may be purchased from: National | Unclassified | 429 | | Technical Information Service, Springfield, VA22161 | 20. Security Class (This Page) | 22. Price | | recumical information betvice, bplingifeld, vazzior | Unclassified | 1 | #### **CONTENTS** | | Page | |--|-------| | Preface | . 111 | |
List of illustrations | VI | | List of gaging stations in downstream order, for which records are published | . VII | | Introduction | | | Cooperation | | | Summary of hydrologic conditions | | | Streamflow | 3 | | Water quality | 8 | | Ground-water levels | . 10 | | Special networks and programs | | | Explanation of the records | . 12 | | Station identification numbers | | | Downstream order and station number | | | Numbering system for ground-water, lake, and precipitation data sites | | | Records of stage and water discharge | | | Data collection and computation | | | Data presentation | | | Identifying estimated daily discharge | | | Accuracy of the records | | | Other records available | | | Records of surface-water quality | | | Classification and arrangement of records | | | On-site measurements and sample collection | | | Sediment | | | Laboratory measurements | | | Data presentation | | | Remark codes | | | Records of ground-water levels | | | Data collection and computation | | | Data presentation | | | Records of ground-water quality | | | Data collection and computation | | | Data presentation | | | Access of WATSTORE data | | | Publications on techniques of water-resources investigations | | | Surface-water records | | | Gaging station records | | | Discharge at partial-record stations and miscellaneous sites | | | Crest-stage partial-record stations | | | Measurements at miscellaneous sites | | | Water-quality partial-record stations | | | Ground-water records | | | Ground-water levels | | | Quality of ground water | | | Acid-deposition records | | | Discontinued gaging stations | | | Wisconsin District Publications | | | | 425 | #### **ILLUSTRATIONS** | | | Page | |--------|--|------| | Figure | 1. 1988 runoff as percent of long-term average runoff | 3 | | | 2. Comparison of discharge at representative gaging stations during 1988 | | | | water year with discharge for 1916–88 | 4 | | | 3. Comparison of dissolved-solids concentrations in streams during 1988 | | | | water year with monthly means | 9 | | | 4. Relation of seasonal water-table levels to long-term means | 11 | | | 5. Major surface-water drainage basins and index of hydrologic records | 36 | | | Lake Superior basin location map | 37 | | | Menominee-Oconto-Peshtigo River basin location map | 47 | | | Fox-Wolf River basin location map | 62 | | | Lake Michigan basin location map | 100 | | | St. Croix River basin location map | 122 | | | Chippewa River basin location map | 137 | | | Trempealeau-Black River basin location map | 167 | | | Upper Wisconsin River basin location map | 180 | | | Central Wisconsin River basin location map | 189 | | | Lower Wisconsin River basin location map | 199 | | | Pecatonica-Sugar River basin location map | 211 | | | Rock-Fox River basin location map | 240 | | | 6. Location of observation wells and ground-water-quality sites in Wisconsin | 370 | | | 7. Location of acid-deposition sites in Wisconsin | 400 | | | 8. Location of data-collection sites at acid-deposition sites in Wisconsin | 401 | | | | | [Letters after station name designate type of data: (c) chemical, (d) discharge, (g) gage height, (m) microbiological, (pr) precipitation, (r) radiochemical, (s) sediment, (t) water temperature] | rag | ge | |---|----------| | ST. LAWRENCE RIVER BASIN | | | STREAMS TRIBUTARY TO LAKE SUPERIOR | | | Lake Superior basin location map | 3/ | | Nemadji River near South Superior(04024430) [d] | 38 | | Amnicon River: | ~~ | | Amnicon Lake near South Range(04024500) [g] | | | Bois Brule River near Brule(04025500) [d] | | | Bad River near Odanah(04027000) [d,c,m,s] | | | White River near Ashland(04027500) [d] | | | Montreal River at Saxon Falls near Saxon(04029990) [d] | 43 | | Middle Branch Ontonagon River: | | | West Branch Ontonagon River: | 1. 6 | | Cisco Branch Ontonagon River at Cisco Lake Outlet, MI(04037500)[d] | 40 | | STREAMS TRIBUTARY TO LAKE MICHIGAN | 7.7 | | Menominee-Oconto-Peshtigo River basin location map | | | Menominee River near Florence(04063000) [d] | | | Pine River: | 49 | | Popple River near Fence(04063700) [d,c,m,s] | 50 | | Menominee River near Vulcan, MI(04065722) [d] | 53
53 | | Menominee River below Pemene Creek near Pembine(04066003) [d] | | | Menominee River near McAllister(04067500) [d] | | | Peshtigo River: | ,, | | East Thunder Creek (head of Thunder River): | | | McCaslin Lake near Lakewood(452241088224800) [c,g] | 56 | | Lake Noquebay near Crivitz(451511087550900) [c] | 57 | | Peshtigo River at Peshtigo(04069500) [d] | | | North Branch Oconto River (head of Oconto River): | - | | Wheeler Lake near Lakewood(04070000) [c,g] | 59 | | Oconto River near Gillett(04071000) [d] | | | Pensaukee River near Pensaukee(04071858) [d] | | | Fox-Wolf River basin location map | | | Fox River: | | | Patrick Lake (head of Montello River) near Grand Marsh(435313089392000) [c,g] | 63 | | Montello Lake at Montello(434813089204000) [c,g] | | | Mecan River: | | | Chaffee River: | | | Wedde Creek: | | | Sharon Lake near Dakota(435842089231400) [g] | 65 | | Puchyan River: | | | White Creek at Forest Glen beach near Green Lake(04073462) [d,c,s] | 66 | | Silver Creek at South Koro Road near Ripon(040734644) [d,c,s] | | | Green Lake Inlet at County Trunk Highway A near Green Lake(04073468) [d,c,s] | 75 | | | Page | |--|------| | Fox River at Berlin(04073500) [d] | | | Wolf River at Langlade(04074950) [d] | 82 | | Wolf River at Highway M near Langlade(04075050) [c] | 83 | | Wolf River near Shawano(04077400) [d] | | | Wolf River at New London(04079000) [d] | 86 | | Willow Creek: | | | Lake Morris near Mount Morris(440654089120500) [c,g] | 87 | | Lake Winnebago at Oshkosh(04082500) [g] | | | Lake Winnebago near Stockbridge(04084255) [g] | | | Fox River at Appleton(04084445) [d,s,t] | 91 | | Fox River at Rapide Croche Dam, near Wrightstown(04084500) [d] | 97 | | Fox River at Wrightstown(04085000) [c,m,s] | | | Lake Michigan basin location map | 100 | | Kewaunee River near Kewaunee(04085200) [d] | | | East Twin River at Mishicot(04085281) [d] | | | Manitowoc River at Manitowoc(04085427) [d,c,m,s] | | | Sheboygan River at Sheboygan(04086000) [d] | 106 | | Milwaukee River: | | | Big Cedar Lake (head of Cedar Creek) near West Bend(432324088154200) [c,g] | | | Milwaukee River near Cedarburg(04086600) [d] | | | Milwaukee River at Milwaukee(04087000) [d,c,m,s] | | | Menomonee River at Menomonee Falls(04087030) [d] | | | Underwood Creek at Wauwatosa(04087088) [d] | 113 | | Menomonee River at Wauwatosa(04087120) [d] | | | Kinnickinnic River at South 11th Street at Milwaukee(04087159) [d] | | | Oak Creek at South Milwaukee(04087204) [d] | | | Root River near Franklin(04087220) [d] | | | Root River Canal near Franklin(04087233) [d] | | | Root River at Racine(04087240) [d] | | | Pike River near Racine(04087257) [d] | 120 | | UPPER MISSISSIPPI RIVER BASIN | | | ST. CROIX RIVER BASIN | | | St. Croix River Basin location map | 122 | | St. Croix River: | 400 | | Namekagon River near Trego(05332500) [d] | 123 | | McKenzie Creek: | 107 | | McKenzie Lake near Spooner(05333000) [c,g] | 124 | | St. Croix River near Danbury(05333500) [d] | 125 | | St. Croix River at St. Croix Falls(05340500) [d] | 126 | | Apple River: | 107 | | Rice Creek (head of Balsam Branch) at Milltown(05341365) [c] | | | Rice Creek at 155th St near Milltown (05341370) [c] | | | Otter Creek near Milltown(05341374) [c] | | | Rice Creek near Balsam Lake(05341375) [d,c] | 130 | | Harder Creek at Half Moon Lake Outlet near Balsam Lake(05341383) [c] | | | Harder Creek near Balsam Lake(05341384) [c] | 132 | | Harder Creek at mouth near Balsam Lake(05341385) [c] | 132 | | Page | |--| | Balsam Branch at Balsam Lake(05341402) [d,c]133 | | Apple River near Somerset(05341500) [d]135 | | Mississippi River at Prescott(05344500) [d]136 | | CHIPPEWA RIVER BASIN | | Chippewa River basin location map | | Chippewa River at Bishops Bridge, near Winter(05356000) [d]138 | | Couderay River: | | Big Sissabagama Lake (head of Sand Lake) near Stone Lake(454724091303600) [c,g]139 | | Chippewa River near Bruce(05356500) [d] | | Flambeau River near Bruce(05360500) [d] | | Jump River at Sheldon(05362000) [d]143 | | Duncan Creek: | | Duncan Creek Tributary near Tilden(05364850) [d,c,pr,s,t] | | Eau Claire River: | | North Fork Eau Claire River near Thorp(05365707) [d] | | Red Cedar River: | | Hay River at Wheeler(05368000) [d]154 | | Red Cedar River at Menomonie(05369000) [d] | | Chippewa River at Durand(05369500) [d,c,m,s,r] | | Eau Galle River at Low-Water Bridge at Spring Valley(05369945) [d,c,t]159 | | Eau Galle River at Spring Valley(05370000) [d,c,t] | | BUFFALO RIVER BASIN | | Trempealeau-Black River basin location map | | Buffalo River: | | Crystal Lake at Strum(443311091231000) [c,g]168 | | Mississippi River at Winona, MN(05378500) [d] | | TREMPEALEAU RIVER BASIN | | Trempealeau River at Dodge(05379500) [d]170 | | BLACK RIVER BASIN | | Black River at Neillsville(05381000) [d] | | Black River near Galesville(05382000) [d,c,m,s] | | LA CROSSE RIVER BASIN | | La Crosse River: | | Neshonoc Lake(435447091042600) [c,g] | | Mississippi River at McGregor, IA(05389500) [d,c,t,s] | | Upper Wisconsin River basin location map180 | | Wisconsin River: | | Eagle River: | | Anvil Lake (head of Blackjack Creek) near Eagle River(05390500) [c,g]181 | | Little St. Germain Creek: | | Alma Lake near St. Germain(455426089254700) [c,g] | | Moon Lake near St. Germain(455504089260500) [c] | | Wisconsin River at Rainbow Lake, near Lake Tomahawk(05391000) [d]184 | | Tomahawk River: | | Bear Lake (head of Bear Creek) near Hazelhurst(454554089473400) [c,g]185 | | | Page |
--|------| | Spirit River at Spirit Falls(05393500) [d] | 186 | | Prairie River near Merrill(05394500) [d] | 187 | | Wisconsin River at Merrill(05395000) [d] | | | Central Wisconsin River basin location map | | | Eau Claire River at Kelly(05397500) [d] | 190 | | Wisconsin River at Rothschild(05398000) [d] | 191 | | Big Eau Pleine River near Stratford(05399500) [d] | | | Wisconsin River at Wisconsin Rapids(05400760) [d] | | | Tenmile Creek near Nekoosa(05401050) [d,c] | | | Yellow River at Babcock(05402000) [d] | 197 | | Wisconsin River near Wisconsin Dells(05404000) [d] | 198 | | Lower Wisconsin River basin location map | 199 | | Baraboo River: | | | Redstone Lake (on Big Creek) near La Valle(433606090060000) [c,g] | 200 | | Devils Lake near Baraboo(05404500) [c,g] | | | Baraboo River near Baraboo(05405000) [d] | 202 | | Blue Mound Creek: | | | Black Earth Creek at Black Earth(05406500) [d] | | | Wisconsin River at Muscoda(05407000) [d,c,m,s] | | | Kickapoo River at La Farge(05408000) [d] | | | Kickapoo River at Steuben(05410490) [d] | | | Reservoirs in the Wisconsin River basin | 209 | | GRANT RIVER BASIN | | | Pecatonica-Sugar River basin location map | 211 | | Grant River: | | | Rattlesnake Creek near North Andover(05413449) [d,c,pr,t] | 212 | | Grant River at Burton(05413500) [d,c,s] | 219 | | PLATTE RIVER BASIN | | | Platte River near Rockville(05414000) [d] | 224 | | Little Platte River near Platteville(05414213) [d,c,pr,t] | 225 | | SINSINAWA RIVER BASIN | | | Sinsinawa River near Hazel Green(05414800) [d,c,pr,t] | 232 | | GALENA RIVER BASIN | | | Galena River at Buncombe(05415000) [d] | 239 | | ROCK RIVER BASIN | | | Rock-Fox River basin location map | 240 | | Rock River: | | | Oconomowoc River: | 0.44 | | North Lake near North Lake(430844088233300) [g] | | | Okauchee Lake at Okauchee(430723088252100) [c,g] | 242 | | Okauchee Lake, No. 1, near Okauchee (430759088244200) [c] | 244 | | Okauchee Lake, No. 2, at Okauchee (430645088264500) [c] | 244 | | Okauchee Lake, No. 3, at Okauchee (430642088252400) [c] | | | Okauchee Lake, No. 4, at Okauchee (430757088261700) [c] | | | Oconomowoc Lake No. 1 (center) at Oconomowoc (4305510882735) [c,g] | | | Oconomowoc Lake No. 2 (off Hewitt Point) at Oconomowoc (430609088262200) [c] | | | Center of Fowler Lake at Oconomowoc(430653088296401) [c,g] | 248 | | G (1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 D 1 | Page | |--|---| | South Branch Rock River at Waupun(05423500) [d] | | | Rock River at Watertown(05425500) [d]Beaverdam River at Beaver Dam(05425912) [d] | | | | | | Crawfish River at Milford(05426000) [d] | | | Rock River at Jefferson(05426031) [d] | | | Bark River near Rome(05426250) [d] | | | Lake Koshkonong near Newville(05427235) [g] | | | Rock River at Indianford(05427570) [d] | 258 | | Yahara River: | 250 | | Pheasant Branch at Middleton(05427948) [d,s,c] | | | Graber Pond at Middleton(054279502) [g,pr] | | | Spring Harbor storm sewer at Madison(05427965) [d,s] | | | Lake Mendota at Madison(05428000) [g] | | | Lake Monona at Madison(05429000) [g] | | | Yahara River near McFarland(05429500) [d] | | | Badfish Creek at County Highway A near Stoughton(05430095) [d] | | | Badfish Creek near Cooksville(05430150) [d] | | | Yahara River near Fulton(05430175) [d] | | | Rock River at Afton(05430500) [d] | 272 | | Turtle Creek: | | | Jackson Creek at Petrie Road near Elkhorn(05431014) [d] | | | Jackson Creek Tributary near Elkhorn(054310157) [d,c,s] | | | Delavan Lake Inlet at US Hwy 50 at Lake Lawn(05431017) [d,c] | 278 | | Delavan Lake at SW end near Delavan Lake(423526088380101) [c] | 281 | | Delavan Lake at Center near Delavan Lake(423556088365001) [c] | 283 | | Delavan Lake at North end near Lake Lawn(423659088354401) [c] | 285 | | Delavan Lake near Delavan (423706088363400) [g] | 287 | | Delavan Lake Outlet at Borg Road near Delavan(05431022) [d,c] | | | Turtle Creek at Carvers Rock Road near Clinton(05431486) [d] | | | Pecatonica River: | | | Livingston Branch Pecatonica River near Livingston(05432055) [d,c,pr,t]. | 292 | | Pecatonica River at Darlington(05432500) [d] | | | East Branch Pecatoncia River near Blanchardville(05433000) [d] | | | Pecatonica River at Martintown(05434500) [d] | | | Sugar River near Brodhead(05436500) [d] | | | Rock River at Rockton, IL(05437500) [d] | | | ILLINOIS RIVER BASIN | | | Kankakee River (head of Illinois River): | | | Des Plaines River at Russell, IL(05527800) [d] | 304 | | Illinois River: | | | Fox River at Waukesha(05543830) [d] | 305 | | Mukwonago River at Mukwonago(05544200) [d] | | | Muskego Canal: | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Little Muskego Lake at Muskego(425450088083500) [c,g] | 307 | | Big Muskego Lake, Bass Bay, near Muskego(425344088070100) [c] | | | Big Muskego Lake, North Site, near Muskego(425301088061300) [c] | | | Big Muskego Lake, South Site, near Muskego(425212088072800) [c] | | | ~-9 | | | | Page | |---|------| | Muskego Lake Outlet near Wind Lake(425109088075000) [g,d,c] | 315 | | Muskego Canal at Muskego Lake Outlet near Wind Lake(05544386) [c] | 318 | | Wind Lake Drainage Canal: | | | Wind Lake at Wind Lake(424915088083900) [c] | 319 | | Wind Lake Outlet at Wind Lake(424848088083100) [g,d,c] | 324 | | Long (Kee Nong Go-Mong) Lake at Wind Lake(424937088103400) [g,c] | 327 | | Waubeesee Lake at Wind Lake(424857088101500) [g,c] | 329 | | Honey Creek: | | | Pleasant Lake near La Grange(424727088332300) [c,g] | | | Fox River at Wilmot(05546500) [d] | 332 | | Nippersink Creek: | | | North Branch Nippersink Creek: | | | East Branch Nippersink Creek: | | | Powers Lake at Powers Lake(423246088175800) [c] | 333 | #### WATER RESOURCES DATA FOR WISCONSIN, 1988 #### INTRODUCTION Water-resources data for Wisconsin for the 1988 water year include records of streamflow at gaging stations, partial-record stations, and miscellaneous sites; stage and contents of lakes and reservoirs; chemical, physical, and biological characteristics of surface and ground water; and water levels in observation wells. Records from several stations in bordering states are also included. This report contains discharge records from 116 gaging stations and peak stage and discharge from 105 crest-stage stations; stage for 34 lakes and contents for 24 reservoirs; water-quality data from 32 streams, from 42 lakes, and from 13 wells; and water-level records from 69 observation wells. Various discharge, stage, precipitation, ground-water level, and water quality data are collected at four acid-deposition sites in northern Wisconsin. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published in this report as miscellaneous measurements. The Water Resources Division of the U.S. Geological Survey, in cooperation with local, State and Federal agencies, obtains a large amount of data pertaining to the water resources of Wisconsin each year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Wisconsin." This series of annual reports for Wisconsin began in the 1961 water year with streamflow data, the 1964 water year with water-quality data, and the 1971 water year with ground-water data. Beginning with the 1975 water year, streamflow, water quality, and ground water data for each State were published in present format. These annual reports are for sale, in paper copy or microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Prior to introduction of this series and for several water years concurrent with it, water-resources data for Wisconsin were published in U.S. Geological Survey Water-Supply Papers. Records of stream discharges and of water levels in lakes and reservoirs were published annually through 1960 and then for the 5-year periods 1961-65 and 1966-70 in the series "Surface-Water Supply of the United States". Chemical-quality, water-temperature, and suspended-sediment data were published annually, from 1941 to 1970, in the series "Quality of Surface Waters of the United States". Records of ground-water levels were published annually from 1935 to 1974, in the series "Ground-Water Levels in the United States". The above mentioned Water-Supply Papers may be consulted in the libraries of the principal cities of the United States and may be purchased from U.S. Geological Survey, Box 25425, Federal Center, Denver, CO 80225. Additional information, including current prices for ordering specific reports, may be obtained from the District Chief at the address given on the back of the title page, or by telephone (608)274-3535. #### COOPERATION The U.S. Geological Survey and the State of Wisconsin have worked under cooperative agreements since 1913 collecting streamflow data, since 1955 collecting water-quality data, and since 1964 collecting ground-water level data. Agencies that worked cooperatively with the Survey during this year collecting data are: Wisconsin Department of Natural Resources, C. D. Besadny, secretary. Southeastern Wisconsin Regional Planning Commission, K. W. Bauer, executive director. U.S. Army Corps of Engineers. Wisconsin Department of Transportation, Lowell B. Jackson, secretary, and S. W. Woods, chief bridge engineer. The University of Wisconsin-Extension, Geological and Natural History Survey, M. E. Ostrom, state geologist and director. Dane County Department of Public Works, Kenneth J. Koscik, director. Dane County Regional Planning Commission, Charles Montemayor,
executive director. City of Madison, A. E. Milke, city engineer. City of Middleton, Dan Ramsey, mayor. City of Beaver Dam, John Omen, mayor. City of Galena, IL, Frank L. Einsweiler, mayor. City of Thorp, Dave M. Keating, mayor. Madison Metropolitan Sewerage District, James L. Nemke, chief engineer and director. Milwaukee Metropolitan Sewerage District, Harold Cahill, Jr., executive director. City of Hillsboro, Wayne Peterson, mayor. Illinois Department of Transportation. City of Waupun. City of Peshtigo. Rock County Parks Department. Village of Oconomowoc Lake. Menominee Indian Tribe of Wisconsin. Lac Courte Oreilles Governing Board. Bad River Tribal Council. Oneida Indian Tribe of Wisconsin. Stockbridge-Munsee Tribal Council. Town of Delavan. District of Powers Lake. Green Lake Sanitary District. Morris Lake Management District. Okauchee Lake Management District. Wind Lake Management District. Town of Norway. Fowler Lake Management District. City of Fond du Lac. Noquebay Lake District. Little Muskego Lake District. City of Muskego/Big Muskego Protection and Rehabilitation Lake District. Chippewa County. Wisconsin Department of Justice. Wood County Board. Balsam Lake Protection and Rehabilitation District. The following organizations aided in collecting streamflow records: Wisconsin Valley Improvement Co., Lake Superior District Power Co., Wisconsin-Michigan Power Co., Wisconsin Public Service Corp., Northern States Power Co., Dairyland Power Cooperative, Wisconsin Power and Light Co., Nekoosa Papers Inc., Wisconsin Electric Power Co., Wisconsin River Power Co., Scott Paper Co., and Milwaukee County Park Commission. Organizations that supplied data are acknowledged in station descriptions. #### SUMMARY OF HYDROLOGIC CONDITIONS #### Streamflow Annual runoff during the 1988 water year was below normal for the entire State except for a few basins in south-central and southeastern Wisconsin where flows were just above normal. Average runoff varied from approximately 45 percent to 111 percent of the stations, long-term averages (fig. 1). The Manitowoc River, located in eastern Wisconsin, exhibited the lowest runoff (45 percent) compared to its long-term average (1973-88). Black Earth Creek basin, located in south-central Wisconsin, showed the greatest runoff (111 percent) compared to its long-term average (1955-88). The comparisons of the monthly and annual mean discharges for the 1988 water year to a 73-year base period at three gaging stations are shown in figure 2. Figure 1. 1988 runoff as percent of long-term average runoff. Figure 2. Comparison of discharge at representative gaging stations during 1988 water year with discharge for 1916-1988. A description of the seasonal variation in streamflow in the State follows. #### October - December 1987 Low flows in the first part of September 1987 and below normal precipitation in October produced below normal streamflows in the Wisconsin River basin early in the 1988 water year. Streamflows in the Upper Chippewa River, Upper Wisconsin, and northern part of the Lake Michigan basin were between 50 and 65 percent of normal. The annual minimum consecutive 7-day mean flow at the Chippewa River at Bruce gaging station from October 1-7 was 344 cubic feet per second, which is a 5-year recurrence interval. Precipitation totals for the October-December period were above normal for most of the State, except for northwestern Wisconsin. Precipitation totals were approximately 3 inches above normal for southeastern Wisconsin, which resulted in flows about two times the normal values in the Crawfish River basin. #### January - March 1988 Statewide precipitation amounts were generally below normal for the January-March period. Streamflows were near normal for most of the State, except for upper portions of the Chippewa River basin in north-central Wisconsin and the Popple River basin in northeastern Wisconsin. Streamflows for these basins were about 60 percent of normal. The Upper Black River basin showed the highest streamflow at approximately 140 percent of normal for the January-March period. On March 9, the Kewaunee River near Kewaunee gaging station had an instantaneous peak discharge of 3,600 cubic feet per second, which is a 3-year recurrence interval. #### April - June 1988 The mean annual flood was equalled or exceeded at three gaging stations in early April. These peak discharges are listed in the following table: | Station
number | Station name | Date | Peak
discharge
(ft³/s) | Recurrence interval (years) | |-------------------|------------------------------|--------|------------------------------|-----------------------------| | 04027500 | White River nr Ashland | Apr. 7 | 2,810 | 2 | | 04077400 | Wolf River nr Shawano | Apr. 5 | 2,490 | 2 | | 04087233 | Root River Canal nr Franklin | Apr. 6 | 788 | 3 | Statewide precipitation totals for the April-June period ranged from 3.8 inches below normal in south-central Wisconsin to 7.4 inches below normal in northeastern Wisconsin (Wisconsin Agricultural Statistics Service, July 5, 1988). Douglas Clark, State Climatologist, reported that parts of Brown, Kewaunee, and Door Counties in east-central Wisconsin had less than 0.25 inch of rain in May. Green Bay recorded 0.06 inch of rain in May, which was the driest May in 104 years of record keeping. Nearby Algoma had only 0.04 inch of precipitation in May (Wisconsin State Journal, June 4, 1988). Rainfall deficiency continued through June, and streamflows ranged from 35 percent of normal in the Upper Black River basin in north-central Wisconsin to 94 percent of normal in the Sugar River basin in south-central Wisconsin. The annual minimum consecutive 7-day mean flows (Q_7) at five stations declined to less than the 5-year recurrence interval values during the April-June period. The Q_7 value of 790 ft³/s at Wisconsin River at Wisconsin Rapids gaging station was the lowest recorded value for its period of record (1914-1950, 1958-1988). The previous low Q_7 at this station was 924 ft³/s. The Q_7 values and corresponding recurrence intervals are listed in the following table: | Station
number | Station name | Date | Q7
(ft ³ /s) | Recurrence
interval
(years) | |-------------------|---------------------------------|------------|----------------------------|-----------------------------------| | 04069500 | Peshtigo River at Peshtigo | June 18-24 | 190 | 34 | | 04079000 | Wolf River at New London | June 18-24 | 450 | 14 | | 05360500 | Flambeau River nr Bruce | June 23-29 | 463 | 7 | | 05398000 | Wisconsin River at Rothschild | June 15-21 | 758 | 65 | | 05400760 | Wisconsin R at Wisconsin Rapids | June 18-24 | 790 | >100 | #### July - September 1988 Precipitation continued to be below normal for most of the State during July; rain totals were slightly above normal for only the north-central and east-central parts of the State. Precipitation amounts for August and September were at or above normal for the entire State. The large rainfall deficits for the April-September period ranged from 1.3 inches below normal in southeastern Wisconsin to 7.8 inches below normal in northeastern Wisconsin (Wisconsin Agricultural Statistics Service, October 3, 1988). Most of this rainfall deficit occurred during the April-June period. These large deficits in precipitation resulted in below normal streamflow for the entire State during the July-September period. Streamflow ranged from 10 percent of its long-term mean in the upper part of the Black River basin in north-central Wisconsin to 96 percent of the average streamflow in the Black Earth Creek basin in south-central Wisconsin. The lack of precipitation in early July and hot temperatures in July and August resulted in streamflow declines to record low flows for several streams in July and August. The annual minimum consecutive mean flow (Q_7) values for some of these stations approached or exceeded a 100-year recurrence interval. A list of stations with 10 or more years of record that reached their lowest Q_7 discharge in July and August and the previous lowest recorded Q_7 value follows: | Station
number | Station name | Period of record | Previous low Q ₇ (ft³/s) | 1988 WY
Q ₇ (ft ³ /s) | |-------------------|--------------------------------|---|-------------------------------------|--| | 04063700 | Popple River nr Fence | Oct.1963-Sept.1988 | 19 | 12 | | 04073500 | Fox River at Berlin | Jan.1898-Sept.1988 | 300 | 269 | | 04074950 | Wolf River at Langlade | Mar.1966-Sept.1979
Oct.1980-Sept.1988 | & 165 | 146 | | 04085281 | East Twin River at Mishicot | July 1972-Sept.1988 | 3 5.2 | 4.8 | | 04085427 | Manitowoc River at Manitowoc | July 1972-Sept.1988 | 3 14 | 9.0 | | 04087030 | Menomonee R at Menomonee Falls | Nov.1974-Sept.1977
July 1979-Sept.1988 | | 0.82 | | Station
number | Station name | Period of record | Previous low Q ₇ (ft³/s) | 1988 WY
Q ₇ (ft ³ /s) | |-------------------|-----------------------------------|--------------------|-------------------------------------|--| | 04087240 | Root River at Racine | Aug.1963-Sept.1988 | 2.0 | 0.0 | | 05404000 | Wisconsin R nr Wisconsin
Dells | Oct.1934-Sept.1988 | | 1,210 | | 05407000 | Wisconsin River at Muscoda | Oct.1913-Sept.1988 | 2,430 | 1,900 | The $\rm Q_7$ at many gaging stations declined to less than the 5-year recurrence interval values during the July-September period. These values and corresponding recurrence intervals are listed in the following table: | Station
number | Station name | Date | Q ₇
(ft³/s) | Recurrence
interval
(years) | |-------------------|-----------------------------------|---------------|---------------------------|-----------------------------------| | 04027500 | White River nr Ashland | July 25-31 | 133 | 5 | | 04063700 | Popple River nr Fence | July 3-9 | 12 | 90 | |
04066003 | Menominee River nr Pembine | July 29-Aug.4 | | 10 | | 04071000 | Oconto River nr Gillett | July 4-10 | 167 | 29 | | 04071858 | Pensaukee River nr Pensaukee | July 8-14 | 1.4 | 14 | | 04073500 | Fox River at Berlin | July 23-29 | 269 | 100 | | 04074950 | Wolf River at Langlade | July 2-8 | 146 | 55 | | 04077400 | Wolf River nr Shawano | July 3-9 | 296 | 18 | | 04084500 | Fox River at Rapide Croche Dam | July 12-18 | 968 | 9 | | | nr Wrightstown | _ | | | | 04085200 | Kewaunee River nr Kewaunee | July 30-Aug. | 7.9 | 9 | | 04085281 | East Twin River at Mishicot | Aug.5-11 | 4.8 | 44 | | 04085427 | Manitowoc River at Manitowoc | Aug.3-9 | 9.0 | 26 | | 04087030 | Menomonee R at Menomonee Falls | Aug.11-17 | 0.82 | 2 >12 | | 04087204 | Oak Creek at South Milwaukee | July 9-15 | 0.71 | . 10 | | 04087220 | Root River nr Franklin | July 29-Aug. | 1.9 | 12 | | 04087240 | Root River at Racine | July 9-15 | 0.0 | 100 | | 05365500 | Chippewa River at Chippewa Falls | July 8-14 | 720 | 15 | | 05369500 | Chippewa River at Durand | July 9-15 | 1,970 | 18 | | 05381000 | Black River at Neillsville | July 30-Aug. | 5 13 | 5 | | 05393500 | Spirit River at Spirit Falls | July 29-Aug. | 2.9 | 8 | | 05394500 | Prairie River nr Merrill | July 2-8 | 63 | 8 | | 05395000 | Wisconsin River at Merrill | July 2-8 | 619 | 19 | | 05397500 | Eau Claire River at Kelly | July 4-10 | 38 | 8 | | 05399500 | Big Eau Pleine River nr Stratford | _ | 1.4 | 5 | | 05402000 | Yellow River at Babcock | Sept.7-13 | 3.2 | 11 | | 05404000 | Wisconsin R nr Wisconsin Dells | Aug.10-16 | 1,210 | >100 | | 05407000 | Wisconsin River at Muscoda | Aug.13-19 | 1,900 | >100 | | 05425500 | Rock River at Watertown | Aug.1-9 | 14 | 5 | | 05429500 | Yahara River at McFarland | Sept.4-10 | 6.7 | 13 | | 05544200 | Mukwonago River at Mukwonago | July 10-16 | 11 | 8 | | 05546500 | Fox River at Wilmot | Aug.2-8 | 73 | 7 | The lack of precipitation in the preceding 3-month period and in early July and high temperatures in July and August produced drought conditions that stressed crops and resulted in related crop losses. Drought appraisals by Wisconsin Agricultural and Conservation County Offices showed that Wisconsin drought-related crop losses in 1988 exceeded 900 million dollars (Wisconsin State Journal, April 11, 1989). #### References cited: | Wisconsin Agricultural Statistics Service, Crop Weather Report, Vol. 11, | |--| | No. 22, July 5, 1988. | | | | , Crop Weather Report, Vol. 11, No. 35, October 3, 1988. | | | | Wisconsin State Journal, Dry May set record in Wisconsin, July 4, 1988. | | | | , Drought may hurt industry this year, April 11, 1989. | #### Water Quality. Dissolved-solids concentrations represent the total dissolved mineral content of water. Dissolved-solids concentrations in rivers and streams change with changes in runoff. Concentrations are generally highest during base flow, when streamflow is ground-water runoff, and decrease as base flow is diluted by runoff from snowmelt and precipitation. Dissolved-solids concentrations measured at selected National Stream-Quality Accounting Network, (NASQAN) stations and a Hydrologic Benchmark Network (HBMN) station during the 1988 water year reflect runoff conditions in the State. Dissolved-solids concentrations measured at these stations during the water year are compared to monthly median concentrations for the period of record in figure 3. Dissolved-solids concentrations measured in water from the Wisconsin River at Muscoda reflect the below normal runoff in central and northern Wisconsin during the 1988 water year (fig. 1). Concentrations exceeded long-term monthly median values in all cases (fig. 3), indicating little dilution by overland runoff. Runoff was also considerably below normal for the entire water year at the HBMN station on the Popple River near Fence. Dissolved-solids concentrations at this station were higher than long-term medians for all but the November sample, which was collected during a period when runoff from precipitation was entering the stream. Runoff was closer to normal for the year in southeastern Wisconsin (fig. 1) and above normal for the Milwaukee River at Milwaukee. Dissolved-solids concentrations measured at this station during the water year were near normal in October and September when runoff was near normal, below normal in March when the sample was collected following a period of surface runoff, and above normal in June when runoff was below normal (fig. 3). Figure 3. Comparison of dissolved-solids contrations in streams during 1988 water year with monthly medians. #### Ground-Water Levels Maps showing the seasonal ground-water trends for the year (fig. 4) are based on water-level data from 29 shallow-aquifer wells, each having at least 15 years of record. Water-level measurements from each well are grouped so that FALL consists of measurements from September through November, 1987; WINTER consists of measurements from December, 1987 through February, 1988; SPRING consists of measurements from March through May, 1988; and SUMMER consists of measurements from June through August, 1988. Mean seasonal water levels for 1988 were compared to the long-term mean seasonal water levels. The 1988 water level was considered normal if it was within one-half of the standard deviation of the long-term mean. Ground-water levels in 1988 continued the general decline that began in the spring of 1987. In the fall of 1987, only water levels in a band extending from the northwest through the center of the State remained above normal. Water levels in the western and eastern parts of the State had declined to normal levels, and in the far north had declined to below normal levels. The general pattern remained essentially the same through the winter. The below normal snowfall and spring precipitation in early 1988 resulted in little recharge, and ground-water levels continued to decline. In the spring, the area of above normal water levels was reduced, and levels in large areas of the northern and eastern parts of the State had fallen below normal. In the summer of 1988, the lack of rainfall resulted in below normal ground-water levels throughout the entire eastern and western parts of the State. Water levels in one area in the northwest quarter of the State remained above normal, and those in a somewhat north-south trending band across the center of the State remained normal. Over the past several years ground-water levels in eastern Wisconsin have commonly been normal or below normal. This is not entirely a reflection of climatic conditions, but is partially caused by municipal pumping from the deep confined aquifer in the Green Bay and Milwaukee areas. Pumping from the deep aquifer has contributed to lowered water levels in the overlying aquifers. Ground-water levels in three wells were above normal throughout the year, and all three of these wells had water levels more than one standard deviation above the long-term mean during all four seasons. The ground-water levels in four wells were below normal for the entire year, and, at the end of water year 1988, nine wells had water levels more than one standard deviation below the long-term mean. #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Bench-Mark Program provides data from river basins where hydrologic conditions are relatively unaffected by man's activities and are expected to remain unaffected within the foreseeable future. Figure 4. Relation of seasonal water-table levels to long-term means. National Stream-Quality Accounting Network was designed by the U.S. Geological Survey to meet information needs of agencies or groups involved in national or regional water-quality planning and management. Both accounting and broad monitoring aspects have been incorporated in the network design. The network is divided into the river-basin accounting units designated by the Office of Water Data Coordination in consultation with the Water Resources Council. Primary objectives of the network are: (1) to assess the areal variability of water-quality conditions, nationwide, on an annual basis; and (2) to assess long-term changes in stream quality. The U.S. Geological Survey completed a nation-wide review of the NASQAN program during 1986. This review is expected to result in a change in emphasis in the program and a net reduction, nationally, in the number of stations in the network. The original accounting objectives of the program will be retained only for a reduced number of stations that account for the quality of water leaving the continent or entering the Great Lakes. To meet the accounting objectives, preference will be given to stations where statistically significant water-quality changes have been detected or where changes in upstream land uses are anticipated. Increased emphasis will be placed on trend detection and transport of dissolved and suspended materials at these remaining accounting stations and any other stations retained in the network. Other stations retained in the network will be selected on the basis of hypotheses concerning the causes of existing or potential trends that the station is intended to identify. This new emphasis will require more intensive sampling (event-related and fixed-frequency sampling) and more chemical analyses of suspended materials, thus increasing per station costs. These increased costs are to be met by a reduction in network size rather than by increased funding of the program. Some reduction in network size and changes in network composition began in the 1987 water year; additional changes in the size, composition, and emphasis of the network are expected to be planned and implemented through the 1989 water year. <u>Radiochemical Surveillance Network</u> is a network of water-quality stations, representing major drainage basins in the conterminous United States, where samples are collected regularly for radioisotope
analysis. #### EXPLANATION OF THE RECORDS The surface-water and ground-water records published in this report are from the 1988 water year that began October 1, 1987, and ended September 30, 1988. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for precipitation and surface and ground water, and ground-water-level data. Data collection as part of cooperative studies of acid deposition in Wisconsin, which includes most of the data type just mentioned, are tabulated in a separate section of the report. The explanations of various types of data given in the remainder of this section apply to these records as well. Figure 5 shows major surface-water drainage basins and an index of hydrologic records. The locations of the stations and wells where the data were collected are shown in basin location maps and figures 6 and 7. The following sections of introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation. #### Station Identification Numbers Each data station, whether streamsite or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for the station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order number" is used for most surface-water stations on streams and a unique 15-digit number is used for lakes, wells, and precipitation monitoring sites. #### Downstream Order and Station Number Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary to the stream to which it is immediately tributary is indicated by an indention in the "List of Stations" in the front of this report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. The station-identification number is assigned according to downstream order. No station-number distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight- or nine- digit number for each station, such as 04087000 or 054310157, which appears just to the left of the station name, includes the two-digit Part number "04" or "05" plus the six- or seven digit downstream-order number "087000" or "4310157". The Part number designates the major river basin; for example, records in this report are in Part 04 (St. Lawrence River basin) or Part 05 (Upper Mississippi River basin). In some special cases, stations on streams may be identified with the numbering system used for ground-water and lake-data sites described in the following paragraph. This is generally done only for special purpose short-term stations where station density precludes convenient assignment of down-stream order numbers. Numbering System for Ground-Water, Lake, and Precipitation Data Sites Wells, springs, sites on lakes, and precipitation gages where data are collected are identified by a unique 15-digit number that is a concatenation of the site's latitude, longitude, and a two-digit sequence number. The sequence number is used to distinguish between sites located at the same latitude-longitude designation. The site identification number is permanently assigned to the site; actual latitude and longitude of the site are subject to update and are stored separately. Each ground-water site is also identified by a local number based on the cadastral-survey system of the U.S. Government. The number consists of an abbreviation of the county name, the township, range and section, and a four-digit number assigned to the well. #### Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained from a continuous stage-recording device by which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained from a continuous stage-recording device, but need not be. Because daily mean discharges commonly are published for such stations, they are referred to as "daily stations." By contrast, partial records are obtained by discrete measurements, without using a continuous stage-recording device. Two types of surface-water partial-record stations are operated: (1) crest-stage partial-record stations, for which maximum discharge is recorded; and (2) miscellaneous stations, for which periodic discharge measurements and/or limited water-quality analyses are made. These types of stations are each presented separately in this report. #### Data Collection and Computation The basic data collected at complete-record gaging stations include stage and discharge measurements of streams, and stage, surface area, and content measurements of lakes and reservoirs. Factors affecting stage-discharge relationships, weather records, and other information supplement the basic data used to determine daily flow. Records of stage are obtained by reading a non-recording gage, from a continuous graph, or from a tape punched at selected intervals on a water-stage recorder. Measurements of discharge are made with a current meter by using methods described in "U.S. Geological Survey Techniques of Water Resources Investigations" listed in "Publications on techniques of water-resources investigations." Rating tables of stream stage and corresponding discharges are prepared from stage-discharge relationship curves. Extended-rating curves, based on step-backwater techniques, velocity-area studies, logarithmic plotting, and indirect measurements of peak discharge are used to estimate discharges greater than those measured. Daily mean discharges are computed from gage heights and rating tables, and the monthly and yearly means are computed from the daily figures. If the stage-discharge relationship varies due to changes in the control, such as aquatic growth, debris, or scour and fill, daily mean discharge is computed by a shifting-control method in which correction factors, based on individual discharge measurements and notes by observers, are used when the gage heights are applied to the rating tables. The slope method is used to compute discharge at stream-gaging stations where backwater from lakes or reservoirs, tributary streams, or other sources affect the stage-discharge relationship. The rate of change of stage is used to compute discharge at stations where the stage-discharge relationship is affected by rapid changes in stage. When ice conditions at stream-gaging stations affect the stage-discharge relationship, gage-height records, winter discharge measurements, temperature and precipitation data, and comparable records of discharge for nearby stations are used to compute discharge. At gaging stations where gage-height records are faulty or non-existent for some periods, the daily discharges are estimated based on the recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for nearby stations. Descriptions of the stations and tabulations of data are included in this report. A table showing daily, monthly, and yearly discharges is given for each gaging station on a stream or canal. A table showing the monthly summary of stage is given for gaging stations on lakes. #### Data Presentation The records published for each gaging station consist of two parts, the manuscript or station description and the data table for the current water year. The manuscript provides, under various headings, descriptive information such as station location, period of record, average discharge, historical extremes, record accuracy, and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments that follow clarify information presented under the various headings of the station description. These headings may include all or some of the following: LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages were provided by the U.S. Army Corps of Engineers or other agencies. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of map available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD.--This indicates
the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation when the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station. REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect and revisions are printed in later reports. All the reports in which revisions have been published for the station and the water years to which the revisions apply are listed under this heading. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see definition of terms), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph is also used to present information about the accuracy of the records, special methods of computation, conditions that affect natural flow at the station and, possibly, other pertinent items. COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. AVERAGE DISCHARGE.--The discharge value given is the arithmetic mean of the water-year mean discharges. It is computed only for stations having at least 5 water years of complete record, and only water years of complete record are included in the computation. It is not computed for stations where diversions, storage, or other water-use practices cause the value to be meaningless. If water developments significantly altering flow at a station are put into use after the station has been in operation for a period of years, a new average is computed as soon as 5 water years of record have accumulated following the development. EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges. Unless otherwise qualified, the maximum discharge is the instantaneous maximum corresponding to the highest stage that occurred. The highest stage may have been obtained from a graphic or digital recorder, a crest-stage gage, or by direct observation of a non-recording gage. If the maximum stage did not occur on the same day as the maximum discharge, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum. EXTREMES OUTSIDE PERIOD OF RECORD.--Information concerning major floods or unusually low flows that occurred outside the stated period of record is included here. The information may or may not have been obtained by the U.S. Geological Survey. EXTREMES FOR CURRENT YEAR.—Extremes given here are similar to those for the period of record, except the peak discharge listing may include secondary peaks. For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. The peaks greater than the base discharge, excluding the highest one, are referred to as secondary peaks. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurrence of peaks is expressed in 24-hour local standard time. For example, 12:30 a.m. is 0030 and 1:30 p.m. is 1330. The minimum for the current water year appears below the table of peak data. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although it is rare, occasionally the records of a discontinued gaging station may need revision. Because there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations, who obtained the record from previously published data reports, may wish to contact the District office to determine if the published records were ever revised after the station was discontinued. If the data were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. RATING TABLE.--Skeleton rating tables allow an approximation of daily gage heights from daily discharges. The tables also indicate the range in stage resulting from any given range in discharge. The data presented for most gaging stations on lakes include a description of the station and a monthly summary table of stage. The daily table for stream-gaging stations gives mean discharge for each day and is followed by monthly and yearly summaries. In the monthly summary below the daily table, the line headed "TOTAL" gives the sum of the daily figures. The line headed "MEAN" gives the average flow in cubic feet per second during the month. The lines headed "MAX" and "MIN" give the maximum and minimum daily discharges, respectively, for the month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN."), or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. The figures shown in the yearly summary below the monthly summary are the appropriate discharges for the calendar and water years. Data collected at crest-stage partial-record stations are given in a table of annual maximum stages and discharges that follows the information for continuous-record sites. The crest-stage partial-record stations table is followed by a list of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for special reasons are called measurements at miscellaneous sites. #### Identifying Estimated Daily Discharge Estimated daily-discharge values are identified by listing the dates of the estimated record in the REMARKS paragraph of the station description. #### Accuracy of the Records The accuracy of streamflow records depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of measurements of stage, measurements of discharge, and interpretation of records. The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true value; "good," within 10 percent; and "fair," within 15 percent. Records that do not meet the criteria mentioned, are rated "poor." Different accuracies may be attributed to different parts of a given record. Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for values less than 1 $\rm ft^3/s$; to the nearest tenth between 1.0 and 10 $\rm ft^3/s$; to the nearest whole number between 10 and 1,000 $\rm ft^3/s$; and to 3 significant figures for more than 1,000 $\rm ft^3/s$. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous sites. Discharge at many stations, indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff, in inches, are not published unless satisfactory adjustments can be made for diversions, or changes in contents or reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents. #### Other Records Available Information used in the preparation of the records in this publication, such as discharge-measurement notes, gage-height records, temperature measurements, and rating tables are on file in the Wisconsin District office. Also, most of the daily mean discharges are in computer-readable form and have been statistically analyzed. Information on the availability of the unpublished information or on the results of statistical analyses of the published records may be obtained from the District office. #### Records of Surface-Water Quality Records of stream-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of stream-water quality nearly always requires corresponding stream discharge data. The stream discharge shown with a water quality analysis is the instantaneous value corresponding to the time of sample collection ("Streamflow, Instantaneous") whenever
possible. When an instantaneous discharge value is not available, the daily mean discharge ("Discharge, in Cubic Feet per Second") is given if available. Water samples from lakes are collected at locations identified by latitude and longitude; the depth at which the sample was collected is given with each analysis. Records of surface-water quality in this report include a variety of types of data and measurement frequencies. #### Classification and Arrangement of Records The water-quality data collected at surface-water sites fall into two general classifications. Continuous-record stations are sites where data are collected on a regularly scheduled basis as part of a monitoring program or interpretive investigation. Water-quality records for these stations accompany stream-discharge or lake-stage records, where available, in the Surface Water Records section of this report. Water-quality partial-record stations are sites where more limited water-quality data are collected. These data include water temperature and specific conductance measurements made at gaging station visits and other reconnaissance data collected for special purposes. Water-quality data for water-quality partial-record stations appear together at the end of the Surface Water Records section. #### On-site Measurements and Sample Collection In obtaining water-quality data, care is taken to assure that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, are made on site when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures are followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given in "U.S. Geological Survey Techniques of Water-Resources Investigations," listed in "Publications on techniques of water-resources investigations." One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections using depth-integrating samplers to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. Water quality in lakes may differ with depth and laterally at a particular depth depending on thermal stratification and other physical and biological factors. Chemical-quality data published in this report are considered to be representative values for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. For chemical-quality stations equipped with recording monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon values recorded. More detailed records (hourly values) may be obtained from the U.S.G.S. Wisconsin District Office. #### Sediment Suspended-sediment concentrations are determined on samples collected with depth integrating samplers from one or more verticals in the cross section, or on a single sample taken manually or with an automatic sampler at a fixed point. For fixed-point samples, a coefficient is applied to correct for differences between fixed-point and flow-integrated samples. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently than during stable periods. The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided-day method (time-discharge weighted average). For periods when no samples were collected, daily discharges of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge. Suspended-sediment discharges less than 0.005 tons/day are reported as 0. Suspended-sediment samples are collected less frequently at some stations where suspended-sediment discharges are not computed. These periodic samples represent conditions only at the time of observations. However, such data are useful in establishing seasonal relations between suspended-sediment concentration and streamflow and in predicting long-term sediment-discharge characteristics of the stream. In addition to the records of suspended-sediment discharge and concentration, records of the periodic measurements of the particle-size distribution of the suspended sediment and bed material are included for some stations. #### Laboratory Measurements Samples for suspended-sediment concentration and particle-size determination are analyzed by the U.S.G.S. Sediment Laboratory in Iowa City, Iowa. Chemical analyses, other than field measurements, are performed by the USGS National Water Quality Laboratory unless specified otherwise. Methods used by USGS laboratories in analyzing water and sediment samples and computing sediment records are given in "U.S. Geological Survey Techniques of Water-Resources Investigations" listed in "Publications on techniques of water-resources investigations." #### Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, laboratories (if non USGS), cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, biological, radiochemical data, and so forth, obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved oxygen, and suspended sediment then following in sequence. The concentrations of some constituents are given as less than some value; that value is the detection for the analytical method used for the analysis. Occasionally these values differ or an actual concentration is given that is less than a higher detection limit indicated for the constituent in another analysis. These differences are due to differences in analytical methods. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. The following information, as appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. DRAINAGE AREA. -- See Data Presentation under "Records of Stage and Water Discharge;" same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, pumping sediment sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. Non USGS laboratories providing analytical data are identified. COOPERATION. -- Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here. EXTREMES.--Maximum and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made to the Water-Quality File in the U.S. Geological Survey's computerized data system, WATSTORE, and subsequently by update transactions to the U.S. Environmental Protection Agency's STORET system. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from the appropriate computer file to insure the most recent updates or check with the District Office to determine if updates were made. The surface-water-quality records for water-quality partial-record stations are published in separate tables following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its station number and name in the regular downstream-order sequence. #### Remark Codes The following remark codes may appear with the water-quality data in this report: | PRINTED OUTPUT | REMARK | |----------------|---| | E | Estimated value | | > | Actual value is known to be greater than the value shown | | < | Actual value is known to be less than the value shown | | K | Results based on colony count outside the acceptance range (non-ideal colony count)
 #### Records of Ground-Water Levels Water-level data for 65 wells are given in this report. The location of these wells is shown on figure 6. These wells are part of a national network of observation wells, and the water-level data are intended to provide a sampling and historical record of water-level changes in the Nation's most important aquifers. Data in this report represent natural water-table and artesian conditions in the principal aquifers of the State, except in the sandstone aquifer in southeastern Wisconsin where heavy municipal and industrial pumping is causing a continual decline in the water level. Water in this aquifer is under artesian pressure where confined by the overlying Maquoketa Shale. Although records of water levels for 65 wells are presented in this report, water-level data are currently being collected for a total of 226 wells in Wisconsin through a cooperative program with the Wisconsin Geological and Natural History Survey (WG&NHS). Many federal, state, county and local agencies, as well as interested area residents, assist in this program by measuring and reporting water levels. All water-level data are placed in computer storage. Reports containing hydrographs, showing water-level changes in all of these wells, are periodically published by the WG&NHS. The amplitude of water-level changes is typified by 10 well hydrographs in this report that show annual maximum and minimum water levels for the period of record. ## Data Collection and Computation Measurements of water levels are made in many types of wells under varying conditions, but the methods of measurement are standardized to the extent possible. The equipment and measuring techniques used at each observation well ensure that measurements at each well are consistently accurate and reliable. Tables of water-level data are presented by county arranged in alphabetical order. The prime identification number for a given well is the 15-digit number that appears in the heading. It is followed by the secondary identification number (the local number), an alphanumeric number, derived from the county, township-range location of the well, and a sequential number for the county. Water-level records are obtained from direct measurements with a steel tape or from the graph or punched tape of a water-stage recorder. The water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the lsd above the National Geodetic Vertical Datum of 1929 and the height of the measuring point (MP) above or below the lsd is given in each well description. Water levels are normally reported to a hundredth of a foot. The absolute value of the depth to water may be in error by a few tenths of a foot, but the error in determining the net change in water level between successive measurements is normally only a hundredth or a few hundredths of a foot. #### Data Presentation Each well record consists of two parts, the station description and the data table of water levels observed during the water year. The description of the well precedes the tabular data. The comments below clarify information presented under the various headings. LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the hydrologic-unit number; and the land owner's name. AQUIFER.--This entry designates by name the primary aquifer(s) open to the well. WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, and use. DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of casing, top of breather pipe, hole in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) National Geodetic Vertical Datum of 1929 (NGVD of 1929); it is reported with a precision dependent on the method of determination. REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. EXTREMES FOR PERIOD OF RECORD. -- This entry contains the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence. A table of water levels follows the station description for each well. Water levels are reported in feet below land-surface datum and all taped measurements of water level are listed. For wells equipped with recorders, only abbreviated tables are published; daily lows are listed for every fifth day and at the end of the month (eom). For these wells the highest and lowest water levels of the water year and their dates of occurrence are shown on a line below the abbreviated table. Because all values are not published for these wells, the extremes may be values that are not listed in the table. Missing records are indicated by dashes in place of the water level. # Records of Ground-Water Quality # Data Collection and Computation The records of ground-water quality in this report were obtained mostly as part of special studies in specific areas. Consequently, a number of chemical analyses may be presented for some counties but none for others. Most methods of collecting and analyzing water samples are described in the "U.S. Geological Survey Techniques of Water-Resources Investigations" manuals listed in "Publications on techniques of water-resources investigations." The values reported in this report represent water-quality conditions at the time of sampling. Care is taken to assure that the water collected represents the geologic unit supplying water to the well. This is done by pumping the well for what is believed to be a sufficient length of time to flush out water that might have been contaminated by exposure to the material that comprise the well casing or distribution system. #### Data Presentation The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County. No descriptive statements are given for ground-water-quality records; however, station number, local identifying number, geologic unit, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The discussion of detection limits and the list of remarks codes for surface-water-quality records also apply to ground-water-quality records. #### ACCESS OF WATSTORE DATA The National <u>WATer Data STOrage</u> and <u>RE</u>trieval System (WATSTORE) was established to process and store water data collected through the activities of the U.S. Geological Survey and to provide more effective and efficient means of releasing the data to the public. The system is operated and maintained on the central computer facilities of the Survey at its National Center in Reston, Virginia. WATSTORE can provide a variety of useful products ranging from simple data tables to complex statistical analyses. A minimal fee, plus the actual computer cost incurred in producing a desired product, is charged to the requester. Information about the availability of specific types of data, the acquisition of data or products, and user charges can be obtained locally from the District Office. General inquires about WATSTORE may be directed to: Chief Hydrologist U.S. Geological Survey 437 National Center Reston, Virginia 22092 #### DEFINITION OF TERMS Terms used in this report with reference to streamflow, water-quality, and other hydrologic data are defined below. For conversion of inch-pound units and International System (SI) units see the table on the inside of the back cover. Acre-foot (acre-ft) is the quantity of water required to cover 1 acre to a depth of 1 foot. It is the equivalent of 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. Aquifer is a geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to wells and springs. <u>Bacteria</u> are microscopic, unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, and often clumped into colonies. Some bacteria cause disease; others perform essential roles in the natural recycling of materials such as decomposing organic matter into forms available for reuse by plants. Fecal coliform bacteria are present in the intestines of warmblooded animals and are used to determine the sanitary quality of water. They are defined as those organisms that produce blue colonies within 24 hours when incubated at $44.5^{\circ}\text{C} \pm 0.2^{\circ}$ on FC culture medium. Their concentrations are expressed as number of colonies per 100 ml of sample. Fecal streptococci bacteria are also found in the intestines of warmblooded animals. Their presence in water is used to verify fecal pollution. They are characterized as gram-positive, spherical bacteria capable of growth in brain-heart infusion broth. They are defined as those organisms that produce red or pink colonies within 48 hours at 35° + 1.0° on M-enterococcus culture medium. Their concentrations are expressed as number of colonies per 100 ml of sample. <u>Bed material</u> is the unconsolidated material at the bottom of a streambed, lake, pond, reservoir, or estuary.
<u>Biochemical oxygen demand</u> (BOD) measures the quantity of dissolved oxygen, in milligrams per liter, used by microorganisms for the decomposition of organic matter. <u>Cfs-day</u> is the volume of water produced by a flow of 1 cubic foot per second for 24 hours. It is the equivalent of 86,400 cubic feet, 1.9835 acrefeet, 646,000 gallons, or 2,447 cubic meters. <u>Control</u> is a feature downstream from a gage that determines the stagedischarge relation at the gage. The control may be a natural constriction of the channel, an artificial structure, or a uniform cross section over a long reach of the channel. <u>Cubic feet per second per square mile</u> (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming that the runoff is distributed uniformly in time and area. <u>Cubic foot per second</u> (ft³/s) represents a volume of 1 cubic foot of water passing a given point during 1 second and is the equivalent of 7.48 gallons per second, 448.8 gallons per minute, or 0.02832 cubic meters per second. <u>Discharge</u> is the volume of fluid or mass of suspended sediment passing a given point in a given period of time. Mean discharge (MEAN) is the arithmetic average of all daily mean discharges for a specific period of time. <u>Instantaneous discharge</u> is the discharge at a particular time. $\underline{\text{Dissolved}}$ is an operational definition used by Federal and State agencies collecting water data as that material in a water sample which passes through a 0.45 μm membrane filter. Determinations of "dissolved" constituents are made on subsamples of the filtrate. <u>Drainage area</u> of a stream at a specified location is measured in a horizontal plane and constitutes an area enclosed by a topographic divide from which surface runoff above the specified point drains by gravity into the stream. Values of the drainage areas given herein include closed basins and noncontributing areas within the basin, as noted. Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the general term "stage", although gage height is more appropriate when referring to a reading on a gage. See also Lake stage. <u>Gaging station</u> is a particular site on a stream or lake where systematic hydrologic data are collected. Geologic unit is a geologic formation or group of formations; in this report, the term is used in the same sense as "aquifer" and refers to the geologic formation(s) open to the uncased or screened portion of a well. $\underline{\text{Hardness}}$ is a physical-chemical characteristic of water that is attributable principally to the presence of calcium and magnesium and is expressed as calcium carbonate (CaCO³). Hardness is commonly recognized by the increased quantity of soap required to produce lather. <u>Hydrologic unit</u> designates part or all of a surface-drainage basin delineated by the Office of Water Data Coordination; each hydrologic unit is identified by an 8-digit number. <u>Lake stage</u> is the elevation of the lake's water surface referred to some arbitrary gage datum. Micrograms per gram $(\mu g/g)$ indicates the concentration of a chemical constituent as the mass (micrograms) of that constituent per unit mass (gram) of sediment. Micrograms per kilogram ($\mu g/kg$) indicates the concentration of a chemical constituent as mass (micrograms) of that constituent per unit mass (kilogram) of sediment. Micrograms per liter (μ g/L) indicates the concentration of a chemical constituent as the mass (micrograms) of that constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. <u>Milligrams per liter</u> (mg/L) indicates the concentration of a chemical constituent or suspended sediment as the mass (milligrams) per unit volume (liter) of water. National Geodetic Vertical Datum of 1929 (NGVD) is a geodetic datum derived from a general adjustment of the first order level nets of both the United States and Canada. It was formerly called "Sea Level Datum of 1929" or "mean sea level" in this series of reports. Although the datum was derived from the average sea level over a period of many years at 26 tide stations along the Atlantic, Gulf of Mexico, and Pacific Coasts, it does not necessarily represent mean sea level at any particular place. <u>Partial-record station</u> is a site for the systematic collection of limited streamflow or water-quality data over a period of years. <u>Particle size</u> is measured as the diameter, in millimeters (mm), of suspended sediment and bed material determined by sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) measure the fall diameter of particles in distilled water (chemically dispersed) or native water (surface water at the time and point of sampling). <u>Particle-size classification</u> for this report is based on recommendations of the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: | Classification | Size (mm) | Method of analyis | |--------------------------------|--|--| | Clay
Silt
Sand
Gravel | 0.00024 - 0.004
.004062
.062 - 2.0
2.0 - 64.0 | Sedimentation. Sedimentation. Sedimentation or sieve. Sieve. | <u>Pesticides</u> are chemical compounds used to control undesirable plants and animals. They include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides control insects and plants respectively and are the two categories reported. <u>Picocurie</u> (PCi) is one trillionth (1 \times 10⁻¹²) of a curie (Ci). A curie is the amount of radioactivity that yields 3.7 \times 10¹⁰ disintegrations per second. A picocurie yields 2.22 disintegrations per minute. <u>Polychlorinated biphenyls</u> (PCB's) are industrial chemicals composed of biphenyl compounds containing various amounts of chlorine. Their chemical structure is similar to the organochlorine insecticides. <u>Polychlorinated naphthalenes</u> (PCN's) are industrial chemicals composed of naphthalene compounds containing various amounts of chlorine. Their chemical structure is similar to the organochlorine insecticides. Recoverable from bottom material is the amount of a given constituent that is in solution after a sample of bottom material has been digested by an acid or mixture of acids that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material usually is not achieved by the digestion treatment and thus the determination represents less than the total amount of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Runoff in inches (IN, in) indicates the depth of water that would cover a drainage area if all runoff for a given time period were uniformly distributed. Secchi disk is a black and white plate, 20-25 cm in diameter, which is lowered into a lake on a calibrated line until it is no longer visible. The depth, in meters, at which the disk just disappears is reported as a measure of transparency. Sediment originates mostly from disintegrated rocks and is transported by, suspended in, and deposited by water; it includes chemical and biochemical precipitates and decomposed organic material such as humus. Topography, geology, soil type, land cover, land use, quantity and intensity of precipitation, and other environmental factors influence the quantity, characteristics, and cause of sediment in streams. <u>Suspended sediment</u> is sediment maintained in suspension by turbulent currents or as a colloid. Suspended-sediment discharge is the quantity of suspended sediment passing through a stream cross section in a unit of time. It is computed by multiplying water discharge times suspended-sediment concentration times 0.0027. <u>Suspended-sediment concentration</u> is the discharge-weighted concentration of suspended sediment in a sample zone (from the water surface to approximately 0.3 ft above the streambed) and is expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). Mean concentration is the time-weighted concentration of suspended sediment passing through a stream cross section during a 24-hour period. Sodium-adsorption ratio (SAR) expresses the relative activity of sodium ions in exchange reactions with soil. Solute is any substance dissolved in water. Specific conductance is a measure of the ability of water to conduct electrical current and is expressed in microsiemens per centimeter at 25°C. It is related to the number and specific types of ions in solution, and is useful for approximating the concentration of dissolved solids in the water. Commonly, the concentration of dissolved solids mg/L is about 65 percent of the specific conductance. Stage-discharge relation correlates height (stage) and the volume of water flowing in a channel per unit of time. Streamflow uniquely describes discharge in the natural channel of a surface stream course as opposed to the term "discharge", which can be applied to the flow of a canal. Unlike the term "runoff", streamflow may be applied to discharge whether it is affected by diversion or regulation or not. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a water-sediment sample retained on a 0.45 μm membrane filter has been digested by dilute acid that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter usually is not achieved by the digestion treatment and thus the determination
represents something less than the "total" amount of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of $\underline{\text{dissolved}}$ and $\underline{\text{total recoverable}}$ concentrations of the constituent. Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45 µm membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by analyzing portions of the material collected on the filter or, more commonly, by difference, based on determinations of <u>dissolved</u> and <u>total recoverable</u> concentrations of the constituent. Tons per acre-foot indicates the dry weight of a constituent in 1 acre-foot of water. It is computed by multiplying the concentration in milligrams per liter by 0.00136. Tons per day is the measure of a substance that passes a stream section in solution or suspension during a 24-hour period. It is computed by multiplying the concentration of the substance (mg/L) by 0.0027 times the discharge of the stream (cfs). Total is the total amount of a given constituent in a water-sediment sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." The term indicates the sample consists of a water-sediment mixture and that the analytical method determines all of the constituent in the sample. Total, recoverable is the amount of a given constituent that is in solution after a water-sediment sample has been digested by dilute acid resulting in dissolution of only readily soluble substances. Complete dissolution of all particulate matter usually is not achieved, thus the determination represents something less than the "total" amount of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Total in bottom material is the total amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." <u>WDR</u> is the abbreviation for "Water-Data Report" used in the summary REVISIONS paragraph to indicate previously published State annual basic data report (WRD was used an abbreviation for "Water-Resources Data" in reports published prior to 1982. $\underline{\mathtt{WSP}}$ is the abbreviation for "Water-Supply Paper" used in references to previously published reports. #### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS The U.S. Geological Survey publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, Section A of Book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. The reports listed below are for sale by the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and "U.S. Geological Survey Techniques of Water-Resources Investigations." - 1-D1. Water temperature--influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., J. F. Ficke, and G. F. Smoot: USGS--TWRI Book 1, Chapter D1. 1975. 65 pages. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W. W. Wood: USGS--TWRI Book 1, Chapter D2. 1976. 24 pages. - 2-Dl. Application of surface geophysics to ground-water investigations, by A. A. R. Zohdy, G. P. Eaton, and D. R. Mabey: USGS--TWRI Book 2, Chapter Dl. 1974. 116 pages. - 2-E1. Application of borehole geophysics to water-resources investigations, by W. S. Keys and L. M. MacCary: USGS--TWRI Book 2, Chapter El. 1971. 126 pages. - 3-Al. General field and office procedures for indirect discharge measurements, by M. A. Benson and Tate Dalrymple: USGS--TWRI Book 3, Chapter Al. 1967. 30 pages. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M. A. Benson: USGS--TWRI Book 3, Chapter A2. 1967. 12 pages. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G. L. Bodhaine: USGS-,-TWRI Book 3, Chapter A3. 1968. 60 pages. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H. J. Matthai: USGS--TWRI Book 3, Chapter A4. 1967. 44 pages. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS--TWRI Book 3, Chapter A5. 1967. 29 pages. - 3-A6. General procedure for gaging streams, by R. W. Carter and Jacob Davidian: USGS--TWRI Book 3, Chapter A6. 1968. 13 pages. - 3-A7. Stage measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3. Chapter A7. 1968. 28 pages. - 3-A8. Discharge measurements at gaging stations, by T. J. Buchanan and W. P. Somers: USGS--TWRI Book 3, Chapter A8. 1969. 65 pages. - 3-A9. Measurement of time of travel and dispersion in streams by dye tracing, by E. F. Hubbard, F. A. Kilpatrick, L. A. Martens, and J. F. Wilson, Jr.: USGS--TWRI Book 3, Chapter A9. 1982. 44 pages. - 3-AlO. Discharge ratings at gaging stations, by E. J. Kennedy: USGS--TWRI Book 3, Chapter AlO. 1984. 59 pages. - 3-All. Measurement of discharge by moving-boat method, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 3, Chapter All. 1969. 22 pages. - 3-Al2. Fluorometric procedures for dye tracing, by J. F. Wilson, Jr., E. D. Cobb, and F. A. Kilpatrick: USGS--TWRI Book 3, Chapter Al2. 1986. 41 pages. - 3-Al3. Computation of continuous records of streamflow, by E. J. Kennedy: USGS--TWRI Book 3, Chapter Al3. 1983. 53 pages. - 3-Al4. Use of flumes in measuring discharge, by F. A. Kilpatrick and V. R. Schneider: USGS--TWRI Book 3, Chapter Al4. 1983. 46 pages. - 3-Al5. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS--TWRI Book 3, Chapter Al5. 1984. 48 pages. - 3-Al6. Measurement of discharge using tracers, by F. A. Kilpatrick and E. D. Cobb: USGS--TWRI Book 3, Chapter Al6. 1985. 52 pages. - 3-Al7. Acoustic velocity meter systems, by Antonius Laenen: USGS--TWRI Book 3, Chapter Al7. 1985. 38 pages. - 3-Bl. Aquifer-test design, observation, and data analysis, by R. W. Stallman: USGS--TWRI Book 3, Chapter Bl. 1971. 26 pages. #### PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS -- Continued - 3-B2. Introduction to ground-water hydraulics, a programed test for self-instruction, by G. D. Bennett: USGS--TWRI Book 3, Chapter B2. 1976. 172 pages. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J. E. Reed: USGS-TWRI Book 3, Chapter B3. 1980. 106 pages. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems--An introduction, by O. L. Franke, T. E. Reilly, and G. D. Bennett: USGS--TWRI Book 3, Chapter B5. 1987. 15 pages. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T. E. Reilly, O. L. Franke, and G. D. Bennett: USGS--TWRI Book 3, Chapter B6. 1987. 28 pages. - 3-Cl. Fluvial sediment concepts, by H. P. Guy: USGS--TWRI Book 3, Chapter Cl. 1970. 55 pages. - 3-C2. Field methods for measurement of fluvial sediment, by H. P. Guy and V. W. Norman: USGS--TWRI Book 3, Chapter C2. 1970. 59 pages. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS--TWRI Book 3, Chapter C3. 1972. 66 pages. - 4-Al. Some statistical tools in hydrology, by H. C. Riggs: USGS--TWRI Book 4, Chapter Al. 1968. 39 pages. - 4-A2. Frequency curves, by H. C. Riggs: USGS--TWRI Book 4, Chapter A2. 1968. 15 pages. - 4-B1. Low-flow investigations, by H. C. Riggs: USGS--TWRI Book 4, Chapter B1. 1972. 18 pages. - 4-B2. Storage analyses for water supply, by H. C: Riggs and C. H. Hardison: USGS--TWRI Book 4, Chapter B2. 1973. 20 pages. - 4-B3. Regional analyses of streamflow characteristics, by H. C. Riggs: USGS--TWRI Book 4,
Chapter B3. 1973. 15 pages. - 4-Dl. Computation of rate and volume of stream depletion by wells, by C. T. Jenkins: USGS-TWRI Book 4, Chapter Dl. 1970. 17 pages. - 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M. W. Skougstad and others, editors: USGS--TWRI Book 5, Chapter Al. 1979. 626 pages. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P. R. Barnett and E. C. Mallory, Jr.: USGS--TWRI Book 5, Chapter A2. 1971. 31 pages. - 5-A3. Methods for analysis of organic substances in water, by D. F. Goerlitz and Eugene Brown: USGS--TWRI Book 5, Chapter A3. 1972. 40 pages. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, edited by P. E. Greeson, T. A. Ehlke, G. A. Irwin, B. W. Lium, and K. V. Slack: USGS--TWRI Book 5, Chapter A4. 1977. 332 pages. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L. L. Thatcher, V. J. Janzer, and K. W. Edwards: USGS--TWRI Book 5, Chapter A5. 1977. 95 pages. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L. C. Friedman and D. E. Erdmann: USGS--TWRI Book 5, Chapter A6. 1982. 181 pages. - 5-Cl. Laboratory theory and methods for sediment analysis, by H. P. Guy: USGS--TWRI Book 5, Chapter Cl. 1969. 58 pages. - 6-Al. A modular three-dimensional finite-difference ground-water flow model, by M. G. McDonald and A. W. Harbaugh: USGS--TWRI Book 6, Chapter Al. 1988. 586 pages. - 7-Cl. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P. C. Trescott, G. F. Pinder, and S. P. Larson: USGS--TWRI Book 7, Chapter Cl. 1976. 116 pages. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L. F. Konikow and J. D. Bredehoeft: USGS--TWRI Book 7, Chapter C2. 1978. 90 pages. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R. W. Schaffrannek, R. A. Baltzer, and D. E. Goldberg: USGS--TWRI Book 7, Chapter C3. 1981. 110 pages. - 8-Al. Methods of measuring water levels in deep wells, by M. S. Garber and F. C. Koopman: USGS-TWRI Book 8, Chapter Al. 1968. 23 pages. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J. D. Craig: USGS-TWRI Book 8, Chapter A2. 1983. 57 pages. - 8-B2. Calibration and maintenance of vertical-axis type current meters, by G. F. Smoot and C. E. Novak: USGS--TWRI Book 8, Chapter B2. 1968. 15 pages. ST. LAWRENCE RIVER BASIN RECORDS Figure 5. Major surface-water drainage basins and index of hydrologic records. LAKE SUPERIOR BASIN #### 04024430 NEMADJI RIVER NEAR SOUTH SUPERIOR, WI LOCATION.--Lat 46°38'00", long 92°05'38", in SW 1/4 sec.14, T.48 N., R.14 W., Douglas County, Hydrologic Unit 04010301, on right bank at downstream side of bridge on County Trunk Highway C, 2.0 mi south of South Superior and 7.8 mi downstream from Black River. DRAINAGE AREA. -- 420 mi². PERIOD OF RECORD. -- December 1973 to current year. REVISED RECORDS.--WDR WI-75-1: 1974(M). WDR WI-82-1: Drainage area and 1981. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 601.13 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods and those for May through September, which are fair. AVERAGE DISCHARGE. -- 14 years, 407 ft³/s, 13.16 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,700 ft 3 /s, May 10, 1979, gage height, 22.83 ft; maximum gage height, 23.82 ft, Sept. 3, 1985; minimum daily, 16 ft 3 /s, Dec. 8, 1976. EXTREMES OUTSIDE THE PERIOD OF RECORD.--A flood of Aug. 17, 1972, may have exceeded floods at this location since then. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,500 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | |--------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|------------------| | Apr. 7 | 1100 | (a) 4,290 | (a) *19.10 | May 10 | 0500 | *4,500 | *19.10 | ## (a) Backwater from ice. Minimum discharge, 39 ft³/s, July 28, gage height, 3.78 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used May 26 to Aug. 13, Aug. 17 to Sept. 19, and Sept. 25-30; stage-discharge relation affected by ice Nov. 6-15, and Nov. 19 to Apr. 8.) | 3.5 | 38 | 11.0 | 1,400 | |-----|-------|------|-------| | 3.7 | 56 | 14.0 | 2,260 | | 4.0 | 84 | 18.0 | 3,820 | | 5.0 | 198 | 19.0 | 4,430 | | 7 0 | E 1 A | | , | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|-----------------------------------|--|---|--|---------------------------------|--|--|---|----------------------------------|--|---|---| | 1
2
3
4
5 | 73
74
72
74
75 | 87
87
91
98
123 | 110
100
98
96
94 | 84
82
82
82
80 | 70
68
68
66
66 | 64
66
66
66 | 1300
1700
2000
2500
3100 | 193
185
174
164
157 | 139
129
122
117
111 | 65
58
55
51
48 | 59
57
51
64
78 | 59
62
63
63 | | 6
7
8
9
10 | 98
95
76
76
75 | 110
110
100
90
88 | 92
90
88
88
90 | 78
76
76
76
74 | 66
64
64
62 | 64
66
70
100
130 | 3700
4000
3400
2480
1870 | 151
151
174
2300
3980 | 103
98
95
97
89 | 46
46
46
48 | 75
65
93
90
71 | 58
53
51
47
44 | | 11
12
13
14
15 | 77
75
74
73
73 | 100
98
96
98
100 | 94
96
92
88
86 | 74
76
74
72
72 | 62
62
62
62
60 | 240
170
150
140
150 | 1540
1320
1170
987
798 | 1980
1220
1010
823
652 | 85
79
75
74
73 | 45
45
49
53
49 | 60
61
116
1060
605 | 43
43
43
42
41 | | 16
17
18
19
20 | 76
78
80
83
88 | 102
124
192
190
170 | 86
86
86
88
88 | 72
72
72
72
72
72 | 60
60
62
62
64 | 170
170
170
170
160 | 671
600
536
460
403 | 549
468
395
344
316 | 70
66
63
77
81 | 45
44
43
42
41 | 333
217
169
137
114 | 44
57
60
63
1390 | | 21
22
23
24
25 | 90
92
94
97
98 | 150
140
130
120
110 | 86
86
86
84
84 | 72
72
70
70
70 | 64
66
66
64 | 160
160
160
190
840 | 357
324
300
287
273 | 293
269
246
223
199 | 73
71
67
61
59 | 42
42
44
43
43 | 100
93
115
124
104 | 1180
601
430
317
246 | | 26
27
28
29
30
31 | 103
98
96
94
92
90 | 110
110
98
100
120 | 84
84
86
86
84 | 70
68
68
68
66
68 | 64
64
64
 | 1700
1200
1000
900
880
1100 | 258
243
228
214
197 | 185
175
179
177
166
151 | 58
54
58
72
71 | 41
41
39
40
49
53 | 88
78
71
66
62
58 | 204
173
154
145
141 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2609
84.2
103
72
.20 | 3442
115
192
87
.27
.30 | 2770
89.4
110
84
.21
.25 | 2280
73.5
84
66
.18
.20 | 1856
64.0
70
60
.15 | 10736
346
1700
64
.82
.95 | 37216
1241
4000
197
2.95
3.30 | 17649
569
3980
151
1.36
1.56 | 2487
82.9
139
54
.20 | 1444
46.6
65
39
.11
.13 | 4534
146
1060
51
. 35
. 40 | 5980
199
1390
41
. 47
. 53 | CAL YR 1987 TOTAL 63418 MEAN 174 MAX 1340 MIN 63 CFSM .41 IN. 5.62 WTR YR 1988 TOTAL 93003 MEAN 254 MAX 4000 MIN 39 CFSM .61 IN. 8.24 #### 04024500 AMNICON LAKE NEAR SOUTH RANGE, WI DRAINAGE AREA. -- 4.8 mi², approximately. PERIOD OF RECORD.--August 1936 to September 1964 (fragmentary), October 1984 to September 1986, May to September 1988. GAGE.--Staff gage read by Dennis Corbin. Datum of gage is 1179.94 ft, National Geodetic Vertical Datum of 1929. Prior to 1964, staff gage 0.3 mi west at datum of 1188.00 ft, National Geodetic Vertical Datum of 1929. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 1199.32 ft, May 9, 1950; minimum observed, 1195.82 ft, Oct. 28, 1948. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 17.75 ft, May 10; minimum observed, 16.96 ft, July 27-31. | | | | GAGE HEI | GHT, FEET | | TEAR OCTOB
LAN VALUES | ER 1987 | TO SEPTEM | BER 1988 | | | | |------|-----|-----|----------|-----------|-----|--------------------------|---------|-----------|----------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | 17.42 | 17.21 | 17.00 | 17.48 | | 2 | | | | | | | | | 17.42 | 17.21 | 17.04 | 17.46 | | 3 | | | | | | | | | 17.42 | 17.21 | 17.05 | 17.46 | | 4 | | | | | | | | | | 17.19 | 17.07 | 17.44 | | 5 | | | | | | | | | 17.40 | 17.19 | 17.11 | 17.44 | | 6 | | | | | | | | | 17.40 | 17.19 | 17.15 | 17.42 | | 7 | | | | | | | | | 17.38 | 17.17 | 17.17 | 17.40 | | 8 | | | | | | | | | 17.38 | 17.15 | 17.19 | 17.40 | | 9
| | | | | | | | | 17.38 | 17.11 | 17.17 | 17.40 | | 10 | | | | | | | | 17.75 | 17.36 | 17.08 | 17.15 | 17.38 | | 11 | | | | | | | | | 17.36 | 17.08 | 17.13 | 17.38 | | 12 | | | | | | | | | 17.36 | 17.06 | 17.13 | 17.38 | | 13 | | | | | | | | | 17.34 | 17.06 | 17.21 | 17.36 | | 14 | | | | | | | | | 17.34 | 17.04 | 17.57 | 17.36 | | 15 | | | | | | | | | 17.34 | 17.04 | 17.59 | 17.36 | | 16 | | | | | | | | | 17.31 | 17.02 | 17.59 | 17.34 | | 17 | | | | | | | | | 17.31 | 17.00 | 17.61 | 17.34 | | 18 | | | | | | | | | 17.31 | 17.00 | 17.59 | 17.34 | | 19 | | | | | | | | | 17.29 | 17.00 | 17.59 | 17.32 | | 20 | | | | | | | | | 17.29 | 17.00 | 17.59 | 17.62 | | 21 | | | | | | | | | 17.29 | 17.00 | 17.59 | 17.62 | | 22 | | | | | | | | | 17.27 | 16.98 | 17.63 | 17.64 | | 23 | | | | | | | | 17.44 | 17.27 | 16.98 | 17.59 | 17.64 | | 24 | | | | | | | | 17.44 | 17.27 | 16.98 | 17.55 | 17.62 | | 25 | | | | | | | | 17.42 | 17.27 | 16.98 | 17.53 | 17.60 | | 26 | | | | | | | | 17.42 | 17.25 | 16.98 | 17.51 | 17.62 | | 27 | | | | | | | | 17.46 | 17.25 | 16.96 | 17.50 | 17.62 | | 28 | | | | | | | | 17.46 | 17.25 | 16.96 | 17.48 | 17.60 | | 29 | | | | | | | | 17.44 | 17.23 | 16.96 | 17.46 | 17.56 | | 30 | | | | | | | | 17.44 | 17.23 | 16.96 | 17.46 | 17.54 | | 31 | | | | | | | | 17.44 | | 16.96 | 17.48 | | | MEAN | | | | | | | | | | 17.06 | 17.37 | 17.47 | | MAX | | | | | | | | | | 17.21 | 17.63 | 17.64 | | MIN | | | | | | | | | | 16.96 | 17.00 | 17.32 | #### 04025500 BOIS BRULE RIVER NEAR BRULE, WI LOCATION.--Lat 46°32'16", long 91°35'43", in NW 1/4 SW 1/4 sec.23, T.47 N., R.10 W., Douglas County, Hydrologic Unit 04010301, on right bank, 1.4 mi southwest of Brule Post Office, 1.4 mi downstream from Nebagamon Creek, and 1.7 mi upstream from Little Bois Brule River. DRAINAGE AREA. -- 120 mi² PERIOD OF RECORD.--October 1942 to September 1981, January 1984 to current year. Prior to January 1943, monthly discharge only, published in WSP 1307. REVISED RECORDS.--WRD WI-71-1: Drainage area. WSP 1337: 1943(M), 1944, 1945-50(M). GAGE.--Water-stage recorder. Datum of gage is 948.49 ft above National Geodetic Vertical Datum of 1929. Prior to October 1964, nonrecording gage at same site and datum, supplemented by water-stage recorder part of 1959-62. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. AVERAGE DISCHARGE.--43 years (water years 1943-81, 1985-88), 172 ft³/s, 19.46 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,520 $\rm ft^3/s$, June 5, 1944, gage height, 5.2 $\rm ft$, from graph based on gage readings and from rating curve extended above 750 $\rm ft^3/s$; minimum observed, 67 $\rm ft^3/s$, Mar. 13, 1943. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |-------------------|--------------|-----------------------------------|---------------------|----------|------|-----------------------------------|---------------------| | Jan. 10
Apr. 9 | 0900
0100 | (a)
*547 | *3.73
3.37 | Sept. 20 | 0800 | 345 | 2.63 | (a) Backwater from ice. Minimum discharge, 102 ft³/s, July 28, 29. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 19-21, Dec. 1-6, 26, 27, Jan. 1 to Feb. 27, and Mar. 12-24.) DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 AUG SEP 1.4 101 3.0 44 2.0 200 4.0 74 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL 1 128 132 180 150 130 129 191 167 133 118 2 132 132 170 150 130 128 200 164 138 116 | 1
2
3
4
5 | 128
132
129
127
129 | 132
132
140
156
154 | 180
170
160
160
150 | 150
150
140
140
140 | 130
130
130
130
130 | 129
128
130
130 | 191
200
237
253
284 | 167
164
161
159
157 | 133
138
137
132
129 | 118
116
114
113
111 | 122
123
116
130
128 | 122
121
119
124
123 | |--|---|---|---|---|---|---|---|---|---|--|---|---| | 6
7
8
9 | 144
146
139
132
130 | 146
140
136
135
132 | 150
153
153
164
169 | 140
140
140
140
140 | 130
130
130
130
130 | 128
128
140
142
140 | 314
394
494
498
409 | 153
153
181
225
241 | 127
125
126
127
125 | 108
108
110
111
111 | 122
117
130
127
121 | 120
117
114
113
112 | | 11
12
13
14
15 | 128
128
129
127
129 | 132
132
132
132
137 | 166
162
158
154
154 | 140
140
140
140
130 | 130
130
130
130
130 | 140
140
140
140
130 | 372
347
327
307
285 | 226
217
213
195
186 | 122
123
122
118
117 | 109
108
113
112
109 | 114
127
163
180
158 | 113
113
113
112
112 | | 16
17
18
19
20 | 139
142
138
134
134 | 171
190
194
180
160 | 153
150
150
155
148 | 130
130
130
130
130 | 130
130
130
140
140 | 130
130
130
130
130 | 270
259
246
235
222 | 179
172
167
162
166 | 117
117
117
136
130 | 108
107
107
106
106 | 150
149
140
127
121 | 121
127
128
133
313 | | 21
22
23
24
25 | 137
138
141
139
139 | 150
148
146
145
145 | 146
146
144
144 | 130
130
130
130
130 | 140
140
140
140
140 | 130
130
140
150
184 | 215
209
204
201
195 | 161
156
153
148
144 | 123
122
118
116
119 | 107
106
106
106
105 | 119
123
139
135
130 | 251
234
230
213
193 | | 26
27
28
29
30
31 | 136
136
135
135
133 | 143
142
141
180
188 | 150
150
144
141
141
141 | 130
130
130
130
130
130 | 140
140
131
130 | 181
172
171
176
180
186 | 189
185
180
175
171 | 142
146
144
140
136
134 | 115
113
127
130
123 | 105
104
103
106
117
119 | 124
121
118
118
116
116 | 181
168
158
157
155 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4165
134
146
127
1.12
1.29 | 4491
150
194
132
1.25
1.39 | 4748
153
180
141
1.28
1.47 | 4190
135
150
130
1.13
1.30 | 3861
133
140
130
1.11
1.20 | 4463
144
186
128
1.20
1.38 | 8068
269
498
171
2.24
2.50 | 5248
169
241
134
1.41
1.63 | 3724
124
138
113
1.03
1.15 | 3389
109
119
103
.91
1.05 | 4024
130
180
114
1.08
1.25 | 4510
150
313
112
1.25
1.40 | CAL YR 1987 TOTAL 53522 MEAN 147 MAX 237 MIN 115 CFSM 1.22 IN. 16.59 WTR YR 1988 TOTAL 54881 MEAN 150 MAX 498 MIN 103 CFSM 1.25 IN. 17.01 #### 04027000 BAD RIVER NEAR ODANAH, WI LOCATION.--Lat $46^{\circ}29'15"$, long $90^{\circ}41'45"$, in SE 1/4 sec.2, T.46 N., R.3 W., Ashland County, Hydrologic Unit 04010302, Bad River Indian Reservation, on left bank just downstream from Potato River, 8.5 mi south of Odanah, and 23 mi from mouth. DRAINAGE AREA. -- 597 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1914 to December 1922 (monthly discharge only for some periods published in WSP 1307), May 1948 to current year. REVISED RECORDS.--WSP 1337: 1922. WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 668.30 ft above National Geodetic Vertical Datum of 1929. May 17, 1948, to Nov. 6, 1959, and Oct. 19, 1960, to Nov. 23, 1961, water-stage recorder. Nov. 7,1959, to Oct. 18, 1960, and Nov. 24, 1961, to July 12, 1962, nonrecording gage. Prior to Nov. 11, 1922, water-stage recorder at site 2 mi downstream at different datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below and Aug. 13. Records good except those for periods of estimated daily discharges, which are poor. AVERAGE DISCHARGE.--48 years (1915-22, 1949-88), 622 ft³/s, 14.15 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 27,700 ft³/s, Apr. 24, 1960, gage height, 21.7 ft from flood-marks and from rating curve extended above 12,000 ft³/s and a comparison with contracted-opening measurement of peak flow 45,600 ft³/s at Odanah, drainage area 990 mi²; minimum, 34 ft³/s, Nov. 8, 1976, result of freezeup. EXTREMES OUTSIDE THE PERIOD OF RECORD.--Flood of June 24, 1946, reached a stage of at least 22.2 ft, top of downstream bridge submerged, information from Indian Service. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ${\rm ft}^3/{\rm s}$ and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |------------------|--------------|-----------------------------------|---------------------|------|------------|-----------------------------------|---------------------| | Apr. 4
Apr. 7 | 1600
0900 | a
*6,360 | *11.22
10.53 | No o | other peak | greater than ba | se discharge. | a Backwater from ice. Minimum discharge, 61 ft³/s, July 29, gage height, 2.13
ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 21-28, Dec. 2-9, and Dec. 13 to Apr. 6.) | 2.1 | 56 | 4.0 | 780 | |-----|-----|------|-------| | 2.5 | 162 | 6.0 | 2,100 | | 3.0 | 323 | 8.0 | 3,810 | | | | 11.0 | 6.880 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AHG SEP 535 548 7 245 476 74 514 71 174 771 22 279 290 143 154 829 300 135 ---TOTAL 955 80.1 71 MAX MIN .13 .21 CESM 1 17 3.72 .63 . 20 .28 . 23 .91 .40 .24 IN. .88 .94 .31 4.15 .32 1.35 CAL YR 1987 TOTAL 130153 MEAN 357 MAX 1700 MIN 84 CFSM .60 IN. 8.11 WTR YR 1988 TOTAL 170249 MEAN 465 MAX 6140 MIN 66 CFSM .78 IN. 10.61 # 04027000 BAD RIVER NEAR ODANAH, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1987 to September 1988. Water-quality data collected downstream at bridge on U.S. Highway 2 at Odanah from February 1978 to September 1987. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | WAIE | K QUALITI | DAIA, WAI | EK IEAK (| CIOPER I | 90/ 10 SE | TEMBER 19 | 000 | | | |----------------|---|---|--|--|--|---|---|---|--|---| | DATE | CH
C
TIME
S | ARGE, CHA IN IN UBIC CU FEET F PER P ECOND SE | ST. CI BIC CO EET DU ER AN COND (US | CT- (ST
CE A
(CM) UNI | TAND- A'
ARD W.
ITS) (DI | TURE I
ATER I
EG C) (FI | BID- I
ITY SO
IU) (M | ME
PR
GEN, S
DIS- (
DLVED
IG/L) H | TRIC I
ES- SO
URE (I
MM (O
OF SA
G) A | YGEN,
DIS-
DLVED
PER-
CENT
ATUR-
FION)
0301) | | OCT 1987
14 | 1145 | 23 | Q | 135 | 7.40 | 6.5 | 1.8 | 11.7 | 765 | 95 | | DEC 15 | | 20 | | 118 | 7.20 | 0.0 | 5.1 | 14.4 | 755 | 99 | | MAR 1988 | | | | | | | | | | 91 | | 01
APR | 1205 | | | 176 | 7.50 | 0.0 | 3.3 | 13.2 | 759 | | | 12
JUN | 1045 | 255 | | 50 | 7.40 | | 27 | 11.8 | 732 | 96 | | 10
AUG | 1020 | 13 | | 174 | 8.10 | 17.0 | 4.9 | 8.6 | 772 | 88 | | 22 | 1215 | 14 | 0 | 160 | 8.10 | 19.5 | 6.5 | 8.3 | 765 | 90 | | DATE | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | | | OCT 1987 | 771.0 | 2.5 | | | 4.7 | 5.0 | 0.0 | 2 | • | | | 14
DEC | K18 | 35 | 64 | 11 | 17 | 5.2 | 2.9 | 9 | 0.2 | | | 15
MAR 1988 | 24 | 130 | 49 | 10 | 13 | 4.0 | 2.6 | 10 | 0.2 | | | 01
APR | 28 | 40 | 78 | 8 | 21 | 6.3 | 3.9 | 10 | 0.2 | | | 12
TUN | 9 | 14 | 25 | 6 | 7.0 | 1.9 | 1.3 | 10 | 0.1 | | | 10
AUG | 32 | 85 | 86 | 0 | 23 | 6.9 | 3.8 | 9 | 0.2 | | | 22 | K89 | 350 | 82 | 7 | 22 | 6.5 | 3.7 | 9 | 0.2 | | | DATE | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | WATER
DIS IT | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | (MG/L
AS F) | AS
SIO2) | DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | | OCT 1987 | | | | | | | | | | | | 14
DEC | 0.90 | | 48 | 18 | 3.2 | 0.20 | | 88 | 91 | | | 15
MAR 1988 | 1.0 | 46 | 38 | 13 | 3.0 | 0.10 | | 79 | 73 | | | 01
APR | 0.90 | | 66 | 12 | 3.5 | 0.80 | | 112 | 109 | | | 12
JUN | 0.80 | | 16 | 18 | 1.5 | 0.10 | | 52 | 51 | | | 10
AUG | 1.1 | 101 | 82 | 9.4 | 3.1 | 0.10 | | 113 | 118 | | | 22 | 1.0 | 88 | 72 | 13 | 3.4 | 0.10 | 10 | 111 | 105 | | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | DIS-
SOLVED
(TONS
PER
DAY) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | OCT 1987 | 0.10 | 56 0 | ZO 100 | 0.050 | 0.050 | | 0.020 | <0.010 | <0.010 | | | DEC | 0.12 | | <0.100 | 0.050 | 0.050 | | | <0.010 | <0.010 | | | 15
MAR 1988 | 0.11 | | 0.100 | 0.060 | 0.060 | | | | 0.010 | | | O1
APR | 0.15 | | 0.280 | 0.080 | 0.080 | | | 0.010 | 0.010 | | | 12
JUN | 0.07 | | 0.150 | 0.080 | 0.050 | | | 0.020 | <0.010 | | | 10
AUG | 0.15 | | <0.100 | 0.010 | <0.010 | | | 0.010 | <0.010 | | | 22 | 0.15 | 42.0 | <0.100 | 0.010 | 0.020 | 0.50 | 0.030 | 0.010 | <0.010 | | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). ## 04027000 BAD RIVER NEAR ODANAH, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | 1 | DATE | TIME | DIS
CHARG
INST
CUBI
FEE
PER
SECC
(0006 | GE, ALU F. INU IC DI ET SOI R (UC DND AS | JM, ARSE
IS- DI
LVED SOL
G/L (UG
AL) AS | VED SOLV
/L (UG
AS) AS | UM, L
5- D
ED S
5/L (1
BA) A | ERYL-
IUM,
IS-
DLVED
JG/L
S BE)
1010) | CADMI
DIS
SOLV
(UG,
AS (| S- DIS
VED SOL'
/L (UG
CD) AS | M, COBA
- DIS
VED SOLV
/L (UG
CR) AS | - DIS
ED SOL
/L (UG
CO) AS | - I
VED SC
/L (U
CU) AS | RON,
DIS-
DLVED
JG/L
S FE)
1046) | |-----|----------------|--------------------|---|---|--|---|---|---|--|--|---|--|--|---| | OCT | 1987
 | 1145 | 239 | | 30 | <1 | 21 | <0.5 | | <1 | 3 | <3 | 2 | 260 | | MAR | | 1205 | 178 | | 20 | <1 | 25 | <0.5 | | <1 | 2 | <3 | 2 | 360 | | APR | | 1045 | 2550 | | 140 | <1 | 15 | <0.5 | | <1 | <1 | <3 | 3 | 210 | | AUG | | 1215 | 140 | | 20 | 1 | 28 | <0.5 | | 2 | 1 | <3 | 2 | 270 | | 22 | ••• | 1213 | 140 | | 20 | 1 | 20 | 10.5 | | ۷ | 1 | \3 | ۷ | 210 | | | DATE | SOI
(UC
AS | AD,
IS-
LVED
G/L
PB)
)49) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCURY
DIS-
SOLVED
(UG/L
AS HG)
(71890) | MOLYB
DENUM
DIS-
SOLVE
(UG/L
AS MO | , NIC
DI
D SO
(U
) AS | KEL,
S-
LVED
G/L
NI)
065) | SELE-
NIUM,
DIS-
SOLVED
(UG/L
AS SE)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZINC,
DIS-
SOLVEI
(UG/L
AS ZN) |) | | | OCT 1987 | | <5 | <4 | 14 | <0.1 | <1 | 0 | <1 | <1 | 39 | <6 | <: | 3 | | | MAR 1988
01 | | <5 | <4 | 17 | <0.1 | <1 | 0 | 4 | 4 | 45 | <6 | 3 | 4 | | | APR
12 | | <5 | <4 | 14 | <0.1 | <1 | 0 | <1 | <1 | 16 | <6 | (| б | | | AUG
22 | | <5 | <4 | 36 | <0.1 | <1 | 0 | <1 | <1 | 53 | <6 | (| б | | | | DAS | ГE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM | AT
WA
(DE | PER-
URE
TER
G C) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | | | | | OCT 19
06
14 | • | 1430
1145 |
 | 284
239 | 14
13 | | 9.5
6.5 | - <i>-</i>
4 | 2.6 |
90 | | | | | | DEC
08
15 | | 0920
1130 | 420 | 410 | 12
11 | | 0.5 |
12 | 14 |
91 | | | | | | JAN 19 | | 1320 | | 191 | - | - | 0.0 | | | | | | | | | MAR
01 | - | 1205 | | 178 | 17 | 6 | 0.0 | 6 | 2.9 | 93 | | | | | | APR
11
12 | | 1850
1045 | | 3170
2550 | | 7
0 | 6.0
5.0 | 164 | 1130 |
79 | | | | | | MAY
18
JUN | • | 1230 | | 393 | 11 | 3 | 14.0 | | | | | | | | | 10
30
AUG | | 1020
1515 | | 135
116 | 17
21 | | 17.0
24.5 | 7 | 2.6 | 93
 | | | | | | 12
22
SEP | | 0905
1215 | | 103
140 | 22
16 | | 21.0
19.5 |
16 | 6.0 |
93 | | | | | | 07
22 | | 1120
0918 | | 92
298 | 10
10 | | 15.5
13.5 | | | - <i>-</i>
 | | | #### 04027500 WHITE RIVER NEAR ASHLAND, WI LOCATION.--Lat 46°29'50", long 90°54'15", in NE 1/4 sec.6, T.46 N., R.4 W., Ashland County, Hydrologic Unit
04010302, at downstream end of powerplant of Lake Superior District Power Co., 0.3 mi downstream from bridge on State Highway 112 over dam, and 4.5 mi south of Ashland city limits. DRAINAGE AREA.--301 mi² PERIOD OF RECORD.--May 1948 to current year. REVISED RECORDS.--WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 660.15 ft above National Geodetic Vertical Datum of 1929 (Lake Superior District Power Co. bench mark). Prior to May 20, 1976, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Jan. 5-11. Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation caused by hydroelectric plant at gage. AVERAGE DISCHARGE. -- 40 years, 282 ft³/s, 12.72 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,270 ft³/s, July 1, 1953, gage height, 7.90 ft from rating curve extended above 3,000 ft³/s; minimum, 3.1 ft³/s, Apr. 28-30, 1949, gage height, 0.09 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,810 ${\rm ft}^3/{\rm s}$, Apr. 7, gage height, 4.64 ft; minimum daily, 80 ${\rm ft}^3/{\rm s}$, Dec. 27. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 0.7 | 63 | 2.0 | 520 | |-----|------|-----|-------| | 1.0 | 128 | 3.0 | 1,170 | | 1 - | 0.00 | | • | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | | |-------------|-------|------|-----|---------|-------|------|---------|------|----|-----------|------|--| | MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|----------------------------------|--|--|----------------------------------|--|---|--|----------------------------------|--|---|----------------------------------| | 1 | 164 | 169 | 280 | 168 | 184 | 176 | 665 | 167 | 148 | 161 | 169 | 152 | | 2 | 191 | 169 | 273 | 150 | 182 | 201 | 715 | 155 | 178 | 154 | 141 | 160 | | 3 | 167 | 199 | 236 | 167 | 167 | 175 | 875 | 175 | 143 | 147 | 141 | 161 | | 4 | 168 | 201 | 229 | 202 | 169 | 200 | 884 | 146 | 144 | 141 | 178 | 160 | | 5 | 193 | 248 | 179 | 180 | 184 | 176 | 1020 | 149 | 174 | 141 | 184 | 168 | | 6 | 168 | 211 | 222 | 190 | 260 | 175 | 1010 | 174 | 141 | 141 | 192 | 167 | | 7 | 169 | 200 | 243 | 200 | 304 | 197 | 986 | 148 | 136 | 142 | 160 | 165 | | 8 | 196 | 198 | 201 | 190 | 303 | 168 | 857 | 149 | 139 | 136 | 161 | 161 | | 9 | 169 | 197 | 218 | 200 | 221 | 273 | 801 | 231 | 144 | 135 | 191 | 158 | | 10 | 194 | 193 | 269 | 200 | 203 | 242 | 690 | 286 | 147 | 137 | 169 | 157 | | 11 | 169 | 165 | 287 | 202 | 187 | 298 | 617 | 293 | 145 | 140 | 164 | 158 | | 12 | 169 | 195 | 300 | 203 | 190 | 250 | 485 | 287 | 144 | 142 | 154 | 158 | | 13 | 169 | 172 | 259 | 220 | 194 | 170 | 428 | 235 | 137 | 141 | 199 | 159 | | 14 | 169 | 201 | 245 | 275 | 194 | 169 | 367 | 234 | 137 | 149 | 204 | 162 | | 15 | 170 | 172 | 218 | 231 | 191 | 260 | 318 | 213 | 140 | 170 | 196 | 166 | | 16 | 196 | 203 | 207 | 189 | 187 | 276 | 290 | 211 | 142 | 151 | 188 | 161 | | 17 | 200 | 212 | 230 | 174 | 186 | 251 | 286 | 217 | 144 | 150 | 196 | 159 | | 18 | 199 | 221 | 190 | 176 | 186 | 253 | 241 | 211 | 146 | 141 | 178 | 161 | | 19 | 197 | 240 | 162 | 200 | 209 | 219 | 222 | 219 | 184 | 134 | 211 | 209 | | 20 | 196 | 254 | 196 | 183 | 181 | 221 | 207 | 221 | 180 | 133 | 158 | 224 | | 21 | 170 | 184 | 211 | 177 | 182 | 179 | 201 | 223 | 154 | 137 | 158 | 232 | | 22 | 201 | 197 | 179 | 199 | 180 | 231 | 193 | 223 | 153 | 150 | 192 | 301 | | 23 | 193 | 240 | 197 | 174 | 169 | 207 | 191 | 273 | 152 | 152 | 156 | 308 | | 24 | 177 | 200 | 222 | 207 | 205 | 256 | 194 | 228 | 151 | 149 | 157 | 279 | | 25 | 197 | 188 | 178 | 174 | 182 | 367 | 193 | 228 | 151 | 138 | 194 | 260 | | 26
27
28
29
30
31 | 182
201
170
199
169
199 | 203
204
191
235
273 | 157
80
144
253
239
192 | 200
167
153
202
170
198 | 182
180
179
202 | 638
488
466
494
625
683 | 190
185
182
177
177 | 217
211
244
183
173
162 | 151
149
148
185
161 | 133
133
134
131
130
132 | 157
158
159
160
161
154 | 205
196
197
191
161 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 5671
183
201
164
.61 | 6135
204
273
165
.68 | 6696
216
300
80
.72
.83 | 5921
191
275
150
.63 | 5743
198
304
167
.66 | 8984
290
683
168
.96 | 13847
462
1020
177
1.53
1.71 | 6486
209
293
146
.70 | 4548
152
185
136
.50 | 4405
142
170
130
.47 | 5340
172
211
141
.57
.66 | 5656
189
308
152
.63 | CAL YR 1987 TOTAL 82224 MEAN 225 MAX 1300 MIN 80 CFSM .75 IN. 10.16 WTR YR 1988 TOTAL 79432 MEAN 217 MAX 1020 MIN 80 CFSM .72 IN. 9.82 #### 04029990 MONTREAL RIVER AT SAXON FALLS NEAR SAXON, WI LOCATION.--Lat $46^{\circ}32'13''$, long $90^{\circ}17'47''$, in SW 1/4 NW 1/4 sec.21, T.47 N., R.1 E., Iron County, Hydrologic Unit 04010302, at Saxon Falls powerhouse, 3.4 mi northeast of Saxon, and 3.8 mi upstream from mouth. DRAINAGE AREA. -- 262 mi². PERIOD OF RECORD.--September 1938 to September 1970. October 1986 to current year. Published as Montreal River near Saxon, September 1938 to September 1970. REVISED RECORDS.--WSP 894: 1938-39. WSP 924: 1939-40. WSP 1307: 1948(M). WSP 1627: 1958. GAGE.--Headwater and tailwater gages read by Northern States Power Company. September 1938 to September 1970, water-stage recorder at site 1.8 mi downstream at elevation of 760 ft (from Power Company data). REMARKS.--No estimated daily discharges. Records are fair except for discharges less than $50 \text{ ft}^3/\text{s}$, which are poor. Diurnal fluctuation caused by Saxon Falls powerplant. Flow regulated by Gile Reservoir on West Branch Montreal River (capacity 1,290,000,000 ft^3/s) since April 1941. COOPERATION .-- Records were provided by Northern States Power Company and reviewed by the Geological Survey. AVERAGE DISCHARGE.--34 years (1939-70, 1987-88), 317 ft³/s, 16.43 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $6,600 \text{ ft}^3/\text{s}$, Apr. 24, 1960, gage height, 7.50 ft; minimum discharge, 2 ft $^3/\text{s}$, Sept. 21, Oct. 8, 1939, Sept. 9, 1965. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 2,630 ft³/s, Apr. 5; minimum daily discharge, 33 ft³/s, | | | DISCHA | RGE, CUBIC | FEET PE | | WATER YE
EAN VALUE | AR OCTOBE | R 1987 TO | SEPTEMBE | R 1988 | | | |--|---|---|--|---|---|--|---|---|---|---|----------------------------------|----------------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 33
45
60
89
89 | 370
265
250
250
285 | 370
286
205
220
197 | 185
185
185
185
185 | 185
185
185
185
185 | 185
165
125
137
145 | 720
869
869
2040
2630 | 235
220
197
191
197 | 137
137
140
149
149 | 125
113
113
113
106 | 95
92
95
119
149 | 83
60
60
60 | | 6
7
8
9
10 | 148
404
370
286
220 | 250
197
197
185
173 | 197
160
185
185
471 | 185
185
185
185
185 | 185
185
185
185
185 | 155
155
164
176
185 | 2500
2380
2200
2100
2100 | 191
189
185
185
526 | 149
143
131
128
116 | 95
95
95
95
95 | 146
131
131
120
107 | 60
60
60
58
49 | | 11
12
13
14
15 | 220
185
158
113
113 | 149
140
125
125
125 | 471
370
370
250
220 | 185
185
185
185
185 | 197
185
185
185
195 | 182
173
165
143
134 | 1130
790
720
650
585 | 471
371
370
326
326 | 113
113
113
113
113 | 95
95
95
95
95 | 95
95
95
174
155 | 42
42
39
36
36 | | 16
17
18
19
20 | 140
185
185
250
185 | 120
120
305
325
325 | 210
197
185
185
185 | 185
185
185
185
185 | 195
195
205
205
195 | 149
176
178
185
155 | 475
420
370
325
270 | 250
220
197
185
185 | 110
107
107
107
113 | 95
95
95
95
95 | 149
137
137
137
131 | 36
36
36
42
122 | | 21
22
23
24
25 | 250
250
250
250
250 | 220
220
185
185
173 | 198
185
185
185
185 | 185
185
185
185
185 | 195
185
185
185
185 | 121
131
149
167
277 | 235
250
286
286
250 | 185
185
185
185
173 | 125
131
140
125
116 | 95
95
95
95
95 | 119
119
119
113
95 | 131
131
125
101
95 | | 26
27
28
29
30
31 | 326
495
535
471
385
370 | 149
149
149
149
395 | 185
185
185
185
185
197 | 185
185
185
185
185
185 | 185
185
185
185 | 585
585
585
585
585
700 | 250
220
210
235
235 |
137
137
137
137
137
137 | 116
113
113
125
143 | 95
95
92
83
83
73 | 95
95
95
89
77
95 | 95
95
89
77
77 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 7310
236
535
33
.90
1.04 | 6255
208
395
120
.80
.89 | 7179
232
471
160
.88
1.02 | 5735
185
185
185
.71
.81 | 5467
189
205
185
.72
.78 | 7702
248
700
121
.95
1.09 | 26600
887
2630
210
3.38
3.78 | 6952
224
526
137
.86
.99 | 3735
124
149
107
.48
.53 | 2991
96.5
125
73
.37
.42 | 3601
116
174
77
.44 | 2093
69.8
131
36
.27 | CAL YR 1987 TOTAL 56372 MEAN 154 MAX 870 MIN 25 CFSM .59 IN. 8.00 WTR YR 1988 TOTAL 85620 MEAN 234 MAX 2630 MIN 33 CFSM .89 IN. 12.16 #### 04037500 CISCO BRANCH ONTONAGON RIVER AT CISCO LAKE OUTLET, MI LOCATION.--Lat 46°15'12", long 89°27'05", in NE 1/4 sec.32, T.45 N., R.41 W., Gogebic County, Hydrologic Unit 04020102, on left bank 80 ft downstream from Cisco Lake Dam, 2.5 mi upstream from Langford Creek, 5.0 mi upstream from U.S. Highway 2, and 13 mi west of Watersmeet. DRAINAGE AREA. -- 50.7 mi². PERIOD OF RECORD. -- October 1944 to current year. REVISED RECORDS. -- WSP 1911: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,672.69 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1968, nonrecording gage at same site and at datum 4.00 ft higher. REMARKS.--No estimated daily discharges. Records good except those below 1.5 ${\rm ft}^3/{\rm s}$, which are poor. Flow regulated by Cisco Lake (station 04037400). Several measurements of water temperature were made during the AVERAGE DISCHARGE.--44 years, 47.0 ft³/s, 12.59 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 288 $\rm ft^3/s$, May 1-4, 1951, gage height, 6.10 ft, present datum; minimum daily, 0.08 $\rm ft^3/s$, July 21, Aug. 2, 3, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 176 $\rm ft^3/s$, Oct. 17, gage height, 5.54 ft; minimum daily, 0.08 $\rm ft^3/s$, July 21, Aug. 2, 3. | | | | DISCHARGE | IN CUBI | C FEET PE | R SECON | D, WATER
MEAN VA | | DBER 1987 | TO SEPT | EMBER 1988 | 3 | |----------------------------------|-------------------------------------|-----------------------------|----------------------------------|----------------------------------|----------------------------|----------------------------------|---------------------------------|--|--------------------------------------|---------------------------------|---------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .93
1.1
1.7
1.9
46 | 100
94
90
82
76 | 55
53
52
52
51 | 59
61
61
59
53 | 33
14
14
14
16 | 23
23
23
23
23 | 47
48
54
62
67 | .34
.31
.29
.31 | . 19
. 18
. 16
. 18
. 22 | .17
.16
.13
.12 | .09
.08
.08
.13 | .28
.23
1.5
2.2
2.9 | | 6
7
8
9
10 | 69
68
69
64
21 | 75
72
67
81
88 | 51
48
46
47
48 | 46
34
10
2.1
2.0 | 16
16
16
17
17 | 23
22
24
38
55 | 72
88
99
102
105 | .31
.29
.29
.26
.20 | .20
.17
.16
.13 | .10
.10
.10
.10 | .15
.15
.10
.10 | 37
107
126
106
57 | | 11
12
13
14
15 | .76
.51
.40
.37
.81 | 81
75
71
69
62 | 47
47
46
56
76 | 2.0
2.1
2.1
2.0
14 | 17
17
17
17
17 | 54
54
54
54
53 | 104
104
103
105
105 | . 22
. 23
. 21
. 26
. 22 | .13
.13
.13
.13 | .10
.10
.09
.09 | .09
.09
.14
.55 | 1.8
1.4
1.4
1.0
.85 | | 16
17
18
19
20 | 76
160
162
146
137 | 53
51
69
78
76 | 73
72
65
62
60 | 33
36
42
51
52 | 17
17
18
19
19 | 53
52
52
51
51 | 104
101
43
67
34 | .22
.19
.16
.16 | .13
.13
.13
.13 | 21
.20
.11
.09
.09 | 33
55
79
76
35 | 1.0
51
81
94
107 | | 21
22
23
24
25 | 130
126
121
115
109 | 77
72
70
69
67 | 57
58
59
57
57 | 52
53
53
52
52 | 19
35
54
53
53 | 50
50
49
50
52 | 3.6
3.0
2.6
2.5
1.7 | .19
.19
.19
.19 | .13
.27
.23
.22 | .08
.09
.09
.09 | .54
.55
.43
.34 | 106
104
100
66
29 | | 26
27
28
29
30
31 | 97
93
92
107
108
104 | 65
63
61
61
58 | 57
56
56
56
58
58 | 51
50
49
49
48
48 | 40
21
21
22
 | 51
50
47
47
47
47 | 1.5
1.3
1.2
.88
.53 | . 16
. 17
. 17
. 16
. 17
. 18 | . 19
. 18
. 23
. 23
. 19 | .10
.12
.09
.09
.09 | .31
.32
.28
.26
.26 | 30
17
1.6
1.5
1.4 | | TOTAL
MEAN
MAX
MIN | 2228.48
71.9
162
.37 | 2173
72.4
100
51 | 1736 1
56.0
76
46 | .180.3
38.1
61
2.0 | 666
23.0
54
14 | 1345
43.4
55
22 | 1632.81
54.4
105
.53 | 6.94
.22
.34
.16 | 5.08
.17
.27
.13 | 45.08
1.45
21
.08 | 301.92
9.74
79
.08 | 1237.06
41.2
126
.23 | | CAL YR
WTR YR | | | | AN 31.3 | | 162
162 | MIN
MIN | .22 CFS | | IN 8.39
IN 9.23 | | | #### 04061000 BRULE RIVER NEAR FLORENCE, WI LOCATION.--Lat 45°57'31", long 88°15'57", in SE 1/4 SE 1/4 sec.11, T.41 N., R.32 W., Michigan Meridian, Iron County, Hydrologic Unit 04030106, on left bank 40 ft upstream from highway bridge, 1.0 mi upstream from Paint River, 2.5 mi north of Florence, and 5.0 mi upstream from confluence with Michigamme River. DRAINAGE AREA. -- 389 mi². PERIOD OF RECORD. -- January 1914 to February 1916, June 1944 to current year. REVISED RECORDS.--WSP 1387: 1914-16. WSP 1911: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,200.55 ft National Geodetic Vertical Datum of 1929 (levels by Owen Ayres Associates). Prior to Aug. 29, 1944, nonrecording gage at bridge 40 ft downstream at same datum. REMARKS.--Estimated daily discharges: Nov. 21-18 and Dec. 3 to Apr. 2. Records excellent except for estimated daily discharges, which are fair. Discharge includes some mine pumpage prior to August 1977. Several measurements of water temperature were made during the year. AVERAGE DISCHARGE.--45 years (water years 1915, 1945-88), $361 \text{ ft}^3/\text{s}$, 12.60 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,700 ft³/s, July 2, 1953, gage height, 6.57 ft; maximum gage height, 8.60 ft Dec. 20, 1983, backwater from ice; minimum discharge, 118 ft³/s, Dec. 2, 1963 (discharge measurement); minimum gage height, 1.79 ft, July 24, 1964. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,100 ${\rm ft}^3/{\rm s}$, Apr.,7, gage height, 3.47 ft; maximum gage height, 5.93 ft Jan. 3, backwater from ice; minimum discharge, 154 ft $^3/{\rm s}$, July 29, gage height, 1.76 ft. | | | DISCH | ARGE, IN | CUBIC | FEET PER | | WATER YEAR
VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | |--|---|---|---|---|---|---|----------------------------|---|----------------------------------|--------------------------------|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUI | N JUL | AUG | SEP | | 1
2
3
4
5 | 189
210
224
215
210 | 227
225
233
263
274 | 314
286
215
240
250 | 215
215
210
210
210 | 190
190
185
185
185 | 205
210
215
215
215 | 580
581
781 | 270
262
254
252
254 | 21:
19:
19:
19:
18: | 7 181
3 184
2 176 | 163
162
167
197
293 | 164
166
208
360
325 | | 6
7
8
9
10 | 218
236
231
228
221 | 256
244
237
232
226 | 250
260
270
285
305 | 210
205
205
205
205 | 190
190
195
200
200 | 220
230
235
240
235 | 1080
913
723 | 254
247
251
270
301 | 18/
18/
18/
18/
18/ | 2 162
2 160
5 191 | 258
208
187
177
172 | 280
240
215
199
187 | | 11
12
13
14
15 | 212
207
206
204
213 | 227
225
224
221
219 | 290
265
255
250
250 | 205
210
210
210
210 | 200
200
200
200
200 | 230
230
230
230
240 | 482
435
409 | 301
279
289
276
259 | 178
177
177
170
169 | 7 180
3 173
0 170 | 165
169
210
220
207 | 177
176
184
182
177 | | 16
17
18
19
20 | 323
382
332
289
279 | 229
333
435
382
316 | 250
250
250
250
250 | 210
210
210
210
210 | 200
200
200
200
195 | 245
255
250
250
250 | 341
333
325 | 251
244
239
232
226 | 170
170
169
179
185 | 279
9 222
9 201 | 186
223
245
225
195 | 179
228
246
232
267 | | 21
22
23
24
25 | 266
264
266
264
258 | 275
285
300
300
300 | 245
240
235
230
230 | 215
215
215
215
215 | 195
195
190
190
190 | 240
250
260
265
300 | 284
288
304 | 229
263
265
264
233 | 174
275
299
228
207 | 191
183
3
176 | 178
169
185
208
194 | 272
266
253
232
215 | | 26
27
28
29
30
31 | 254
262
259
253
240
234 | 300
300
300
284
335 | 225
225
220
220
220
215 | 215
215
210
208
200
195 | 190
195
195
195
 | 650
600
520
520
525
540 | 296
303
289
277 | 223
218
223
217
212
213 | 195
184
187
215
208 | 170
7 164
5 158
8 168 | 183
176
175
172
170
164 | 208
213
204
200
210 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 7649
247
382
189
.63
.73 | 8207
274
435
219
.70
.78 | 7740
250
314
215
.64
.74 | 6503
210
215
195
.54
.62 | 5640
194
200
185
.50
.54 | 9300
300
650
205
.77
.89 | 488
1080
277
1.25 | 7771
251
301
212
.65
.74 | 5810
194
299
169
.50 | 190
382
158
3 149 | 6003
194
293
162
.50 | 6665
222
360
164
.57
.64 | | CAL YR
WTR YR | | | MEAN
MEAN | 268
251 | MAX
MAX | | IN 185
IN 158 | CFSM
CFSM | | IN. 9.36
IN. 8.78 | | | #### 04063000 MENOMINEE RIVER NEAR FLORENCE, WI LOCATION.--Lat 45°57'04", long 88°11'13", in NE 1/4 sec.16, T.41 N., R.31 W., Michigan Meridian, Iron County, Hydrologic Unit 04030108, on left bank 0.5 mi downstream from confluence of Brule and Michigamme Rivers, 3.5 mi northeast of Florence, and at mile 117. DRAINAGE AREA. -- 1,780 mi². PERIOD OF RECORD.--January 1914 to current year. Published as "at Twin Falls near Iron Mountain, MI" 1914-57. Records published for both sites July 1950 to September 1957. REVISED RECORDS.--WSP 1707: 1953(M). WSP 1911: Drainage area of former site. GAGE.--Water-stage recorder. Datum of gage is 1,119.23 ft above National Geodetic Vertical Datum of 1929 (levels by Owen Ayres Associates). Prior to July 1950, headwater and tailwater gages and generation data entered hourly in daily log sheets by company employees at the Twin Falls Powerplant of Wisconsin Electric Power Co., 10.4 mi downstream. REMARKS.--No estimated daily discharges. Records excellent. Prior to July 1950, discharge determined from powerplant records computed on basis of load-discharge rating of hydroelectric units and rating for tailwater gage during periods of spill. Rating developed by U. S. Geological Survey. Flow regulated by powerplants, Michigamme Reservoir, capacity, 119,950 acre-ft, and Peavy Pond, capacity, 33,860 acre-ft, on Michigamme River, and by many smaller reservoirs upstream from station. Several measurements of water temperature were made during the year. AVERAGE DISCHARGE. -- 74 years, 1,815 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 19,500 ft³/s, Apr. 26, 1960, gage height, 14.15 ft; minimum, 38 ft³/s, Aug. 21, 1962, Sept. 26, 1975; minimum gage height, 1.18 ft Aug. 21, 1962, Nov. 4, 1965; minimum daily discharge, 57 ft³/s, Sept. 26, 1975. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,610 $\rm ft^3/s$, Apr. 7, gage height, 6.67 ft; minimum, 87 $\rm ft^3/s$, May 13, gage height, 1.44 ft; minimum daily, 508 $\rm ft^3/s$, Apr. 24. | | | | DISCHARGE, | IN CUBIC | FEET PER | SECOND, V
MEAN | WATER YEAR
VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | |----------------------------------|---|----------------------|----------------------------|--|--------------------------------------|--|--------------------------------------|---|---------------------------------|--|--|-------------------------------------| | DAY | OCT | моч | V DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 756
766
750
725
603 | 1040
1470 | 1890
1750
2070 | 890
1500
1470
1800
1770 | 1780
1820
1820
1870
1830 | 1400
1430
1420
1450
1460 | 2550
2790
3000
3440
3510 | 883
1480
1610
1280
1150 | 974
895
853
841
697 | 1000
861
677
980
914 | 583
661
758
802
1090 | 1510
1380
937
1730
1150 | | 6
7
8
9
10 | 635
667
753
872
917 | 800
75 | 5 1910
7 1860
0 2040 | 1960
1440
1780
1520
1690 | 1630
1670
1760
1790
1690 | 1470
1510
1520
1420
1480 | 3560
3830
3770
3360
3080 | 1080
673
852
998
934 | 732
764
666
702
742 | 994
1050
999
935
752 | 1270
994
937
706
733 | 1320
1380
1100
1150
924 | | 11
12
13
14
15 | 864
733
930
730
691 | 85 | 2160
2100
1850 | 1510
1700
1870
1940
1940 | 1760
1730
1520
1480
1740 | 1450
1470
1420
1530
1420 | 2580
2350
1950
1500
1500 | 1070
776
984
828
900 | 903
866
762
773
730 | 827
1040
986
1080
932 | 772
716
693
714
1010 | 853
728
908
1200
1130 | | 16
17
18
19
20 | 948
1270
1450
1200
1170 | 1240 | 1940
1950
1840 | 1940
1910
1910
1700
1640 | 1480
1540
1630
1430
1420 | 1490
1140
1100
1100
1040 | 1250
1120
1030
1000
841 | 1360
1370
1520
1440
1290 | 741
789
859
835
872 | 776
655
714
961
1020 | 1520
1550
1940
1920
1400 | 1020
937
854
808
936 | | 21
22
23
24
25 | 1280
1120
1180
1060
1150 | 1770
1890 | 1870
1900
1830 | 1660
1690
1750
1660
1650 | 1490
1600
1600
1270
1710 | 1080
1120
1170
1250
1590 | 924
845
655
508
599 | 1040
1010
1170
1140
1210 | 826
787
818
763
573 | 941
900
734
716
878 | 1410
1300
1280
1090
1110 | 1200
1290
1110
777
774 | | 26
27
28
29
30
31 | 1050
1100
1000
969
915
903 | 1970
1900
1820 | 1860
2000
1820 | 1720
1660
1690
1650
1620
1740 | 1530
1470
1420
1380 | 1930
2110
2060
2280
2430
2580 | 1010
1160
1680
1470
753 | 1290
1280
791
982
910
1020 | 844
753
751
880
967 | 824
781
822
809
759
727 | 1410
1280
1290
1310
1820
1570 | 1040
1260
943
1070
1040 | | TOTAL
MEAN
MAX
MIN | 29157
941
1450
603 | 1970 | 3 1904
2270 | 52370
1689
1960
890 | 46860
1616
1870
1270 | 47320
1526
2580
1040 | 57615
1921
3830
508 | 34321
1107
1610
673 | 23958
799
974
573 | 27044
872
1080
655 | 35639
1150
1940
583 | 32459
1082
1730
728 | | CAL YR
WTR YR | | TOTAL
TOTAL | 475210
485306 | MEAN
MEAN | | MAX 314
MAX 383 | | 356
508 | | | | | #### 04063700 POPPLE RIVER NEAR FENCE, WI (HYDROLOGIC BENCHMARK STATION) (NATIONAL RADIOCHEMICAL SURVEILLANCE NETWORK STATION) LOCATION.--Lat 45°45'49", long 88°27'47", in NW 1/4 sec.23, T.38 N., R.16 E., Florence County, Hydrologic Unit 04030108, on left bank 20 ft upstream from bridge on U. S. Forest Service Road 2159, 1.8 mi downstream from Mud Creek, 2.6 mi northwest of Fence, and 11.5 mi upstream from mouth. DRAINAGE AREA. -- 139 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORDS.--WDR WI-76-1: 1972(M). WDR WI-80-1: Drainage area. WDR WI-81-1: 1965 (M). GAGE.--Water-stage recorder. Datum of gage is 1,406.16 ft above National Geodetic Vertical Datum of 1929. Prior to June 18, 1964, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. AVERAGE DISCHARGE.--25 years, 121 ft³/s, 11.82 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,640 $\rm ft^3/s$, Apr. 25, 1979, gage height, 4.52 ft; minimum, 5.9 $\rm ft^3/s$, Oct. 28, 1976, gage height, 0.75 ft, result of temporary storage from beaver dam. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|------------------|---------------|-----------------------------------|---------------------| | Apr. 8 | 0600 | *563 | *2.94 | No other peak | greater than base | discharge. | Minimum discharge, 10 ft³/s, July 6, 7, 8, gage height, 0.91 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 21-22, Dec. 2-6, Dec. 14 to Mar. 27, and Mar. 31 to Apr. 5.) | 0.9 | 10 | 1.7 | 108 | |-----|----|-----|-----| | 1.0 | 14 | 2.0 | 188 | | 1.2 | 30 | 3.0 | 591 | | 1 4 | 55 | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|----------------------------------|----------------------------------|---------------------------------------|---------------------------------------|--|--|---|--------------------------------|---------------------------------------|---------------------------------------|--| | 1 | 26 | 68 | 108 | 33 | 30 | 33 | 150 | 109 | 52 | 20 | 12 | 21 | | 2 | 28 | 66 | 100 | 33 | 30 | 32 | 170 | 96 | 36 | 16 | 12 | 18 | | 3 | 32 | 71 | 90 | 32 | 27 | 30 | 210 | 89 | 29 | 13 | 12 | 37 | | 4 | 34 | 91 | 80 | 31
| 26 | 30 | 300 | 87 | 25 | 12 | 15 | 77 | | 5 | 34 | 100 | 74 | 26 | 26 | 32 | 400 | 80 | 25 | 11 | 31 | 78 | | 6 | 36 | 98 | 70 | 23 | 25 | 35 | 484 | 75 | 23 | 11 | 35 | 64 | | 7 | 42 | 91 | 68 | 23 | 24 | 37 | 533 | 80 | 22 | 11 | 34 | 53 | | 8 | 44 | 84 | 68 | 24 | 24 | 37 | 558 | 76 | 20 | 11 | 25 | 45 | | 9 | 42 | 78 | 74 | 24 | 25 | 40 | 533 | 76 | 21 | 12 | 20 | 37 | | 10 | 41 | 73 | 81 | 25 | 26 | 42 | 491 | 99 | 20 | 16 | 17 | 30 | | 11 | 40 | 80 | 83 | 28 | 27 | 45 | 442 | 107 | 18 | 17 | 15 | 24 | | 12 | 41 | 64 | 82 | 28 | 27 | 45 | 397 | 105 | 17 | 15 | 13 | 23 | | 13 | 40 | 58 | 80 | 26 | 27 | 45 | 353 | 110 | 19 | 15 | 16 | 23 | | 14 | 42 | 56 | 70 | 26 | 28 | 42 | 312 | 112 | 23 | 15 | 30 | 27 | | 15 | 45 | 54 | 64 | 27 | 29 | 41 | 268 | 110 | 20 | 19 | 27 | 25 | | 16 | 55 | 65 | 60 | 29 | 30 | 40 | 226 | 99 | 18 | 29 | 22 | 25 | | 17 | 76 | 109 | 54 | 31 | 31 | 43 | 194 | 89 | 16 | 28 | 30 | 43 | | 18 | 101 | 167 | 52 | 33 | 33 | 43 | 163 | 82 | 16 | 24 | 48 | 38 | | 19 | 108 | 186 | 52 | 33 | 33 | 37 | 141 | 72 | 18 | 21 | 47 | 39 | | 20 | 98 | 157 | 54 | 32 | 30 | 35 | 125 | 63 | 20 | 19 | 36 | 52 | | 21 | 91 | 130 | 54 | 31 | 28 | 34 | 110 | 59 | 19 | 24 | 27 | 51 | | 22 | 86 | 140 | 52 | 30 | 30 | 36 | 99 | 57 | 19 | 28 | 24 | 52 | | 23 | 88 | 130 | 48 | 29 | 30 | 35 | 98 | 65 | 17 | 27 | 26 | 58 | | 24 | 88 | 119 | 50 | 27 | 28 | 34 | 101 | 58 | 16 | 23 | 24 | 57 | | 25 | 86 | 111 | 50 | 27 | 27 | 60 | 115 | 49 | 15 | 19 | 22 | 65 | | 26
27
28
29
30
31 | 85
94
98
88
81
74 | 104
96
88
100
117 | 45
40
40
39
38
36 | 26
25
26
28
30
32 | 27
29
33
33
 | 130
120
124
128
132
140 | 130
125
136
133
122 | 45
43
42
39
37
41 | 14
14
16
25
24 | 16
16
14
13
13 | 20
20
20
22
23
22 | 53
53
63
52
44 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1964
63.4
108
26
.46
.53 | 2951
98.4
186
54
.71 | 1956
63.1
108
36
.45 | 878
28.3
33
23
.20
.23 | 823
28.4
33
24
.20
.22 | 1737
56.0
140
30
.40 | 7619
254
558
98
1.83
2.04 | 2351
75.8
112
37
.55
.63 | 637
21.2
52
14
.15 | 541
17.5
29
11
.13
.14 | 747
24.1
48
12
.17
.20 | 1327
44.2
78
18
.32
.36 | CAL YR 1987 TOTAL 23951 MEAN 65.6 MAX 257 MIN 17 CFSM .47 IN. 6.41 WTR YR 1988 TOTAL 23531 MEAN 64.3 MAX 558 MIN 11 CFSM .46 IN. 6.30 # 04063700 POPPLE RIVER NEAR FENCE, WI--CONTINUED (HYDROLOGIC BENCH-MARK STATION) (NATIONAL RADIOCHEMICAL SURVEILLANCE NETWORK STATION) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--June 1964 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(FTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |----------------------------|--|---|--|--|--|--|---|--|---|---|---|---| | NOV 1987
18 | 1240 | 174 | 165 | 7.60 | 1.5 | 1.3 | 12.4 | 736 | 92 | 25 | 43 | 74 | | FEB 1988
17 | 1200 | 30 | 252 | 7.70 | 0.0 | 1.8 | 9.2 | 733 | 65 | 5 | <1 | 130 | | JUN
01 | 1140 | 34 | 190 | 8.10 | 22.5 | 2.2 | 7.7 | 733 | 93 | | | 100 | | SEP
05 | 1445 | 79 | 185 | 8.20 | 13.5 | 1.5 | | 732 | | 90 | 63 | 110 | | DATE | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | NOV 1987
18
FEB 1988 | 15 | 16 | 8.3 | 1.4 | 4 | 0.1 | 0.90 | 60 | 49 | 21 | 2.2 | 0.10 | | 17
JUN | 11 | 29 | 15 | 2.0 | 3 | 0.1 | 1.2 | 155 | 127 | 16 | 1.9 | 0.20 | | 01
SEP | 11 | 22 | 11 | 1.8 | 4 | 0.1 | 0.80 | 110 | 90 | 14 | 1.9 | 0.20 | | 05 | 16 | 23 | 13 | 1.6 | 3 | 0.1 | 0.90 | 114 | 93 | 16 | 1.1 | 0.10 | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | NOV 1987
18 | 10 | 108 | 96 | 0.15 | 50.7 | 0.130 | 0.060 | 0.070 | 0.50 | 0.020 | 0.010 | <0.010 | | FEB 1988
17 | 17 | 152 | 158 | 0.21 | 12.5 | 0.180 | 0.160 | 0.130 | 0.30 | 0.020 | 0.010 | 0.020 | | JUN
01 | 5.2 | 118 | 111 | 0.16 | 11.0 | <0.100 | 0.020 | 0.040 | 0.60 | 0.020 | 0.020 | <0.010 | | SEP
05 | 11 | 138 | 124 | 0.19 | 29.4 | <0.100 | 0.020 | 0.020 | 0.60 | 0.020 | 0.010 | <0.010 | # 04063700 POPPLE RIVER NEAR FENCE, WI--CONTINUED # WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | | TIME | DI
CHAR
INS
CUB
FE
PE
SEC
(000 | GE, A
T. I
IC
ET S
R (OND A | LUM-
NUM,
DIS-
OLVED
UG/L
(S AL) | ARSEI
DIS
SOLV
(UG,
AS) | S-
VED
/L
AS) | BARI
DIS
SOLV
(UG
AS
(010 | -
ED
/L
BA) | BER
LIU
DIS
SOL
(UG
AS | M,
-
VED
/L
BE) | CADMI
DIS
SOLV
(UG,
AS (| S-
VED
/L
CD) | CHRO
MIUM
DIS-
SOLV
(UG/
AS C | ED
L
R) | COBAI
DIS-
SOLVI
(UG)
AS (| -
ED
/L
CO) | COPP
DIS
SOL
(UG
AS | -
VED
/L
CU) | IRON
DIS
SOLV
(UG,
AS 1 | S-
VED
/L
FE) | |----------------|------------|------|--|---|--|--|-----------------------------------|--|------------------------------|---|------------------------------|---|------------------------|---|--------------------------------|---|------------------------------------|--|-------------------------------------|-------------------------------------|------------------------| | NOV 1987 | | 1240 | 174 | | 20 | | <1 | | 9 | < | 0.5 | | <1 | | <1 | | <3 | | 1 | ; | 270 | | FEB 1988
17 | | 1200 | 30 | | <10 | | <1 | | 13 | < | 0.5 | | 1 | | <1 | | <3 | | 1 | | 410 | | JUN
01 | | 1140 | 34 | | <10 | | 1 | | 12 | < | 0.5 | | 1 | | <1 | | <3 | | 2 | : | 220 | | SEP
05 | | 1445 | 5 79 | | <10 | | 1 | | 14 | < | 0.5 | | 1 | | <1 | | <3 | | 1 | | 170 | | | DATE | | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
01049) | LITHIU
DIS-
SOLVE
(UG/I
AS LI | M MI
I
ID SC
((() | ANGA-
ESE,
DIS-
DLVED
JG/L
S MN)
L056) | D:
SO:
(U(
AS | CURY
IS-
LVED
G/L
HG)
890) | DE
D
SO
(U
AS | LYB-
NUM,
IS-
LVED
G/L
MO)
060) | DI:
SO:
(U
AS | KEL,
S-
LVED
G/L
NI)
065) | SOI
(UC | JM,
IS-
LVED
G/L
SE) | T:
D:
SOI
(U)
AS | RON-
IUM,
IS-
LVED
G/L
SR) | SOI
(UC
AS | | SOI
(UC
AS | NC,
IS-
EVED
G/L
ZN) | | | | 1987 | FEB | 8
_1988 | | <5 | < | 4 | 38 | | <0.1 | | <10 | | <1 | | <1 | | 19 | | <6 | | 4 | |
| JUN | | | 14 | | 6 | 93 | | <0.1 | | <10 | | <1 | | <1 | | 28 | | <6 | | 5 | | | SEP | | | 15
5 | | 5 | 270 | | <0.1 | | <10 | | 2 | | <1 | | 29 | | <6
 | | 12 | | | U | 5 | | 3 | ` | 4 | 31 | • | <0.1 | | <10 | | <1 | | <1 | | 27 | | <6 | | 4 | | | | : | DATE | ŤĪ | CH
I
C
ME | DIS-
ARGE,
NST.
UBIC
FEET
PER
ECOND
0061) | GROS
ALPI
DIS
SOLV
(UG,
AS
U-NA
(8003 | HA,
S-
VED
/L
AT) | GRO
ALP
SUS
TOT
(UG
AS
U-N
(800 | HA,
P.
AL
/L
AT) | GRO
BET
DI
SOL
(PCI
AS
CS-1
(035 | A,
S-
VED
/L
37) | GROS
BETA
SUSH
TOTA
(PCI)
AS
CS-13
(0351 | A,
AL
'L
37) | GROS
BETA
DIS
SOLV
(PCI
AS S
YT-9
(8005 | ,
-
ED
/L
R/
0) | GROS
BETA
SUSE
TOTA
(PCI
AS S
YT-9
(8006 | A,
AL
I/L
SR/
90) | RADI
220
DIS
SOLVI
RADI
METI
(PCI
(095) | ó,
S-
ED,
ON
HOD
/L) | | | | | FEB | | 10 | 17 | | 12 | | 30
TIME | DISCHARGE INSTERNMENT OF THE PER SECO (0006 | GE,
F.
IC
ET
R
OND | SPE
CIF
CON
DUC
ANC
(US/ | IC
-
T-
E
CM) | TEMP
ATU
WAT:
(DEG
(000 | RE
ER
C) | SEDI
MENT
SUS-
PENI
(MG/ | [',
-
DED
'L) | SEDI
MENT
DIS
CHARG
SUS
PEND
(T/DA
(8015 | ,
-
E,
-
ED
Y) | SEI
SUS
SIEV
DIA
% FIN
THA
.062
(7033 | SP.
VE
MM.
VER
N
MM | 0 | . 04 | | | | | | | OCT 198 | 7 | 1445 | 37 | | | 20 0 | | 8.0 | | | | | | | | | | | | | | | NOV
18 | | 1240 | 174 | | | 165 | | 1.5 | | 4 | 1. | 9 | | 88 | | | | | | | | | JAN 198 | | 1100 | 28 | | | | | 0.0 | | | | | | | | | | | | | | | FEB 17 | | 1200 | 30 | | | 252 | | 0.0 | | 7 | 0. | 58 | | 98 | | | | | | | | | APR 29 | | 1250 | 134 | | | 110 | | 0.0 | | | | | | | | | | | | | | | JUN
01 | | 1140 | 34 | | | 190 | | 2.5 | | 4 | 0. | 37 | | 97 | | | | | | | | | JUL
07 | | 1610 | 12 | | | 237 | | 9.0 | | | | | | | | | | | | | | | SEP
05 | | 1445 | 79 | | | 185 | 1 | 3.5 | | 2 | 0. | 43 | | 94 | | | | | #### 04065722 MENOMINEE RIVER NEAR VULCAN, MI LOCATION.--Lat 45°44'12", long 87°51'48", sec.34, T.39 N., R.29 W., Michigan Meridian, Dickinson County, Hydrologic Unit 04030108, on left bank 0.35 mi downstream from Sturgeon Falls Dam, 3.0 mi south of Vulcan, and at mile 78.7. DRAINAGE AREA. -- 2,900 mi². PERIOD OF RECORD. -- December 1987 to September 1988. GAGE.--Water-stage recorder. Elevation of gage is 820 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 26, 27, 30, and Jan. 1-28. Records excellent except for estimated daily discharges, which are fair. Flow regulated by powerplants, by Michigamme Reservoir, capacity, 119,950 acre-ft, and Peavy Pond, capacity, 33,860 acre-ft, on Michigamme River, and by smaller reservoirs upstream from station. Several measurements of water temperature were made during the year. EXTREMES FOR CURRENT YEAR.--Maximum discharge during period December to September, 7,650 $\rm ft^3/s$, Apr. 8, gage height, 10.86 ft; minimum, 815 $\rm ft^3/s$, Aug. 3, 4, gage height, 4.67 ft; minimum daily, 846 $\rm ft^3/s$ Aug. 3. # DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|-----|-----|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1
2
3
4
5 | | | 2980
2610
2300
2350
2500 | 1400
2000
1800
2500
2900 | 2030
2240
2200
2320
2350 | 1750
1610
1690
1790
1780 | 4270
4630
5330
6610
6790 | 1760
1850
2310
2260
1870 | 1260
1430
1170
1100
1080 | 1220
978
933
1040
1130 | 958
946
846
880
1130 | 1580
1590
1550
1880
1900 | | 6
7
8
9
10 | | | 2380
2530
2570
2660
2900 | 2500
2100
2200
2100
2100 | 2100
2100
2260
2180
2220 | 1760
1760
1750
1880
1880 | 6880
7210
7130
6590
5850 | 1650
1420
1390
1700
1690 | 997
1030
996
988
988 | 1130
1080
1180
1190
1170 | 1620
1410
1250
1060
1020 | 1870
1690
1710
1600
1250 | | 11
12
13
14
15 | | | 2980
2940
2870
2470
2530 | 2100
2200
2250
2250
2300 | 2130
2140
2170
1950
1770 | 1950
1810
1930
1950
1790 | 5060
4380
3980
3130
2960 | 1710
1770
1730
1570
1570 | 988
992
1020
1010
1000 | 1140
1170
1250
1220
1170 | 978
973
976
1100
1290 | 1130
1210
1050
1210
1230 | | 16
17
18
19
20 | | | 2450
2400
2210
2280
2190 | 2400
2350
2600
2200
2150 | 1980
1770
1940
1770
1590 | 1780
1730
1630
1450
1470 | 2890
2560
2240
1760
1690 | 1730
2360
2050
1900
1970 | 997
979
971
974
996 | 1270
1100
1130
1150
1160 | 1480
2030
2210
2250
2060 | 1270
1270
1180
1270
1290 | | 21
22
23
24
25 | | | 2360
2500
2330
2430
2450 | 2150
2200
2150
2100
2050 | 1880
1720
1730
1860
1700 | 1600
1490
1630
1710
1890 | 1910
1690
1500
1480
1590 | 1750
1600
1640
1640
1460 | 1060
1210
1170
1080
1060 | 1170
1250
1060
981
972 | 1970
1520
1490
1390
1430 | 1590
1660
1550
1400
1260 | | 26
27
28
29
30
31 | | | 2500
2600
2170
2210
2200
2090 | 2050
2050
2100
2160
2060
2070 | 1780
1730
1800
1540 | 3090
3190
3270
3510
4070
3970 | 1720
1930
2520
2460
1780 | 1590
1720
1440
1380
1330
1510 | 1030
996
991
1110
1200 | 996
984
981
981
966
958 | 1410
1510
1600
1430
1840
1840 | 1360
1320
1400
1490
1310 | | TOTAL
MEAN
MAX
MIN | | | 76940
2482
2980
2090 | 67540
2179
2900
1400 | 56950
1964
2350
1540 | 64560
2083
4070
1450 | 110520
3684
7210
1480 | 53320
1720
2360
1330 | 31873
1062
1430
971 | 34110
1100
1270
933 | 43897
1416
2250
846 | 43070
1436
1900
1050 | #### 04066003 MENOMINEE RIVER BELOW PEMENE CREEK NEAR PEMBINE, WI LOCATION.--Lat 45°34'46", long 87°47'13", in NE 1/4, sec.29, T. 37 N., R.28 W., Michigan Meridian, Menominee County, MI, Hydrologic Unit 04030108, on left bank 40 ft downstream from County Trunk Z bridge, 0.9 mi downstream from Pemene Creek, 3.9 mi west of Nathan, MI, 10.6 mi southeast of Pembine, and at mile 64.3. DRAINAGE AREA. -- 3,140 mi². PERIOD OF RECORD.--October 1949 to current year. Published as "near Pembine" prior to August 1982. Monthly discharges only for some periods, published in WSP 1307. GAGE.--Water-stage recorder. Elevation of gage is 740 ft, from topographic map. October 1949 to Oct. 27, 1972, water-stage recorder at site 1.0 mi upstream at different datum, and Oct. 28, 1972, to August 1982, water-stage recorder at site 1.5 mi upstream at different datum. REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records good except those for ice-affected period, which is fair. Flow regulated by powerplants and by Michigamme Reservoir, capacity, 119,950 acre-ft, and Peavy Pond, capacity, 33,860 acre-ft, on the Michigamme River, and by many smaller reservoirs above station. AVERAGE DISCHARGE. -- 39 years, 2,982 ft3/s. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 26,900 $\rm ft^3/s$, May 8, 1960, gage height, 13.90 ft site and datum then in use; minimum, 694 $\rm ft^3/s$, Sept. 3, 1969, gage height, 1.66 ft site and datum then in use. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 8,230 ft³/s, Apr. 7, gage height, 11.21 ft; maximum gage height, 13.38 ft, Dec. 27, backwater from ice; minimum daily, 952 ft³/s, Aug. 4. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 17 to Mar. 26.) | 6.6 | 905 | 9.0 | 3,840 | |-----|-------|------|--------| | 6.8 | 1,030 | 10.0 | 5,600 | | 7.0 | 1,180 | 12.0 | 10,210 | | 8.0 | 2.370 | | | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | то | SEPTEMBER | 1988 | |-------------|-------|------|-----|---------|-------|------|---------|------|----|-----------|------| | MEAN VALUES | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 1070 | 1350 | 3140 | 1300 | 1800 | 1500 | 4650 | 1890 | 1350 | 1340 | 1070 | 1700 | | 2 | 1080 | 1520 | 2940 | 1200 | 1700 | 1500 | 5080 | 1830 | 1360 | 1180 | 1160 | 1630 | | 3 | 1190 | 2110 | 2680 | 1800 | 1900 | 1500 | 5750 | 2380 | 1360 | 1010 | 1090 | 1550 | | 4 | 1120 | 2160 | 2570 |
1600 | 1800 | 1600 | 7330 | 2440 | 1190 | 1030 | 952 | 1850 | | 5 | 1190 | 1920 | 2580 | 1600 | 1800 | 1600 | 7600 | 2020 | 1150 | 1230 | 1060 | 2160 | | 6 | 1140 | 1900 | 2730 | 1900 | 1700 | 1600 | 7650 | 1730 | 1110 | 1150 | 1500 | 1970 | | 7 | 1070 | 1640 | 2640 | 1800 | 1600 | 1500 | 7950 | 1690 | 1110 | 1190 | 1810 | 1730 | | 8 | 1080 | 1460 | 2730 | 1600 | 1600 | 1500 | 7900 | 1450 | 1100 | 1160 | 1330 | 1840 | | 9 | 1240 | 1550 | 2690 | 1400 | 1700 | 1600 | 7200 | 1650 | 1080 | 1230 | 1300 | 1700 | | 10 | 1280 | 1860 | 3040 | 1400 | 1800 | 1800 | 6310 | 1790 | 1070 | 1300 | 1170 | 1390 | | 11 | 1290 | 1810 | 3140 | 1500 | 1700 | 1800 | 5660 | 1760 | 1080 | 1220 | 1070 | 1230 | | 12 | 1300 | 1580 | 3130 | 1600 | 1700 | 1800 | 4890 | 1870 | 1080 | 1240 | 1070 | 1300 | | 13 | 1250 | 1580 | 3090 | 1700 | 1600 | 1700 | 4250 | 1910 | 1120 | 1320 | 1100 | 1120 | | 14 | 1300 | 1480 | 2660 | 1700 | 1500 | 1700 | 3590 | 1800 | 1140 | 1340 | 1210 | 1180 | | 15 | 1240 | 1290 | 2680 | 1700 | 1400 | 1700 | 3170 | 1610 | 1110 | 1310 | 1450 | 1310 | | 16 | 1220 | 1430 | 2610 | 1800 | 1500 | 1700 | 3200 | 1710 | 1100 | 1400 | 1430 | 1390 | | 17 | 1560 | 2100 | 2500 | 2100 | 1600 | 1800 | 2860 | 2270 | 1090 | 1350 | 1980 | 1430 | | 18 | 2160 | 2770 | 2300 | 2000 | 1700 | 1500 | 2580 | 2160 | 1090 | 1180 | 2470 | 1210 | | 19 | 1980 | 2900 | 2300 | 1900 | 1700 | 1500 | 2170 | 1970 | 1120 | 1280 | 2370 | 1430 | | 20 | 1880 | 3000 | 2300 | 1800 | 1500 | 1300 | 1860 | 2020 | 1100 | 1300 | 2260 | 1260 | | 21 | 1920 | 2780 | 2400 | 1800 | 1600 | 1400 | 1940 | 1900 | 1100 | 1250 | 2020 | 1550 | | 22 | 2000 | 2130 | 2500 | 1800 | 1600 | 1500 | 1870 | 1690 | 1220 | 1300 | 1700 | 1790 | | 23 | 1920 | 2270 | 2600 | 1900 | 1600 | 1600 | 1710 | 1630 | 1310 | 1260 | 1590 | 1710 | | 24 | 1830 | 2990 | 2400 | 1800 | 1700 | 1900 | 1650 | 1700 | 1170 | 1160 | 1470 | 1540 | | 25 | 1790 | 2780 | 2500 | 1700 | 1500 | 2200 | 1690 | 1500 | 1160 | 1140 | 1530 | 1430 | | 26
27
28
29
30
31 | 1780
1920
1870
1630
1620
1620 | 2780
2810
2800
2690
2840 | 2300
2200
2300
2100
2300
2200 | 1700
1700
1800
1800
1800
1800 | 1600
1600
1500
1500 | 3000
3660
3380
3660
4430
4380 | 1700
1990
2660
2750
2120 | 1560
1720
1590
1420
1340
1490 | 1150
1110
1090
1080
1250 | 1100
1070
1050
1050
1040
1040 | 1440
1550
1890
1510
1720
2060 | 1430
1490
1500
1450
1470 | | TOTAL | 46540 | 64280 | 80250 | 53000 | 47500 | 63310 | 121730 | 55490 | 34550 | 37220 | 47332 | 45740 | | MEAN | 1501 | 2143 | 2589 | 1710 | 1638 | 2042 | 4058 | 1790 | 1152 | 1201 | 1527 | 1525 | | MAX | 2160 | 3000 | 3140 | 2100 | 1900 | 4430 | 7950 | 2440 | 1360 | 1400 | 2470 | 2160 | | MIN | 1070 | 1290 | 2100 | 1200 | 1400 | 1300 | 1650 | 1340 | 1070 | 1010 | 952 | 1120 | CAL YR 1987 TOTAL 711530 MEAN 1949 MAX 4200 MIN 1040 WTR YR 1988 TOTAL 696942 MEAN 1904 MAX 7950 MIN 952 #### 04067500 MENOMINEE RIVER NEAR MC ALLISTER, WI LOCATION.--Lat 45°19'33", long 87°39'48", in SW 1/4 SE 1/4 sec.17, T.33 N., R.23 E., Marinette County, Hydrologic Unit 04030108, on right bank 85 ft downstream from bridge on County Highway JJ, 2.9 mi downstream from Grand Rapids Dam, 2.6 mi east of McAllister, 1.9 mi downstream from Little Cedar River, and at mile 22.6. DRAINAGE AREA.--3,930 mi² PERIOD OF RECORD.--March 1945 to September 1961; October 1961 to September 1979, miscellaneous measurements and peaks only; October 1979 to September 1986; October 1986 to March 1987, crest-stage partial-record station; April 1988 to September 1988. REVISED RECORDS.--WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 622.20 ft above National Geodetic Vertical Datum of 1929 (Michigan Department of Transportation reference mark). Prior to May 15, 1945, nonrecording gage 1,400 ft downstream at same datum; May 16, 1945, to September 1961, water-stage recorder 1,000 ft downstream at same datum; October 1961 to September 1979, crest-stage gage 1,100 ft downstream at same datum; October 1979 to September 1986, water-stage recorder at same site and datum; October 1986 to March 1987, crest-stage gage at same site and datum. REMARKS.--Estimated daily discharges: Apr. 1-21. Records good except those for Apr. 1-21, which are fair. Flow regulated by powerplants, by Michigamme Reservoir, capacity, 119,950 acre-ft, and Peavy Pond, capacity, 33,860 acre-ft on the Michigamme River, and by many smaller reservoirs above station. AVERAGE DISCHARGE.--23 years (1946-61, 1980-86, 1988), 3,577 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,500 ft³/s, May 9, 1960, gage height, 20.0 ft, from graph based on gage readings; minimum observed, 538 ft³/s, Oct. 6, 1946, gage height, 7.29 ft. EXTREMES FOR CURRENT YEAR. --Maximum daily discharge during period April to September, 9,800 ft³/s, Apr. 7; minimum daily, 1,040 ft³/s, Aug. 3. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 8.0 | 1,010 | 11.0 | 4,600 | |------|-------|------|--------| | 8.5 | 1,280 | 12.0 | 6,400 | | 9.0 | 1,760 | 14.0 | 10,500 | | 10.0 | 3,040 | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL. | AUG | SEP | |----------|-----|-----|-----|-----|-----|-----|--------------|-------|-------|-------|-------|--------------| | 1 | | | | | | | 5800 | 2970 | 1700 | 1210 | 1100 | 1910 | | 2 | | | | | | | 6800 | 2430 | 1720 | 1270 | 1150 | 1990 | | 3 | | | | | | | 7600 | 2650 | 1460 | 1520 | 1040 | 1990 | | 4 | | | | | | | 8800 | 3000 | 1490 | 1150 | 1370 | 1510 | | 5 | | | | | | | 8600 | 2890 | 1330 | 1150 | 1690 | 2420 | | | | | | | | | | | | | | | | 6 | | | | | | | 9400 | 2570 | 1360 | 1150 | 1170 | 2230 | | 7 | | | | | | | 9800 | 2170 | 1280 | 1460 | 1310 | 2240 | | 8 | | | | | | | 9600 | 2170 | 1280 | 1300 | 2170 | 2020 | | 9 | | | | | | | 9000 | 2000 | 1210 | 1330 | 1370 | 1800 | | 10 | | | | | | | 8000 | 2310 | 1270 | 1310 | 1360 | 2300 | | | | | | | | | 7000 | 0000 | 1160 | 1500 | 1560 | 7.400 | | 11 | | | | | | | 7000 | 2390 | 1160 | 1580 | 1560 | 1420 | | 12 | | | | | | | 6400 | 2260 | 1290 | 1180 | 1230 | 1200 | | 13
14 | | | | | | | 6000
5400 | 2490 | 1160 | 1470 | 1470 | 1590 | | 15 | | | | | | | | 2470 | 1140 | 1270 | 1380 | 1600 | | 13 | | | | | | | 3700 | 2220 | 1290 | 1710 | 1320 | 1190 | | 16 | | | | | | | 3400 | 2080 | 1180 | 1730 | 1930 | 1180 | | 17 | | | | | | | 3200 | 2400 | 1260 | 1560 | 1670 | 1950 | | 18 | | | | | | | 3000 | 2530 | 1150 | 1800 | 2280 | 1330 | | 19 | | | | | | | 2800 | 2590 | 1150 | 1190 | 2800 | 1220 | | 20 | | | | | | | 2700 | 2320 | 1160 | 1370 | 2500 | 2020 | | 21 | | | | | | | 2600 | 2280 | 1360 | 1720 | 2510 | 10/0 | | 22 | | | | | | | 2540 | 2170 | 1300 | 1330 | 2170 | 1840
1320 | | 23 | | | | | | | 2340
2470 | 2090 | 1260 | 1750 | 2030 | 2090 | | 23 | | | | | | | 2650 | 1900 | 1530 | 1190 | 1800 | 2100 | | 25 | | | | | | | 2420 | 1940 | 1250 | 1190 | 1500 | 1350 | | 23 | | | | | | | 2420 | 1940 | 1230 | 1190 | 1300 | 1330 | | 26 | | | | | | | 2350 | 1850 | 1150 | 1410 | 1860 | 1970 | | 27 | | | | | | | 2580 | 1780 | 1160 | 1330 | 1700 | 1390 | | 28 | | | | | | | 3030 | 1970 | 1240 | 1330 | 1470 | 1570 | | 29 | | | | | | | 3700 | 2000 | 1290 | 1310 | 2350 | 2010 | | 30 | | | | | | | 3560 | 1680 | 1300 | 1200 | 1640 | 1610 | | 31 | | | | | | | | 1390 | | 1130 | 1800 | | | TOTAL | | | | | | | 154900 | 69960 | 38880 | 42600 | 52700 | 52360 | | MEAN | | | | | | | 5163 | 2257 | 1296 | 1374 | 1700 | 1745 | | MAX | | | | | | | 9800 | 3000 | 1720 | 1800 | 2800 | 2420 | | MIN | | | | | | | 2350 | 1390 | 1140 | 1130 | 1040 | 1180 | | | | | | | | | 2330 | 10,0 | 11.10 | 1130 | 10.0 | 1100 | #### 452241088224800 McCASLIN LAKE NEAR LAKEWOOD, WI #### LAKE-STAGE RECORDS LOCATION.--Lat $45^{\circ}22^{\circ}41^{\circ}$, long $88^{\circ}22^{\circ}48^{\circ}$, in SW 1/4 sec.33, T.34 N., R.17 E., Marinette County, Hydrologic Unit 04030105, 8.8 mi northeast of Lakewood. PERIOD OF RECORD. -- October 1984 to current year. GAGE. -- Elevation of gage is 1190 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 11.74, Sept. 28, 1985; minimum observed, 10.77, Aug. 3, 1985. EXTREMES FOR CURRENT YEAR. -- Maximum gage height observed, 11.51 ft, June 9; minimum observed, 10.92 ft, Oct. 4. # GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | DATE | GAGE
HEIGHT | DATE | GAGE
HEIGHT | |--------------|----------------|-------------------|----------------|------|----------------| | Oct. 4
10 | 10.92
10.96 | Oct. 24
Nov. 1 | 11.02
11.04 | June | 9 11.51 | #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1985 to current year. #### SECCHI DISC TRANSPARENCY (IN METERS) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | |--------|-----------------|---------|-----------------| | Oct. 4 | 1.2 | Oct. 24 | 1.8 | | 10 | 1.7 | Nov. 1 | | ## 451511087550900 LAKE NOQUEBAY NEAR CRIVITZ, WI LOCATION.--Lat 45°15'11", long 87°55'09", in SE 1/4 SE 1/4 sec.7, T.32 N., R.21 E., Marinette County, Hydrologic Unit 04030105, near Crivitz. DRAINAGE AREA.--132 mi². 200 300 400 500 200 300 400 500 PERIOD OF RECORD.--February 25, 1987 to current year (discontinued). REMARKS.--Lake sampled at a lake depth of approximately 31 ft approximately 4,000 ft northeast of dam outlet. Lake ice-covered during February 17 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. # WATER-OUALITY DATA, FEBRUARY 17 TO AUGUST 29, 1988 | | | | | , FEBRUARY
ter unless | | | | | | | |---|------|---------------|--|---|------------------------------------
-----------------|-------------|----------------------|-------------|----------------| | | Fe | b. 17 | Ap | r. 21 | | ne 24 | Jul | у 27 | Aug | . 29 | | Depth of sample (ft) | 1.5 | 32.0 | 1.5 | 28.0 | 1.5 | 27.0 | 1.5 | 30.0 | 1.5 | 28.0 | | Specific conductance (µS/cm) pH (units) | 7.60 |
7.40 | 268
8.00 | 267
8.00 | 290
8.50 | 294
7.40 | 283
8.60 | 302
7.50 | 275
8.20 | 275
8.10 | | Water temperature (°C) | 0.5 | 3.5 | 7.0 | 6.5 | 23.5 | 15.5 | 24.0 | 18.0 | 20.5 | 19.5 | | Color (Pt-Co. scale) Turbidity (NTU) | | | 50
1.0 | 50
1.0 | | | | | | | | Secchi-disc (meters) | | | | .5 | 3. | | 2. | | 1. | | | Dissolved oxygen | 9.6 | 2.7 | 11.2 | 11.1 | 8.1 | 0.2 | 8.0 | 0 | 9.6 | 8.8 | | Hardness, total (as CaCO ₃)
Calcium, dissolved (Ca) | | | 130
30 | 130
29 | | | | | | | | Magnesium, Dissolved (Mg) | | | 13 | 13 | | | | | | | | Sodium, dissolved (Na) Potassium, dissolved (K) | | | 1.6
0.80 | 1.6
0.80 | | | | | | | | Alkalinity, total (as CaCO ₃) | | | 120 | 122 | | | | | | | | Sulfate, dissolved (SO ₄) Fluoride, total (as F) | | | 11
0.0 | $\begin{smallmatrix}11\\0.0\end{smallmatrix}$ | | | | | | | | Chloride, dissolved (Cl) | | | 3.0 | 3.0 | | | | | | | | Silica, dissolved (SiO ₂)
Solids, dissolved, at 180°C | | | 7.2
158 | 7.2
160 | | | | | | | | Nitrogen, nitrite plus | | | 130 | 100 | | | | | | | | nitrate, diss (as N) | | | 0.04 | 0.04 | | | | | | | | Nitrogen, ammonia, diss (as N)
Nitrogen, ammonia plus | | | 0.03 | 0.03 | | | | | | | | organic, total (as N) | | | 0.40 | 0.40 | | | | | | | | Total phosphorus (as P) Phosphorus, ortho, diss (as P) | | | 0.010
0.002 | | 0.004 | 0.006
<0.002 | 0.005 | <0.020
0.006 | 0.017 | 0.020
0.003 | | Iron, dissolved (Fe) μg/L | | | <100 | <100 | | | | | | | | Manganese, dissolved (Mn) µg/L
Chlorophyll a, phyto. (µg/L) | | | <40
4 | <40 | 5 | | 4 | | 7 | | | | | | | | · · | | | | | | | 2-17-88 | 4-2 | 1-88 | | 6-24-88 | | 7-27 | -88 | | 8-29-88 | | | | | DISSO | LVED OXYG | EN, IN MILLIG | RAMS PER | LITER | | | | | | 0 5 10 15 0 | 5 | 10 15 | 0 | 5 10 | 15
—, 0 | 0 5 | 10 15 | 0 | 5 10 | 15 | | Water Temp. No xygen 20 30 10 30 0 10 20 0 0 0 0 0 0 0 0 0 0 0 | 10 | 20 30
WATE | 10 -
20 -
30 -
0
R TEMPERA | 10 20
STURE, IN DEC | - 20
- 30
- 30
GREES CELS | 0 10 | 20 30 | 10 -
20 -
30 - | 10 20 | 30 | | | | | | STANDARD U | | | | | | | | 6 7 8 9 10 6 PH | 7 8 | 9 10 | 10 - | 7 8 9 | 10 0 | 6 7 8 | 9 10 | 10 - | 7 8 9 | 10 | 200 300 400 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER 500 200 300 200 300 400 500 500 400 #### 04069500 PESHTIGO RIVER AT PESHTIGO, WI LOCATION.--Lat 45°02'49", long 87°44'40", in NE 1/4 sec.30, T.30 N., R.23 E., Marinette County, Hydrologic Unit 04030105, on left bank 75 ft downstream from Chicago and Northwestern Railway bridge, 0.5 mi downstream from Wisconsin Public Service Corp. Powerplant at Peshtigo, and 11.5 mi upstream from mouth. DRAINAGE AREA. -- 1,080 mi². PERIOD OF RECORD. -- June 1953 to current year. REVISED RECORDS.--WDR WI-80-1: Drainage area. WDR WI-84-1: 1983 average discharge. GAGE. -- Water-stage recorder. Datum of gage is 584.64 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Dec. 3-8, 19-21, and Dec. 26 to Mar. 10. Records good except those for Nov. 18 to Dec. 3 and Mar. 11-29, which are fair; and ice periods, Dec. 3-8, 19-21, and Dec. 26 to Mar. 10, which are poor. Diurnal fluctuation caused by two powerplants upstream. Gage-height telemeter at station. AVERAGE DISCHARGE. -- 35 years, 935 ft³/s, 11.76 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,790 ft³/s, May 9, 1960, gage height, 11.59 ft, from rating curve extended above 5,000 ft³/s on basis of computation of peak flow through dam gates; minimum, 17 ft³/s, Nov. 29, 1966, gage height, 1.00 ft; minimum daily, 84 ft³/s, Aug. 5, 1957. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,240 $\rm ft^3/s$, Mar. 30, gage height, 6.52 ft; minimum daily, 166 $\rm ft^3/s$, June 29. | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|---|---|---|--|-----------------------------------|--|--|--|---|--|--|--| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 428 | 770 | 1220 | 600 | 700 | 500 | 2310 | 1240 | 391 | 178 | 305 | 302 | | 2 | 355 | 757 | 1010 | 560 | 580 | 660 | 2290 | 1250 | 260 | 247 | 239 | 302 | | 3 | 434 | 792 | 900 | 540 | 520 | 580 | 2620 | 1090 | 229 | 296 | 234 | 285 | | 4 | 256 | 842 | 700 | 500 | 520 | 680 | 3020 | 1070 | 199 | 180 | 235 | 403 | | 5 | 312 | 1070 | 680 | 520 | 540 | 700 | 3040 | 947 | 229 | 252 | 352 | 305 | | 6 | 353 | 939 | 700 | 500 | 640 | 600 | 3020 | 839 | 257 | 178 | 316 | 367 | | 7 | 373 | 810 | 660 | 480 | 660 | 640 | 3030 | 801 | 203 | 178 | 392 | 482 | | 8 | 363 | 901 | 700 | 460 | 740 | 540 | 2810 | 823 | 303 | 219 | 323 | 488 | | 9 | 346 | 892 | 847 | 500 | 640 | 500 | 2550 | 759 | 211 | 250 | 542 | 354 | | 10 | 364 | 826 | 978 | 450 | 680 | 640 | 2330 | 702 | 295 | 342 | 384 | 403 | | 11 | 353 | 672 | 1010 | 450 | 560 | 790 | 2140 | 671 | 312 | 278 | 328 | 354 | | 12 | 397 | 663 | 1050 | 450 | 500 | 918 | 1840 | 771 | 255 | 235 | 442 | 354 | | 13 | 360 | 563 | 1020 | 470 | 500 | 1140 | 1680 | 769 | 202 | 289 | 471 | 252 | | 14 | 402 | 638 | 867 | 520 | 470 | 998 | 1310 | 841 | 215 | 287 | 317 | 204 | | 15 | 351 | 552 | 819 | 450 | 430 | 1010 | 1040 | 779 | 221 | 361 | 317 | 260 | | 16 | 356 | 585 | 786 | 430 | 480 | 964 | 1090 | 718 | 251 | 349 | 303 | 232 | | 17 | 557 | 779 | 668 | 470 | 520 | 1020 | 921 | 578 | 216 | 432 | 357 | 306 | | 18 | 724 | 1190 | 554 | 500 | 640 | 938 | 802 | 756 | 195 | 506 | 389 | 317 | | 19 | 731 | 1360 | 540 | 520 | 540 | 989 | 798 | 630 | 215 | 429 | 317 | 323 | | 20 | 546 | 1380 | 560 | 560 | 560 | 950 | 887 | 484 | 183 | 348 | 309 | 374 | | 21 | 669 | 1240 | 700 | 600 | 420 | 983 | 706 | 502 | 191 | 363 | 341 | 390 | | 22 | 793 | 924 | 781 | 540 | 400 | 830 | 737 | 531 | 198 | 423 | 350 | 358 | | 23 | 884 | 967 | 805 | 500 | 450 | 787 | 824 | 453 | 176 | 435 | 389 | 435 | | 24 | 801 | 1170 | 787 | 520 | 480 | 871 | 975 | 526 | 203 | 454 | 457 | 419 | | 25 | 729 | 998 | 787 | 540 | 450 | 1080 | 974 | 385 | 242 | 457 | 410 | 407 | | 26
27
28
29
30
31 | 637
797
1000
828
852
806 | 985
872
865
939
1110 | 700
560
580
560
580
580 | 560
560
620
620
580
660 | 500
500
450
440
 | 1620
1950
2040
2340
2860
2690 | 850
1090
1310
1460
1490 | 357
440
378
426
519
501 | 203
203
193
166
211 | 505
333
356
343
233
364 | 310
309
442
297
291
321 | 388
358
290
307
347 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 17157
553
1000
256
.51 | 27051
902
1380
552
.83
.93 | 23689
764
1220
540
.71
.82 | 16230
524
660
430
.48
.56 | 15510
535
740
400
.50 | 33808
1091
2860
500
1.01
1.16 | 19944
1665
3040
706
1.54
1.72 | 21536
695
1250
357
.64 | 6828
228
391
166
.21
.24 | 10100
326
506
178
.30 | 10789
348
542
234
.32
.37 | 10366
346
488
204
.32
.36 | CAL YR 1987 TOTAL 230799 MEAN 632 MAX 1400 MIN 215 CFSM .59 IN. 7.95 WTR YR 1988 TOTAL 243008 MEAN 664 MAX 3040 MIN 166 CFSM .61 IN. 8.37 #### 04070000 WHEELER LAKE NEAR LAKEWOOD, WI #### LAKE-STAGE RECORDS LOCATION.--Lat 45°19'07", long 88°28'58", in NW 1/4 sec.27, T.33 N., R.16 E., Oconto County, Hydrologic Unit 04030104, on south shore of lake, 2.5 mi northeast of Lakewood. DRAINAGE AREA.--2.27 mi², approximately. Area of Wheeler Lake, 380 acres. PERIOD OF RECORD. -- August 1936 to September 1981. April 1986 to current year. REVISED RECORD. -- WDR WI-80-1: Drainage area. GAGE.--Nonrecording gage. Datum of gage is 90.00 ft above datum assumed by Wisconsin Department of Natural Resources; gage readings have been reduced to elevations above this datum. Staff gage read by Roy A. Green on south side of lake. Prior to Apr. 19, 1936, nonrecording gage was located on east shore of lake. Apr. 20, 1939, to Apr. 13, 1960, nonrecording gage was located on southwest shore of lake. REMARKS.--Add 90 ft to obtain elevation above datum assumed for this lake by Wisconsin Department of Natural Resources. Lake has no surface outlet. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 7.31 ft June 6, 1973; minimum observed, 3.45 ft Feb. 5, 1950. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 5.66 ft, May 2; minimum observed, 4.36 ft, May 8. #### GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | |-------|----------------|--------|----------------|---------|----------------|---------|----------------|---------|----------------| | May 2 | 5.66 | May 27 | 5.44 | June 28 | 4.98 | Aug. 1 | 4.92 | Sept. 7 | 4.76 | | 8 | 4.36 | June 3 | 5.34 | July 4 | 4.92 | 5 | 4.92 | 14 | 4.72 | | 9 | 4.96 | 8 | 5.24 | 12 | 4.96 | 9 | 5.00 | 16 | 4.76 | | 12 | 4.76 | 9 | 5.24 | 15 | 4.94 | 20 | 4.92 | 21 | 4.72 | | 13 | 5.64 | 15 | 5.16 | 23 | 5.04 | 30 | 4.84 | 25 | 4.74 | | 19 | 5.56 | 2.2 | 5.10 | 30 | 4.92 | Sept. 3 | 4.78 | 30 | 4.74 | WATER-QUALITY RECORDS LOCATION.--Lat 45°19'07", long 88°28'32", in NE 1/4 sec.27, T.33 N., R.16 E., Oconto County, Hydrologic
Unit 04030104, near center of lake, and 2.6 mi northeast of Lakewood. PERIOD OF RECORD. -- July 1985 to current year. REMARKS. -- Secchi disc readings made by Roy A. Green. #### SECCHI DISC TRANSPARENCY (IN METERS) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SECCHI
DEPTH | |-------------------|-------------------|-------------------|-------------------|-------------------------------|--------------------------|------------------------------|--------------------------|--------------------------------|--------------------------| | May 2
13
27 | 6.4
6.4
8.2 | June 3
9
15 | 8.2
8.2
6.7 | June 22
28
July 4
12 | 6.1
4.9
4.3
3.4 | July 23
Aug. 1
9
20 | 3.4
2.7
2.6
3.4 | Aug. 30
Sept. 7
14
25 | 3.2
3.2
3.7
4.0 | #### 04071000 OCONTO RIVER NEAR GILLETT, WI LOCATION.--Lat 44°51'53", long 88°18'00", in NW 1/4 sec.34, T.28 N., R.18 E., Oconto County, Hydrologic Unit 04030104, on left bank 300 ft upstream from County Trunk Highway BB bridge, 2.0 mi upstream from Christy Brook, 2.0 mi south of Gillett, and at mile 29. DRAINAGE AREA. -- 705 mi². PERIOD OF RECORD.--June 1906 to March 1909, October 1913 to current year. Monthly discharge only for some periods, published in WSP 1307. REVISED RECORDS.--WSP 1207: 1922. WSP 1307: 1907-8(M), 1914-16(M), 1918-21(M), 1923-33(M), 1937-38(M), 1943(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 732.87 ft above National Geodetic Vertical Datum of 1929 (levels by Wisconsin Department of Transportation). See WSP 1727 for history of changes prior to Aug. 25, 1938. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. Gage-height telemeter at station. AVERAGE DISCHARGE.--77 years (water years 1907-08, 1914-88), 582 ft³/s, 11.21 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,400 ft³/s, Apr. 10, 1922, gage height, 11.2 ft from flood-marks, caused by a failure of dam at Pulcifer 4 mi above station; minimum, 93 ft³/s, Nov. 26, 1941, gage height, 0.13 ft flow retarded by anchor ice above station. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Dec. 20 | 1100 | ice jam | *4.47 | Apr. 7 | 1100 | * 1,470 | 3.10 | Minimum discharge, 152 ft^3/s , July 8, gage height, 0.41 ft . RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 6, 7, Dec. 17 to Mar. 31.) | 0.3 | 135 | 2.0 | 780 | |-----|-----|-----|-------| | 1.0 | 330 | 3.0 | 1,400 | | | | 4.0 | 2,100 | | | | DISCHARGE | E, CUBIC | FEET PER | SECOND | , WATER YEAR
MEAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------------|------------|------------|------------|------------|------------|-----------------------------|--------------|------------|------------|------------|------------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 255 | 350 | 618 | 350 | 280 | 270 | 1250 | 661 | 249 | 200 | 201 | 211 | | 2 | 246 | 351 | 609 | 330 | 290 | 270 | 1110 | 608 | 247 | 187 | 198 | 204 | | 2
3
4 | 237 | 362 | 564 | 340 | 290 | 260 | 1160 | 565 | 242 | 180 | 194 | 200 | | 4 | 239 | 404 | 490 | 300 | 290 | 260 | 1200 | 525 | 241 | 174 | 180 | 196 | | 5 | 241 | 472 | 447 | 280 | 280 | 270 | 1290 | 490 | 234 | 169 | 198 | 194 | | 6
7 | 248 | 478 | 450 | 260 | 280 | 280 | 1410 | 463 | 226 | 165 | 238 | 197 | | / | 257 | 479 | 450 | 260 | 280 | 290 | 1460 | 440 | 221 | 161
155 | 268 | 198
196 | | 8
9 | 258
260 | 452
433 | 444 | 250
250 | 270
270 | 350 | 1450 | 428
426 | 213
208 | 165 | 231
205 | 196 | | 10 | 254 | 433
419 | 462
492 | 240 | 270 | 420
500 | 1370
1270 | 428 | 207 | 177 | 236 | 188 | | | | 419 | 492 | 240 | 270 | 300 | 12/0 | | | | | | | 11 | 250 | 397 | 525 | 240 | 270 | 540 | 1160 | 425 | 204 | 188 | 264 | 185 | | 12 | 245 | 375 | 530 | 240 | 270 | 580 | 1050 | 417 | 200 | 188 | 242 | 182 | | 13 | 248 | 361 | 527 | 240 | 270 | 540 | 946 | 406 | 196 | 184 | 251 | 178 | | 14 | 246 | 342 | 507 | 240 | 280 | 520 | 809 | 405 | 188 | 183 | 265 | 176 | | 15 | 245 | 339 | 423 | 250 | 280 | 490 | 729 | 405 | 182 | 186 | 253 | 173 | | 16 | 246 | 346 | 304 | 260 | 280 | 490 | 694 | 390 | 173 | 200 | 249 | 174 | | 17 | 275 | 422 | 260 | 250 | 280 | 490 | 663 | 373 | 163 | 248 | 236 | 179 | | 18 | 319 | 574 | 420 | 250 | 280 | 480 | 624 | 361 | 165 | 329 | 232 | 185 | | 19
20 | 377
377 | 662 | 440 | 260 | 270 | 470 | 586 | 349 | 165 | 284 | 232
223 | 196 | | 20 | 3// | 706 | 450 | 270 | 260 | 500 | 533 | 338 | 167 | 251 | 223 | 205 | | 21 | 355 | 676 | 410 | 270 | 270 | 470 | 505 | 330 | 169 | 266 | 217 | 232 | | 22 | 348 | 571 | 400 | 260 | 280 | 440 | 484 | 321 | 180 | 306 | 211 | 271 | | 23 | 348 | 542 | 430 | 250 | 270 | 480 | 469 | 311 | 189 | 366 | 232 | 268 | | 24 | 352 | 561 | 470 | 250 | 280 | 560 | 500 | 298 | 187 | 357 | 245 | 257 | | 25 | 354 | 540 | 490 | 250 | 290 | 640 | 542 | 278 | 182 | 328 | 253 | 250 | | 26 | 359 | 513 | 420 | 240 | 290 | 740 | 553 | 273 | 174 | 293 | 233 | 239 | | 27 | 396 | 483 | 370 | 240 | 280 | 760 | 566 | 272 | 168 | 242 | 223 | 230 | | 28 | 399 | 470 | 380 | 260 | 270 | 860 | 641 | 267 | 180 | 231 | 223 | 225 | | 29 | 391 | 505 | 390 | 280 | 270 | 980 | 716 | 265 | 187 | 223 | 228 | 223 | | 30 | 372 | 574 | 400 | 300 | | 1100 | 726 | 262 | 199 | 217 | 231 | 224 | | 31 | 357 | | 400 | 290 | | 1400 | | 253 | | 204 | 220 | | | TOTAL | 9354 | 14159 1 | 3972 | 8250 | 8040 | | 26466 | 12033 | 5906 | 7007 | 7112 | 6228 | | MEAN | 302 | 472 | 451 | 266 | 277 | 539 | 882 | 388 | 197 | 226 | 229 | 208 | | MAX | 399 | 706 | 618 | 350 | 290 | 1400 | 1460 | 661 | 249 | 366 | 268 | 271 | | MIN | 237 | 339 | 260 | 240 | 260 | 260 | 469 | 253 | 163 | 155 | 180 | 173 | | CFSM | . 43 | . 67 | . 64 | . 38 | .39 | . 76 | 1.25 | .55 | . 28 | .32 | . 33 | .29 | | IN. | . 49 | .75 | .74 | . 44 | . 42 | . 88 | 1.40 | .63 | .31 | . 37 | . 38 | .33 | CAL YR 1987 TOTAL 142852 MEAN 391 MAX 837 MIN 195 CFSM .56 IN. 7.54 WTR YR 1988 TOTAL 135227 MEAN 369 MAX 1460 MIN 155 CFSM .52 IN. 7.14 #### 04071858 PENSAUKEE RIVER NEAR PENSAUKEE, WI LOCATION.--Lat $44^{\circ}49^{\circ}08^{\circ}$, long $87^{\circ}57^{\circ}12^{\circ}$, in NW 1/4 NE 1/4 sec.16, T.27 N., R.21 E., Oconto County, Hydrologic Unit 04030103, on right bank 300 ft downstream from bridge on town road, 2.8 mi downstream from Brookside Creek, 2.6 mi west of Pensaukee, 3.5 mi upstream from mouth. DRAINAGE AREA. -- 134 mi². PERIOD OF RECORD. -- October 1972 to current year. REVISED RECORD. -- WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 583.69 ft above National Geodetic Vertical Datum of 1929 (Wisconsin Department of Transportation bench mark). REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are poor. AVERAGE DISCHARGE.--16 years, 92.7 ft³/s, 9.39 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,310 $\rm ft^3/s$, May 31, 1979, gage height, 13.58 ft; minimum discharge, 0.44 $\rm ft^3/s$, Sept. 13, 1987, gage height, 2.09 ft. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Mar. 11 | 2300 | ice jam | *7.23 | Mar. 30 | 0100 | *502 | 5.56 | Minimum discharge, 0.76 ft^3/s , July 10, gage height, 2.07 ft . RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Oct. 11 to Nov. 17, Nov. 19, 23 to 29; stage-discharge relation affected by ice Nov. 20-22 and Dec. 2 to Mar. 29.) | 2.0 | 0.2 | 3.0 | 84 | |-----|-----|-----|-----| | 2.1 | 1.0 | 4.0 | 210 | | 2.2 | 3.5 | 5.0 | 390 | | 2.3 | 9.0 | 6.0 | 610 | | 25 | 29 | | | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|-------------------------------------|--|-------------------------------------|--|-----------------------------------|--|---|--|-----------------------------------|--|--|-----------------------------------| | 1
2
3
4
5 | 25
22
9.6
16
15 | 6.8
11
14
14
16 | 79
49
35
28
23 | 7.0
6.0
5.2
4.5
4.2 | 6.4
6.0
6.4
5.8
5.4 | 14
13
12
13
14 | 188
151
337
459
340 | 72
59
52
40
35 | 5.2
6.0
5.6
4.5
4.4 | 2.4
2.5
1.6
1.0 | 1.5
1.1
.97
2.4
2.7 | 3.2
2.8
2.5
2.4
2.6 | | 6
7
8
9
10 | 21
24
24
24
20 | 13
7.9
8.1
11 | 21
20
19
30
50 | 3.9
3.6
3.3
3.6
3.8 | 5.4
5.6
5.2
5.4
5.6 | 16
16
20
34
110 | 261
217
159
129
110 | 32
28
26
25
28 | 3.6
3.1
2.7
3.0
2.8 | 2.6
1.9
1.2
1.0 | 2.0
1.4
1.8
1.9 |
5.4
4.8
2.8
2.4
2.1 | | 11
12
13
14
15 | 17
29
6.9
2.3
3.4 | 11
7.9
11
11
20 | 43
46
40
35
30 | 3.9
3.7
3.5
3.5
3.6 | 5.8
6.0
6.2
7.0
7.6 | 500
400
90
80
82 | 95
80
71
62
54 | 27
24
22
20
19 | 3.1
3.0
2.9
2.5
1.9 | .87
1.5
2.4
1.8
2.2 | 1.3
1.2
1.6
2.0
2.0 | 1.7
1.3
1.1
1.3 | | 16
17
18
19
20 | 6.8
12
9.1
8.2
14 | 26
49
67
57
35 | 26
23
20
23
20 | 4.2
4.0
3.9
4.3
4.1 | 8.4
9.0
10
11 | 88
86
80
76
70 | 48
45
41
36
34 | 18
17
15
14
14 | 1.8
1.6
1.5
1.8
1.7 | 6.5
8.8
7.8
5.7
3.0 | 2.5
3.5
1.9
1.5 | 1.2
1.9
2.4
4.3
6.9 | | 21
22
23
24
25 | 11
6.6
9.0
11
9.4 | 22
17
30
26
25 | 18
16
14
16
14 | 4.0
4.0
4.0
4.2
4.5 | 10
12
11
10
9.8 | 74
86
110
170
270 | 30
27
32
57
65 | 13
12
9.6
7.9
7.3 | 1.4
1.8
1.8
2.3
3.5 | 3.9
4.5
5.1
4.5
4.5 | 1.7
1.5
3.8
5.3
5.8 | 5.0
3.7
6.4
7.0
7.9 | | 26
27
28
29
30
31 | 8.6
13
17
8.2
10
9.7 | 23
23
22
41
72 | 13
11
10
9.0
8.0
8.4 | 4.4
4.0
4.4
4.9
5.8
6.8 | 11
13
14
14 | 300
260
230
400
412
262 | 58
82
142
126
93 | 7.3
6.4
6.2
6.2
5.8
6.6 | 1.9
1.7
1.0
1.8
3.1 | 3.0
3.0
3.0
2.6
1.8
1.4 | 3.4
2.8
3.1
3.3
4.8
4.1 | 12
14
12
10
12 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 422.8
13.6
29
2.3
.10 | 708.7
23.6
72
6.8
.18
.20 | 797.4
25.7
79
8.0
.19 | 134.8
4.35
7.0
3.3
.03 | 244.0
8.41
14
5.2
.06 | 4388
142
500
12
1.06
1.22 | 3629
121
459
27
.90
1.01 | 675.3
21.8
72
5.8
.16 | 83.0
2.77
6.0
1.0
.02 | 94.17
3.04
8.8
.80
.02 | 76.27
2.46
5.8
.97
.02 | 144.2
4.81
14
1.1
.04 | CAL YR 1987 TOTAL 13142.16 MEAN 36.0 MAX 500 MIN .96 CFSM .27 IN. 3.65 WTR YR 1988 TOTAL 11397.64 MEAN 31.1 MAX 500 MIN .80 CFSM .23 IN. 3.16 **FOX-WOLF RIVER BASIN** #### 435313089392000 PATRICK LAKE NEAR GRAND MARSH, WI #### LAKE-STAGE RECORDS PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Staff gage read by Orval Vierck. Elevation of gage is 973 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 16.01 ft, Oct. 25, 1986; minimum observed, 11.38 ft, Sept. 16, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 13.36 ft, Oct. 19; minimum observed, 11.38 ft, Sept. 16 and 18. #### GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | |------------------------------|-------------------------|------|-------------------------------|---------------------------|----------------------------------|---------------------------------|----------------|----------------------------|----------------------------------| | Oct. 19
May 19
July 27 | 13.36
12.72
11.87 | Aug. | 5 11.80
6 11.80
8 11.76 | Aug. 13
18
19
23 | 11.66
11.70
11.67
11.68 | Aug. 25
28
31
Sept. 16 | 11.64
11.54 | Sept. 18
19
23
30 | 11.38
11.40
11.64
11.54 | #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1985 to current year. REMARKS. -- Secchi disc readings made by Orval Vierck. #### SECCHI DISC TRANSPARENCY (IN METERS) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | |--------------------|-----------------|--------------|-----------------|---------------|-----------------|----------------|-----------------| | Oct. 19
July 27 | 4.0 | Aug. 6
13 | 2.7 | Aug. 19
31 | 2.4
2.6 | Sept. 16
30 | 2.4
4.1 | #### 434813089204000 MONTELLO LAKE AT MONTELLO, WI #### LAKE-STAGE RECORDS $LOCATION.--Lat \ 43^{\circ}48^{\circ}13^{\circ}, \ long \ 89^{\circ}20^{\circ}40^{\circ}, \ in \ SW \ 1/4 \ sec.5, \ T.15 \ N., \ R.10 \ E., \ Marquette \ County, \ Hydrologic \ Unito 04030201, \ at \ Montello.$ PERIOD OF RECORD. -- October 1984 to current year. GAGE. -- Staff gage read by Harry Clark. Elevation of gage is 783 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 11.94 ft, July 26, 1985; minimum observed, 10.24 ft, Aug. 23, 24, 1985. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 11.59 ft, June 29; minimum observed, 11.03 ft, June 26. | | | | GAGE HEI | GHT, FEET | | EAR OCTOB | | TO SEPTEM | IBER 1988 | | | | |-----|-----|-----|----------|-----------|-----|-----------|-----|-----------|-----------|-------|-----|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | ~ | | | | | | | 11.51 | 11.55 | | | | 2 | | ~ | | | | | | | 11.49 | 11.57 | | | | 3 | | | | | | | | | 11.41 | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | 11.27 | | | | 6 | | | | | | | | | 11.17 | 11.37 | | | | 7 | | | | | | | | | 11.31 | 11.57 | | | | 8 | | | | | | | | | 11.47 | 11.35 | | | | 9 | | | | | | | | | 11.39 | | | | | 10 | | | | | | | | | 11.43 | 11.49 | | | | 11 | | ~ | | | | | | | 11.55 | 11.15 | | | | 12 | | ~ | | | | | | | 11.39 | 11.47 | | | | 13 | | | | | | | | | 11.17 | 11.55 | | | | 14 | | | | | | | | | 11.27 | 11.51 | | | | 15 | | | | | | | | | 11.35 | | | | | 16 | | ~ | | | | | | | 11.37 | 11.39 | | | | 17 | | ~ | | | | | | | 11.33 | 11.31 | | | | 18 | | ~ | | | | | | | 11.33 | 11.29 | | | | 19 | | | | | | | | 11.42 | 11.23 | 11.53 | | | | 20 | | ~ | | | | | | | | 11.57 | | | | 21 | | | | | | | | | 11.45 | 11.53 | | | | 22 | | ~ | | | | | | | 11.37 | 11.45 | | | | 23 | | ~ | | | | | | 11.15 | 11.17 | 11.45 | | | | 24 | | ~ | | | | | | 11.53 | 11.17 | 11.35 | | | | 25 | | | | | | | | 11.45 | 11.05 | 11.37 | | | | 26 | | | | | | | | 11.43 | 11.03 | 11.35 | | | | 27 | | ~ | | | | | | | 11.21 | 11.39 | | | | 28 | | ~ | | | | | | 11.43 | 11.37 | 11.37 | | | | 29 | | ~ | | | | | | 11.43 | 11.59 | | | | | 30 | | | | | | | | 11.51 | 11.49 | | | | | 31 | | | | | | | | | | | | | #### WATER-QUALITY RECORDS PERIOD OF RECORD.--May 1985 to current year. REMARKS. -- Secchi disc readings made by Harry Clark. #### SECCHI DISC TRANSPARENCY (IN METERS) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | | SECCHI
DEPTH | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | |------|----------------------|--------------------------|----------------------------|--------------------------|----------------------------|---------------------------------|--------------------|--------------------------|----------------------------|--------------------------| | | 24
25
28
29 | 2.2
2.4
2.8
2.3 | June 7
9
10
11 | 2.8
2.8
2.9
2.6 | June 16
17
19
21 | 2.7
2.8
2.3
2.3 | July 1
2
5 | 3.4
2.1
3.1
2.8 | July 18
19
20
22 | 3.1
2.8
3.0
3.4 | | | 30
1
3
6 | 2.6
2.6
2.5
2.4 | 11
12
13
14
15 | 2.6
2.9
2.4
2.9 | 21
23
24
26
27 | 2.3
2.7
2.3
2.5
2.4 | 7
8
11
13 | 2.7
2.7
2.7
2.6 | 23
24
25
26
28 | 2.7
2.8
2.5
2.6 | #### STREAMS TRIBUTARY TO LAKE MICHIGAN #### 435842089231400 SHARON LAKE NEAR DAKOTA, WI PERIOD OF RECORD. -- November 1984 to current year. GAGE. -- Staff gage read by Mike Jacobi. Elevation of gage is 845 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 9.21 ft, Oct. 4-6, 12-15, 1986; minimum observed, 6.10 ft, Sept. 18, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 7.82 ft, Apr. 9-11; minimum observed, 6.10 ft, Sept. 18. | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | | | | | | | | | |--|------|-----|-----|-----|-----|-----|------|------|------|------|------|------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 7.63 | | | | | | | 7.70 | 7.32 | 6.76 | 6.44 | 6.32 | | | 2 | 7.61 | | | | | | | 7.68 | 7.30 | 6.76 | 6.40 | 6.30 | | | 3 | 7.59 | | | | | | | 7.68 | 7.28 | 6.74 | 6.38 | 6.28 | | | 4 | 7.59 | | | | | | | 7.66 | 7.26 | 6.74 | 6.42 | 6.26 | | | 5 | 7.59 | | | | | | | 7.66 | 7.24 | 6.72 | 6.44 | 6.24 | | | 6 | 7.57 | | | | | | | 7.64 | 7.22 | 6.70 | 6.44 | 6.22 | | | 7 | 7.57 | | | | | | | 7.62 | 7.20 | 6.70 | 6.44 | 6.20 | | | 8 | 7.55 | | | | | | | 7.62 | 7.18 | 6.68 | 6.46 | 6.18 | | | 9 | 7.55 | | | | | | 7.82 | 7.68 | 7.16 | 6.66 | 6.46 | 6.18 | | | 10 | 7.53 | | | | | | 7.82 | 7.68 | 7.14 | 6.62 | 6.44 | 6.16 | | | 11 | 7.51 | | | | | | 7.82 | 7.66 | 7.10 | 6.60 | 6.42 | 6.16 | | | 12 | 7.51 | | | | | | 7.80 | 7.64 | 7.08 | 6.60 | 6.42 | 6.16 | | | 13 | 7.49 | | | | | | 7.80 | 7.62 | 7.06 | 6.60 | 6.40 | 6.14 | | | 14 | 7.47 | | | | | | 7.78 | 7.58 | 7.04 | 6.58 | 6.38 | 6.14 | | | 15 | 7.47 | | | | | | 7.78 | 7.58 | 7.02 | 6.56 | 6.36 | 6.14 | | | 16 | 7.55 | | | | | | 7.76 | 7.56 | 7.00 | 6.64 | 6.34 | 6.12 | | | 17 | 7.55 | | | | | | 7.76 | 7.52 | 6.98 | 6.66 | 6.32 | 6.12 | | | 18 | 7.55 | | | | | | 7.74 | 7.52 | 6.96 | 6.66 | 6.30 | 6.10 | | | 19 | 7.53 | | | | | | 7.72 | 7.50 | 6.94 | 6.66 | 6.38 | 6.14 | | | 20 | 7.53 | | | | | | 7.70 | 7.50 | 6.92 | 6.66 | 6.38 | 6.14 | | | 21 | 7.53 | | | | | | 7.70 | 7.48 | 6.88 | 6.64 | 6.38 | 6.14 | | | 22 | 7.53 | | | | | | 7.70 | 7.48 | 6.84 | 6.64 | 6.36 | 6.30 | | | 23 | 7.51 | | | | | | 7.70 | 7.46 | 6.82 | 6.62 | 6.34 | 6.48 | | | 24 | 7.51 | | | | | | 7.68 | 7.46 | 6.80 | 6.60 | 6.34 | 6.48 | | | 25 | 7.51 | | | | | | 7.68 | 7.44 | 6.78 | 6.58 | 6.40 | 6.46
 | | 26 | 7.51 | | | | | | 7.74 | 7.42 | 6.74 | 6.56 | 6.40 | 6.46 | | | 27 | 7.49 | | | | | | 7.74 | 7.40 | 6.72 | 6.54 | 6.38 | 6.46 | | | 28 | 7.49 | | | | | | 7.74 | 7.40 | 6.70 | 6.52 | 6.40 | 6.44 | | | 29 | 7.49 | | | | | | 7.74 | 7.36 | 6.78 | 6.50 | 6.40 | 6.42 | | | 30 | 7.49 | | | | | | 7.72 | 7.36 | 6.78 | 6.48 | 6.38 | 6.42 | | | 31 | | | | | | | | 7.34 | | 6.46 | 6.36 | | | | MEAN | | | | | | | | 7.55 | 7.01 | 6.63 | 6.39 | 6.26 | | | MAX | | | | | | | | 7.70 | 7.32 | 6.76 | 6.46 | 6.48 | | | MIN | | | | | | | | 7.34 | 6.70 | 6.46 | 6.30 | 6.10 | | #### 04073462 WHITE CREEK AT FOREST GLEN BEACH NEAR GREEN LAKE, WI LOCATION.--Lat 43°48'58", long 88°55'42" in SE 1/4 SE 1/4 NW 1/4 sec.34, T.16 N., R.13 E., Green Lake County, Hydrologic Unit 04030201, at culvert on Spring Grove Road at Forest Glen Beach, 2.6 mi southeast of Green Lake. DRAINAGE AREA. -- 3.05 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- December 1981 to June 1988 (discontinued). GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 800 ft, from topographic map. REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good. AVERAGE DISCHARGE. -- 5 years, 5.34 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 781 $\rm ft^3/s$, Sept. 10, 1986, gage height, 10.14 ft; minimum daily, 0.21 $\rm ft^3/s$, Nov. 21, 1987. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 41 ft³/s, Mar. 6, gage height, 4.91 ft; minimum daily, 0.21 ft³/s, Nov. 21. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Jan. 1-16, 23-28, and Feb. 20-21.) | 3.9 | 0.15 | 4.4 | 5.8 | |-----|------|-----|-----| | 4.0 | .50 | 4.5 | 8.8 | | 4.1 | 1.1 | 4.6 | 13 | | 4.2 | 2.1 | 4.7 | 17 | | 43 | 3 7 | | | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--------------------------------------|--------------------------------------|--|---|--|---|--|---|----------|----------|-----| | 1
2
3
4
5 | . 47
. 55
. 48
. 46
. 46 | . 48
. 37
. 36
. 29
. 27 | .30
.27
.28
.27
.29 | .54
.52
.50
.48
.45 | 5.4
3.4
2.5
1.9 | 8.9
11
9.3
7.1
7.8 | 2.6
3.4
4.2
3.9
3.8 | 3.0
3.0
3.0
2.9
2.8 | 1.7
1.7
1.7
1.6
1.6 | | | | | 6
7
8
9
10 | . 45
. 46
. 46
. 44
. 42 | . 27
. 28
. 32
. 30
. 29 | .30
.34
.40
.51
.45 | . 43
. 40
. 37
. 36
. 35 | 2.0
1.3
1.2
1.2 | 14
14
17
12
9.8 | 4.4
4.3
4.3
4.3 | 2.7
2.7
2.8
2.9
2.8 | 1.6
1.5
1.5
1.5 | | | | | 11
12
13
14
15 | .41
.37
.30
.30 | . 29
. 27
. 27
. 26
. 24 | . 45
. 43
. 46
. 46
. 47 | .34
.34
.34
.35 | 1.1
1.5
1.1
1.0
.99 | 8.5
7.4
6.2
5.3
4.9 | 4.4
4.5
4.5
4.4
4.3 | 2.7
2.5
2.4
2.4
2.4 | 1.4
1.4
1.3
1.3 | | | | | 16
17
18
19
20 | .33
.39
.34
.29 | . 25
. 53
. 32
. 25
. 24 | . 47
. 45
. 45
. 48
. 56 | .30
.27
.27
.25
.28 | 1.0
.96
.94
.90 | 4.2
3.8
3.6
3.5
3.3 | 4.3
4.3
4.1
3.7
3.7 | 2.2
2.2
2.1
2.1
2.1 | 1.3
1.3
1.2
1.2 |

 |

 | | | 21
22
23
24
25 | .32
.32
.30
.32
.30 | . 21
. 25
. 30
. 27
. 27 | .50
.50
.50
.55 | .27
.27
.26
.26 | .86
1.0
1.1
1.1 | 3.0
3.0
3.0
3.0
3.1 | 3.6
3.5
3.6
3.4
3.4 | 2.0
2.0
2.0
1.9 | 1.1
1.1
.99
1.0
1.0 | | | | | 26
27
28
29
30
31 | . 37
. 33
. 27
. 28
. 29
. 27 | . 26
. 24
. 32
. 34
. 35 | .56
.60
.60
.59
.57 | .25
.24
.25
.27
.56 | 2.1
3.7
5.1
7.1 | 2.8
2.7
3.0
3.0
2.7
2.7 | 3.4
3.6
3.3
3.2
3.1 | 1.9
1.9
1.9
1.8
1.8 | .96
.96
1.0
.97
.91 | | | | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 11.35
.37
.55
.27
.12
.14 | 8.96
.30
.53
.21
.10 | 14.21
.46
.60
.27
.15 | 17.05
.55
6.7
.24
.18
.21 | 55.43
1.91
7.1
.86
.63
.68 | 193.6
6.25
17
2.7
2.05
2.36 | 115.8
3.86
4.5
2.6
1.27
1.41 | 72.5
2.34
3.0
1.7
.77
.88 | 38.69
1.29
1.7
.91
.42
.47 | |

 | | CAL YR 1987 TOTAL 689.32 MEAN 1.89 MAX 8.0 MIN .21 CFSM .62 IN. 8.41 #### 04073462 WHITE CREEK AT FOREST GLEN BEACH NEAR GREEN LAKE, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1981 to June 1988 (discontinued). PERIOD OF DAILY RECORD. - SUSPENDED-SEDIMENT DISCHARGE: October 1981 to June 1988 (discontinued). TOTAL AMMONIA-NITROGEN DISCHARGE: October 1981 to June 1988 (discontinued). TOTAL-PHOSPHORUS DISCHARGE: October 1981 to June 1988 (discontinued). DATE INSTRUMENTATION. -- Automatic pumping sampler since December 1981. REMARKS .-- Records good . COOPERATION. -- Observer furnished by the Green Lake Sanitary District. EXTREMES FOR PERIOD OF DAILY RECORD.-SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 2,420 tons, Apr. 3, 1982; minimum daily, 0 ton, Sept. 11-18, 24-30, 1982, Jan. 11-16, 1987, Oct. 13-16, 18-20, 1987. TOTAL AMMONIA-NITROGREN DISCHARGE.--Maximum daily, 490 lb, Apr. 3, 1982; minimum daily, 0.01 lb, Nov. 27, Dec. 2-4, 1987. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 1,130 lb, Sept. 10, 1986; minimum daily, 0.06 lb, Oct. 28, 31, Nov. 5-6, 12-16, 21, 26-27, 1987. EXTREMES FOR CURRENT YEAR.-SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 13 tons, Mar. 6; minimum daily, 0 ton Oct. 13-16, 18-20. TOTAL AMMONIA-NITROGEN DISCHARGE: Maximum daily, 27 lb, Mar. 2; minimum daily, 0.01 lb, Nov. 27, Dec. 2-4. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 26 lb, Mar. 8; minimum daily, 0.04 lb, Oct. 28, 31, Nov. 5-6, 12-16, 21, 26-27. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 TIME DIS-CHARGE, INST. CUBIC FEET SECOND PER SPE-CIFIC CON- DUCT- ANCE (US/CM) | | | | | | | (00061) | (00095) | | | | | |-----------|--------------|--------------|----------------|---|------------------|----------|--------------|-------------|----------------|----------------|----------------| | | | | | | | | | | | | | | | | | | JAN 1988 | | | | | | | | | | | | | 14 | 1510 | 0.35 | 420 | DIS- | | | | | | DIS- | | | | | | | CHARGE, | NITRO- | | | | | CHARGE, | NITRO- | | | | | | INST. | GEN, | PHOS- | SEDI- | | | INST. | GEN, | PHOS- | SEDI- | | | | CUBIC | AMMONIA | PHOROUS | MENT, | | | CUBIC | AMMONIA | PHOROUS | MENT, | | DATE | TIME | FEET
PER | TOTAL | TOTAL
(MG/L | SUS- | DATI | 2 TIME | FEET
PER | TOTAL
(MG/L | TOTAL
(MG/L | SUS-
PENDED | | DAIE | TIME | SECOND | (MG/L
AS N) | AS P) | PENDED
(MG/L) | DATI | E TIME | SECOND | AS N) | AS P) | (MG/L) | | | | (00061) | (00610) | (00665) | (80154) | | | (00061) | (00610) | (00665) | (80154) | | | | (| (/ | (, , , , , , , , , , , , , , , , , , , | (| | | , , | , , | , | | | OCT 1987 | | | | | | MAR 1988 | | | | | | | 06 | 1420 | 0.42 | | | 21 | 01 | 0950 | 7.3 | 0.280 | 0.280 | 32 | | 16 | 1120
1530 | 0.27
0.30 | 0.020 | 0.030 | 3
9 | 01
01 | 1350
1710 | 7.6
10 | 0.250 | 0.270 | 54
159 | | 23
NOV | 1230 | 0.30 | 0.020 | 0.030 | 9 | 01 | 1710 | 10 | 0.370 | 0.330 | 139 | | 09 | 1515 | 0.30 | | | 13 | 01 | 1750 | 11 | 0.570 | 0.550 | 110 | | 30 | 1450 | 0.34 | | | 16 | 01 | 1910 | 12 | | | 143 | | DEC | | | | | | 01 | 2030 | 12 | 0.370 | 0.310 | | | 09 | 1530 | 0.50 | <0.010 | 0.070 | 60 | 01 | 2050 | 12 | | | 133 | | JAN 1988 | | | | | _ | 01 | 2310 | 11 | | | 97 | | 14 | 1510 | 0.35 | 0.040 | 0.040 | 67 | 02 | 0150 | 11 | | | 82 | | 31 | 0220 | 3.2 | <0.010 | 0.040 | | 02 | 0210 | 11 | 0.620 | 0.410 | 61 | | 31
31 | 0240
0320 | 4.7
5.2 | | | 86
39 | 02
02 | 1350
1445 | 9.6
11 | | | 90 | | 31 | 0340 | 5.4 | <0.010 | 0.050 | | 02 | 1515 | 12 | 0.320 | 0.330 | | | 31 | 0420 | 6.1 | \0.U1U | 0.030 | 49 | 02 | 1545 | 13 | 0.520 | | 169 | | 31 | 0500 | 6.1 | <0.010 | 0.040 | | 02 | 1645 | 14 | | | 359 | | 31 | 0600 | 6.1 | | | 36 | 02 | 1715 | 14 | 0.390 | 0.350 | | | 31 | 0620 | 6.1 | 0.070 | 0.050 | | 02 | 1745 | 15 | | | 356 | | 31 | 0820 | 6.1 | | | 23 | 02 | 1915 | 15 | 0.520 | 0.410 | | | 31 | 1040 | 7.0 | | | 29 | 02 | 1945 | 15 | | | 241 | | 31 | 1100 | 7.0 | 0.050 | 0.570 | | 02 | 2115 | 13 | 0.630 | 0.470 | 148 | | FEB
17 | 1430 | 0.96 | 0.020 | 0.030 | 16 | 02
02 | 2145
2315 | 13
12 | 0.530 | 0.470 | 140 | | 23 | 1600 | 1.1 | 0.020 | 0.030 | 14 | 02 | 2345 | 12 | 0.550 | 0.470 | 112 | | 29 | 1700 | 10 | | | 255 | 03 | 0345 | 11 | | | 81 | | 29 | 1720 | 10 | 0.240 | 0.260 | | 03 | 0415 | 10 | 0.310 | 0.270 | | | 29 | 1740 | 10 | | | 228 | 03 | 1110 | 8.8 | 0.160 | 0.210 | 36 | | 29 | 1800 | 10 | 0.220 | 0.300 | | 05 | 0950 | 6.1 | | | 110 | | 29 | 1820 | 13 | | | 508 | 05 | 1720 | 10 | | | 121 | | 29 | 1840 | 13 | 0.430 | 0.480 | | 05 | 1805 | 11 | 0.180 | 0.190 | 100 | | 29 | 1900 | 12 | 0 700 | 0 500 | 238 | 05 | 1850 | 11 | | | 128
92 | | 29 | 2000
2120 | 12
10 | 0.720
0.830 | 0.500
0.580 | 173
167 | 05 | 2020
2105 | 10
9.6 | 0.250 | 0.260 | 92 | | 29
29 | 2300 | 9.2 | 0.830 | 0.580 | 167
107 | 05
06 | 1330 | 9.6
11 | 0.230 | 0.200 | 123 | | 29 | 2320 | 9.2 | 0.740 | 0.560 | | 06 | 1430 | 16 | 0.410 | 0.450 | | | -2 | | | | | |
| 2.50 | | | | | 04073462 WHITE CREEK AT FOREST GLEN BEACH NEAR GREEN LAKE, WI--CONTINUED | | | | | | | | • | WICOMI | | | | |---|---|---|---|---|---|--|---|---|---|--|---| | DATE | Z TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | MAR 1988 | | | | | | MAR 1988 | | | | | | | 06
06 | 1530
1630 | 29
32 | 0.400 | 0.390 | 992 | 08
08 | 1335
1405 | 26
26 | 0.270 | 0.320 | 303 | | 06 | 1730 | 32
41 | 0.330 | 0.360 | 662 | 08 | 1435 | 26 | | | 267 | | 06 | 1830 | 24 | 0 200 | 0.240 | 434 | 08 | 1740 | 19 | 0 160 | 0 100 | 124 | | 06
06 | 1930
2030 | 20
16 | 0.390 | 0.340 | 225 | 08
09 | 1840
0140 | 16
13 | 0.160
0.040 | 0.180
0.090 | | | 06 | 2230 | 14 | | | 154 | 09 | 0840 | 16 | | | 49 | | 06
07 | 2330
0230 | 12
11 | 0.250 | 0.270 |
96 | 09
09 | 0940
1330 | 12
11 | 0.050
0.050 | 0.080
0.100 |
50 | | 07 <i>.</i> | 0330 | 11 | 0.150 | 0.180 | | 21 | 1130 | 3.0 | | | 7 | | 07
07 | 0630
0730 | 10
9.6 | 0.090 | 0.140 | 7 2
 | APR
02 | 2115 | 6.1 | | | 62 | | 07 | 1150 | 10 | 0.090 | 0.140 | 71 | 02 | 2115 | 7.9 | 0.030 | 0.210 | 735 | | 07 | 1250 | 14 | 0.130 | 0.180 | | 02 | 2155 | 9.6 | 0.070 | 0.700 | 1120 | | 07
07 | 1350
1450 | 19
21 | 0.510 | 0.470 | 174
 | 02
02 | 2215
2235 | 9.2
9.2 | 0.070 | 0.730 | 1350
920 | | 07 | 1550 | 26 | | | 387 | 02 | 2255 | 11 | | | 828 | | 07
07 | 1620
1621 | 20
21 | 0.440
0.450 | 0.430
0.450 | 280
277 | 02
02 | 2335
2355 | 7.9
7.0 | 0.060 | 0.330 | 1510 | | 07 | 1635 | 22 | | | 245 | 03 | 0035 | 5.8 | | | 1060 | | 07
07 | 1705
1 7 35 | 21
20 | 0.420 | 0.420 | 182 | 03
07 | 0055
1745 | 5.6
4.3 | 0.030
0.020 | 0.280
0.050 | 37 | | 07 | 1905 | 17 | | | 150 | 15 | 1455 | 4.3 | | | 20 | | 07
07 | 1935
22 0 5 | 16
15 | 0.380 | 0.400 | 115 | 22
MAY | 1005 | 3.5 | | | 15 | | 07 | 2305 | 15 | 0.320 | 0.320 | | 05 | 1320 | 2.8 | | | 15 | | 08
08 | 0135
0205 | 16
16 | 0.320 | 0.360 | 131 | 10
20 | 1320
1500 | 2.8
2.0 | 0.030 | 0.030 | 7
13 | | 08 | 0605 | 16 | 0.320 | | 115 | JUN | 1300 | 2.0 | | | | | 08
08 | 0635
0950 | 16
17 | 0.270
0.240 | 0.300
0.300 | 110 | 02
06 | 1600
1410 | $\substack{1.7\\1.6}$ | | | 15
27 | | 08 | 1035 | 18 | 0.240 | 0.300 | 170 | 13 | 1151 | 1.4 | | | 25 | | 08
08 | 1105
1135 | 20
21 | 0.240 | 0.310 | 100 | 20 | 1105 | $\frac{1.1}{0.96}$ | | | 19
17 | | 08 | 1205 | 21 | 0.290 | 0.310 | 198 | 27
JUL | 1134 | 0.90 | | | | | 08 | 1235 | 22 | | | 251 | 13 | 1530 | 0.64 | 0.060 | 0.050 | | | | | | | | | | | | | | | | | SEDI | MENT DISCH | ARGE, SUS | PENDED (T | | WATER YEAR OCT | OBER 198 | 7 TO SEPTI | EMBER 198 | 3 | | | DAY | SEDI
OCT | MENT DISCH | ARGE, SUS | PENDED (T | | | OBER 198 | 7 TO SEPTI | EMBER 198 | B
AUG | SEP | | 1 | OCT
.03 | | DEC | JAN .10 | MEAN
FEB | VALUES | | JUN
. 07 | JUL
 | AUG | SEP | | 1 2 | OCT
.03
.04 | NOV
. 03
. 01 | DEC
.01
.02 | JAN
.10
.09 | MEAN
FEB
. 40
. 22 | MAR APR 2.0 .05 4.2 2.8 | MAY
.12
.12 | JUN
.07
.07 | JUL | AUG
 | | | 1
2
3
4 | OCT
.03 | NOV | DEC | JAN .10 | MEAN
FEB
. 40
. 22
. 13 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 | MAY
.12 | JUN
. 07 | JUL
 | AUG | SEP | | 1
2
3 | OCT
.03
.04
.03 | NOV
.03
.01 | DEC
.01
.02
.02 | JAN .10 .09 | MEAN
FEB
.40
.22
.13 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 | MAY
.12
.12
.12 | JUN
.07
.07
.08 | JUL

 | AUG

 | | | 1
2
3
4 | OCT .03 .04 .03 .03 | NOV
.03
.01
.01 | DEC .01 .02 .02 .02 .02 | JAN .10 .09 .09 .09 .09 | MEAN
FEB
.40
.22
.13
.09
.07 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 | MAY .12 .12 .12 .12 .12 | JUN
.07
.07
.08
.08 | JUL

 | AUG | | | 1
2
3
4
5 | OCT .03 .04 .03 .03 .03 .03 | NOV .03 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 | JAN .10 .09 .09 .09 .09 .08 .08 | MEAN
FEB
.40
.22
.13
.09
.07 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 | MAY .12 .12 .12 .12 .11 .10 .08 | JUN .07 .07 .08 .08 .10 .11 | JUL

 | AUG | | | 1
2
3
4
5 | OCT .03 .04 .03 .03 .03 | NOV .03 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .02 .03 | JAN .10 .09 .09 .09 .09 .08 .08 | MEAN
FEB . 40 . 22 . 13 . 09 . 07 . 12 . 1 . 05 05 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 .3 .45 5.6 .43 7.1 .41 | MAY .12 .12 .12 .12 .11 .10 | JUN .07 .07 .08 .08 .10 | JUL

 | AUG | | | 1
2
3
4
5
6
7
8 | OCT .03 .04 .03 .03 .03 .03 .03 | NOV .03 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 | JAN .10 .09 .09 .09 .09 .08 .08 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 | MAY .12 .12 .12 .12 .11 .10 .08 .07 | JUN .07 .07 .08 .08 .10 .11 .11 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9 | OCT .03 .04 .03 .03 .03 .03 .02 .02 | NOV .03 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 | JAN .10 .09 .09 .09 .08 .08 .07 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 .3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 | MAY .12 .12 .12 .11 .10 .08 .07 | JUN .07 .07 .08 .08 .10 .11 .11 .11 .10 | JUL. | AUG |

 | | 1
2
3
4
5
6
7
8
9
10 | OCT .03 .04 .03 .03 .03 .03 .02 .02 .01 .01 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 | JUN .07 .07 .08 .08 .10 .11 .11 .11 .10 .10 .10 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 .3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 | JUN .07 .07 .08 .08 .10 .11 .11 .11 .10 .10 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | OCT .03 .04 .03 .03 .03 .03 .02 .02 .01 .01 .01 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 | JUN .07 .07 .08 .08 .10 .11 .11 .11 .10 .10 .10 .09 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .01 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 .3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 | JUN .07 .07 .08 .08 .10 .11 .11 .10 .10 .10 .09 .09 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | OCT .03 .04 .03 .03 .03 .03 .02 .02 .01 .01 .01 .01 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .07 .07 .08 | JAN
.10 .09 .09 .09 .08 .08 .07 .07 .06 .06 .06 .06 .06 .06 .06 .06 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 04 . 04 . 09 . 06 . 05 . 05 . 05 . 05 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 | JUN .07 .08 .08 .10 .11 .11 .11 .10 .10 .09 .09 .08 .08 .08 | JUL. | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .01 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .07 .07 .07 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 .06 .06 .06 .06 .06 .06 .05 .05 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 .05 .05 .06 .05 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 .06 .06 | JUN .07 .08 .08 .10 .11 .11 .11 .10 .10 .10 .09 .09 .08 .08 .08 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | OCT .03 .04 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .07 .07 .08 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 .06 .06 .06 .06 .06 .06 .06 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 04 . 04 . 09 . 06 . 05 . 05 . 05 . 05 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 | JUN .07 .08 .08 .10 .11 .11 .11 .10 .10 .09 .09 .08 .08 .08 | JUL. | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 .06 .06 .06 .06 .06 .06 .05 .05 .05 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 .05 .05 .04 .04 .04 .04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 | MAY .12 .12 .12 .11 .10 .08 .07 .05 .05 .05 .05 .06 .06 .06 | JUN .07 .08 .08 .10 .11 .11 .10 .10 .10 .09 .09 .08 .08 .08 .08 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .07 .08 .08 .07 .08 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 .06 .05 .05 .05 .05 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 .05 .05 .06 .05 .06 .07 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .15 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 .06 .06 .06 .06 .06 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .08 .08 .08 .08 .08 .08 .08 .08 .06 .06 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | OCT .03 .04 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .07 .08 .08 .09 .08 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 .06 .06 .06 .06 .06 .06 .05 .05 .05 .04 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .15 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .06 .06 .06 .06 .07 .07 | JUN .07 .08 .08 .10 .11 .11 .11 .10 .10 .09 .09 .08 .08 .08 .07 .07 .06 .06 .06 .05 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .07 .08 .08 .07 .08 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 .06 .05 .05 .05 .05 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 .05 .05 .06 .05 .06 .07 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .15 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 .06 .06 .06 .06 .06 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .08 .08 .08 .08 .08 .08 .08 .08 .06 .06 | JUL. | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 .09 .08 .09 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 .06 .06 .06 .06 .06 .06 .05 .05 .05 .04 .05 .04 .04 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 | MAR APR 2.0 .05 4.2 .2.8 1.3 .4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .14 .06 .15 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .06 .06 .06 .06 .07 .07 .07 | JUN .07 .07 .08 .08 .10 .11 .11 .10 .10 .10 .09 .08 .08 .08 .07 .06 .06 .06 .06 .05 .05 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .07 .08 .08 .09 .08 .09 .09 .09 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 .05 .05 .05 .05 .05 .04 .05 .05 .04 .04 .04 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .09 .06 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .688 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .06 .06 .06 .06 .07 .07 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .09 .08 .08 .08 .07 .07 .06 .06 .06 .05 .05 .05 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 .09 .08 .09 .09 .10 .10 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .06 .06 .06 .06 .06 .06 .05 .05 .05 .04 .04 .04 .04 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .04 .09 .06 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .14 .06 .15 .06 .14 .05 .14 .05 .14 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 .06 .06 .06 .06 .07 .07 .07 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .09 .08 .08 .08 .08 .07 .07 .06 .06 .06 .05 .05 .05 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 .09 .08 .09 .09 .09 .10 .10 .10 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 .06 .05 .05 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 04 . 04 . 09 . 06 . 05 . 05 . 05 . 04 . 04 . 04 . 04 . 04 . 04 . 04 . 04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .688 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .05 .15 .06 .13 .06 .13 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .09 .08 .08 .08 .07 .07 .06 .06 .06 .06 .05 .05 .05 .05 .04 .05 .04 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .09 .10 .10 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .05 .05 .05 .05 .04 .04 .04 .04 | MEAN FEB .40 .22 .13 .09 .07 .12 .05 .05 .04 .04 .04 .09 .06 .05 .05 .05 .04 .04 .04
.04 .04 .04 .04 .04 .04 .04 | MAR APR 2.0 .05 4.2 .2.8 1.3 .4.7 .68 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .15 .06 .14 .05 .14 .05 .14 .05 .14 .05 .14 .06 .13 | MAY .12 .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .06 .06 .06 .07 .07 .07 .07 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .08 .08 .08 .07 .06 .06 .06 .06 .05 .05 .05 .05 .05 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
TOTAL | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 .09 .08 .09 .09 .09 .10 .10 .10 .09 .09 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 .06 .05 .05 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 04 . 04 . 09 . 06 . 05 . 05 . 05 . 04 . 04 . 04 . 04 . 04 . 04 . 04 . 04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .688 .41 2.0 .40 .3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .05 .14 .05 .14 .05 .15 .06 .13 .05 .12 .05 2.55 14.16 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .09 .08 .08 .08 .07 .07 .06 .06 .06 .06 .05 .05 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .05 .05 .04 .05 .05 .05 .04 .05 .05 .05 .05 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
11
11
21
21
21
21
21
21
21
21
21
21
21 | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 .09 .09 .09 .09 .09 .10 .10 .10 .10 .09 .09 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 .05 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 05 . 04 . 04 . 09 . 06 . 05 . 05 . 04 . 04 . 04 . 04 . 04 . 04 . 04 . 04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .688 .41 2.0 .40 3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .31 .44 .29 .32 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .05 .14 .05 .14 .05 .14 .05 .14 .05 .14 .05 .15 .06 .13 .06 .13 .06 .13 .06 .13 .06 .13 .05 .12 .05 2.55 14.16 1.4 .47 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .08 .08 .08 .08 .08 .08 .06 .06 .06 .05 .05 .05 .05 .05 .04 .04 .05 .04 .04 .05 | JUL | AUG | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
TOTAL | OCT .03 .04 .03 .03 .03 .03 .03 .02 .02 .01 .01 .01 .00 .00 .00 .00 .00 .00 .00 | NOV .03 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01 | DEC .01 .02 .02 .03 .03 .04 .06 .08 .07 .07 .07 .07 .07 .08 .08 .09 .08 .09 .09 .09 .10 .10 .10 .09 .09 | JAN .10 .09 .09 .09 .08 .08 .07 .07 .07 .06 .06 .06 .06 .06 .06 .05 .05 .05 .05 .05 .04 .04 .04 .04 .04 .04 .04 .04 .04 .04 | MEAN FEB . 40 . 22 . 13 . 09 . 07 . 12 . 05 . 05 . 04 . 04 . 09 . 06 . 05 . 05 . 05 . 04 . 04 . 04 . 04 . 04 . 04 . 04 . 04 | MAR APR 2.0 .05 4.2 2.8 1.3 4.7 .688 .41 2.0 .40 .3 .45 5.6 .43 7.1 .41 1.9 .38 1.1 .35 .83 .33 .62 .26 .25 .24 .18 .23 .14 .21 .11 .19 .09 .17 .07 .16 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .06 .15 .06 .14 .05 .14 .05 .14 .05 .15 .06 .13 .05 .12 .05 2.55 14.16 | MAY .12 .12 .12 .11 .10 .08 .07 .06 .05 .05 .05 .05 .06 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 | JUN .07 .08 .08 .08 .10 .11 .11 .10 .10 .10 .09 .09 .08 .08 .08 .07 .07 .06 .06 .06 .06 .05 .05 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .04 .05 .05 .05 .04 .05 .05 .05 .04 .05 .05 .05 .05 .06 .06 .06 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 | JUL | AUG | | CAL YR 1987 TOTAL 72.11 MEAN .20 MAX 15 MIN .00 04073462 WHITE CREEK AT FOREST GLEN BEACH NEAR GREEN LAKE, WI--CONTINUED NITROGEN, AMMONIA, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT JUN JUL AUG SEP NOV DEC FEB APR MAY JAN MAR .02 19 .29 ------.10 .08 .68 _ _ _ ------2 .11 .05 .01 .11 .37 27 . 59 .41 .33 ------.27 ---3 .09 12 .67 .05 .01 .10 . 42 .32 .31 . 55 .09 .04 .01 .10 6.2 . 40 5 .31 ___ .08 .03 .02 .09 .18 6.7 .50 .40 .32 6 .08 .03 .02 .09 .21 22 . 52 . 39 ------. 48 ------. 07 . 03 .02 . 08 .14 21 . 39 .31 .02 .13 22 .31 ---.07 .04 .08 . 47 .40 .07 .03 .08 3.0 .31 ---------10 .06 .03 .02 .07 .12 2.6 .48 .41 .31 ---------11 .06 .03 .02 .07 .49 .31 .12 2.1 .40 ---___ ---12 .05 .03 .02 .07 .16 1.8 .51 .38 .30 13 .04 .03 .03 .07 .37 .30 ------.12 14 . 04 .03 .03 .08 .11 1.2 . 50 . 37 . 29 _ _ _ ---------15 .03 .03 .03 .07 .11 1.0 .50 .36 .30 16 .04 .03 .03 .30 .06 .88 ___ ------17 .05 .08 .03 .05 .10 .77 .51 .34 .29 .33 .29 ---------18 . 04 .04 .02 .04 .10 .70 .49 19 .03 . 03 .03 . 04 . 45 .28 .10 . 64 ---20 .03 .03 .03 .04 .10 . 58 .45 .33 . 27 .09 21 .02 .27 ___ ___ . 03 .03 .03 .52 44 . 33 ---22 .28 ---. 03 .02 .03 .03 .11 .50 . 44 .33 23 .03 .03 .03 .12 . 48 .34 .25 ---------.45 ___ ___ 2.4 .03 .02 .03 .02 . 43 .33 .26 ---___ ___ ---25 .03 .02 .03 .02 .15 . 45 . 43 .33 .26 26 .04 .02 .03 .02 1.3 .40 . 44 .33 .25 ___ 27 .04 .01 .03 .02 2.9 .37 . 47 .33 .25 ___ ---___ ---------28 .03 .03 .03 .02 4.4 .40 .43 .33 29 . 42 .26 .03 .03 13 .03 ___ ___ ___ 30 .02 .03 .33 .41 .03 ---31 .03 .03 2.9 .32 .32 ---TOTAL 0.99 157.28 14.32 11.26 8.68 1.58 0.78 4.64 25.76 .15 5.1 ------___ MEAN .05 .03 .89 .48 .36 .29 .03 MAX .08 .03 27 .67 .43 .33 ---------MIN .03 .01 .01 .02 .09 . 32 . 29 .32 .25 CAL YR 1987 TOTAL 170.68 MEAN .47 MAX 6.3 MIN .01 PHOSPHORUS, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES JUN DAY OCT ÑOV DEC JAN FEB APR MAY JUL AUG SEP MAR .72 3.3 5.5 .12 4.6 .12 .12 . 07 17 .61 . 31 ___ 2 .11 . 32 ---.06 .07 22 .61 .14 1.6 12 .31 .06 .60 .07 .12 ___ ---___ .05 .08 ---5 .11 .04 .09 .88 8.0 2.3 .55 .30 ------.10 6 .10 .04 .09 .09 . 95 24 1.9 .53 .30 ---23 .51 ___ ---.10 .05 .11 .09 . 58 1.3 1.2 ---8 .10 .05 .08 . 48 26 .29 ---------------.54 .29 q .09 .05 . 19 .08 . 43 5.9 1.1 . 29 10 .08 .05 .17 .08 .36 5.1 1.1 .08 .05 . 17 .07 .32 4.3 1.1 .49 .29 11 ___ ___ ---12 .07 .04 .16 .07 .41 3.7 1.2 .46 .28 ---------3.0 .27 13 .05 .04 .17 .07 .27 1.1 .43 . 42 .26 .04 .08 . 23 14 . 05 . 17 1.1 15 2.2 ------.04 .17 .07 .05 .06 . 19 1.9 1.7 .38 . 27 16 .04 .18 .06 1.0 ___ ---------------17 .26 .08 . 14 .17 .06 . 16 1.0 .35 .05 .06 .17 .06 1.5 .97 .26 . 15 19 .88 .34 . 25 ---------.05 ___ ------20 .05 .05 .21 .06 .14 1.3 .86 .33 .24 .24 ---21 .05 .04 .19 .06 1.2 .82 .33 .14 . 05 1.1 .33 . 25 ---___ ---.06 .80 $.\bar{2}\bar{2}$ ------23 .05 .06 .19 .06 .18 1.1 .81 .33 ------24 .75 .73 .23 . 05 . 05 .20 . 06 18 1.1 .33 25 .05 .32 .23 .05 .21 .05 .22 1.0 26 .07 .04 .21 .05 1.4 .93 .74 .32 .22 ___ ___ ---------27 .06 .04 .22 .05 3.0 5.0 .86 .78 .70 .33 .22 28 .24 ---------.04 ---___ .05 .06 12 .91 .66 .32 .23 ___ ---___ 30 .05 .08 .21 .12 .81 .63 .32 .22 --- .78 6.0 26 .78 39.55 1.3 5.5 .63 185.24 .31 .42 .61 7.96 .27 . 22 --- ___ ___ --- _ _ _ --- --- --- 13.09 CAL YR 1987 TOTAL 259.23 MEAN .71 MAX 24 MIN .04 1.67 .06 . 14 .04 .21 5.10 .16 .22 .07 31 TOTAL MEAN MAX MIN .04 2.22 . 07 . 14 .04 13 15.24 .49 13 . 05 37.98 1.3 . 14 12 #### 040734644 SILVER CREEK AT SOUTH KORO ROAD NEAR RIPON, WI LOCATION.--Lat 43°51'30", long 88°52'17" in NW 1/4 SE 1/4 sec.18, T.16 N., R.14 E., Fond du Lac County, Hydrologic Unit 04030201, on left bank at upstream side of culvert on South Koro Road, 1.8 mi west of Ripon. DRAINAGE AREA. -- 36.2 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1987 to current year. GAGE. -- Water-stage recorder and crest-stage gage. Elevation of gage is 810 ft, from topographic map. REMARKS.--Estimated daily discharges: Aug. 11-22 and ice periods listed in rating table below. Records good, except for estimated daily discharges and Oct. 1-23, which are fair. Approximately 2.3 ft³/s of daily flow is effluent from Ripon Wastewater Treatment Plant. EXTREMES FOR PERIOD OR RECORD. --Maximum discharge, 145 $\rm ft^3/s$, Apr. 3, 1988, gage height, 7.46 ft; minimum daily, 1.8 $\rm ft^3/s$, July 31, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 145 $\rm ft^3/s$, Apr. 3, gage height, 7.46 ft; minimum daily, 1.8 $\rm ft^3/s$, July 31. REVISIONS.--The maximum discharge for the period February 1 to September 30, 1987 has been revised to 137 $\rm ft^3/s$, May 31, 1987, gage height, 7.37 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 31 to Jan. 9, Jan. 25-29, Feb. 9, 12, 13, 20-23.) | 5.0 | 1.6 | 6.0 | 31 | |-----|-----|-----|-----| | 5.1 | 2.8 | 6.5 | 64 | | 5.4 | 9.4 | 7.0 | 105 | | 5.7 | 18 | 7.5 | 149 | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---------------------------------------|---------------------------------|------------------------------------|---------------------------------------|---------------------------------|----------------------------------|------------------------------------
--|---------------------------------|--|--|---------------------------------| | 1
2
3
4
5 | 7.7
7.7
7.7
6.5
5.6 | 15
14
14
12
11 | 20
17
16
12
11 | 6.6
5.6
5.4
5.2
4.8 | 12
13
13
12
11 | 17
31
37
32
32 | 35
40
82
85
88 | 22
20
18
17
16 | 5.7
6.9
6.0
5.5
4.8 | 2.7
2.5
2.4
2.2
2.3 | 2.2
2.4
3.7
6.0
5.6 | 2.9
2.7
7.4
13
4.8 | | 6
7
8
9
10 | 7.3
9.1
9.1
8.2
7.0 | 9.8
9.2
11
11
9.5 | 9.7
12
15
23
23 | 3.8
3.7
3.6
3.3 | 11
11
11
10
9.3 | 42
61
93
111
104 | 8 <u>1</u>
67
57
48
40 | 15
14
14
16
15 | 4.9
4.5
4.0
3.7
4.0 | 2.2
2.3
2.0
2.3
2.7 | 2.8
2.0
6.4
9.5
4.4 | 3.8
3.3
3.1
2.8
2.3 | | 11
12
13
14
15 | 7.0
6.5
5.8
5.8
5.8 | 9.0
9.1
9.2
8.9
8.5 | 23
20
16
15 | 3.9
4.2
4.3
4.0
4.1 | 9.0
8.8
8.6
8.2
8.7 | 97
84
61
47
38 | 36
31
28
25
23 | 14
13
12
12 | 3.5
3.2
3.8
3.5
3.4 | 2.8
2.5
2.2
2.2
6.1 | 4.6
3.9
4.1
6.0
4.4 | 2.0
2.6
2.8
2.6
2.5 | | 16
17
18
19
20 | 7.0
10
10
10
10 | 9.7
25
21
18
14 | 9.9
13
12
11
11 | 3.9
4.0
4.7
5.0
6.0 | 8.7
8.8
9.0
8.9
8.0 | 35
35
30
27
23 | 22
20
19
19
18 | 11
11
10
9.9
9.4 | 3.2
3.2
2.8
2.6
3.1 | 14
3.4
7.5
5.7
3.7 | 4.5
3.5
2.9
2.6
9.0 | 2.7
2.7
5.6
7.3
5.4 | | 21
22
23
24
25 | 10
10
9.7
8.3
7.8 | 11
9.8
13
13 | 12
12
12
13
13 | 5.2
5.1
4.8
4.6
4.5 | 7.8
7.6
8.0
8.1
8.0 | 22
23
27
29
37 | 17
17
20
20
20 | 8.8
8.3
8.3
7.8
7.4 | 2.9
4.4
3.0
3.0
2.4 | 4.1
3.1
2.5
2.6
2.8 | 4.5
4.0
3.9
4.3
3.1 | 3.7
48
20
12
9.4 | | 26
27
28
29
30
31 | 9.8
10
9.6
9.0
8.8
7.8 | 12
11
14
19
22 | 12
11
11
10
9.4
8.4 | 4.4
4.3
4.4
5.0
9.9
20 | 8.5
8.6
9.0
11 | 34
31
33
40
38
38 | 21
31
29
28
25 | 7.3
6.9
6.4
6.1
5.8
5.9 | 2.0
2.3
4.8
4.9
3.2 | 2.6
2.4
2.3
2.1
2.0
1.8 | 2.9
3.3
2.8
3.0
2.8
3.3 | 7.9
6.5
5.6
4.8
4.5 | | TOTAL
MEAN
MAX
MIN | 254.6
8.21
10
5.6 | 386.7
12.9
25
8.5 | 426.4
13.8
23
8.4 | 162.7
5.25
20
3.3 | 276.6
9.54
13
7.6 | 1389
44.8
111
17 | 1092
36.4
88
17 | 359.3
11.6
22
5.8 | 115.2
3.84
6.9
2.0 | 102.0
3.29
14
1.8 | 128.4
4.14
9.5
2.0 | 204.7
6.82
48
2.0 | WTR YR 1988 TOTAL 4897.6 MEAN 13.4 MAX 111 MIN 1.8 #### 040734644 SILVER CREEK AT SOUTH KORO ROAD NEAR RIPON, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1987 to current year. PERIOD OF DAILY RECORD.--SUSPENDED-SEDIMENT DISCHARGE: February 1987 to current year. TOTAL-PHOSPHORUS DISCHARGE: February 1987 to current year. INSTRUMENTATION. -- Automatic pumping sampler since April 1987. REMARKS. -- Records good. COOPERATION. -- Observer furnished by the Green Lake Sanitary District. EXTREMES FOR PERIOD OF DAILY RECORD.-SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 47 tons, Apr. 3 and Sept. 22, 1988; minimum daily, 0.00 ton, Aug. 12, 1988. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 231 lb, Sept. 22, 1988; minimum daily, 2.3 lb, Aug. 7, 1988. EXTREMES FOR CURRENT YEAR.--SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 47 tons, Apr. 3 and Sept. 22; minimum daily, 0.00 ton, TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 231 lb, Sept. 22; minimum daily, 2.3 lb, Aug. 7. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |-----------|----------------------|---|--|---|----------|--------------|--|--|---| | OCT 1987 | | | | | MAR 1988 | | | | | | 06 | 1330 | 8.2 | | 2 | 01 | 2315 | 26 | | 42 | | 23 | 1420 | 9.1 | | 8 | 02 | 0315 | 23 | | 36 | | NOV | | | | | 02 | 0345 | 23 | 0.370 | | | 01 | 0515 | 26 | | 170 | 02 | 1015 | 25 | 0.420 | 32 | | 01 | 0545 | 27 | 0.440 | | 02 | 1045 | 26 | | 38 | | 01 | 0615 | 26 | | 70 | 02 | 1115 | 27 | 0.460 | | | 01 | 0645 | 22 | 0.440 | | 02 | 1145 | 27 | | 45
60 | | 01
01 | 0715
0745 | 20
18 | 0.330 | 55
 | 02
02 | 1245
1315 | 29
3 2 | 0.490 | | | 01 | 0845 | 17 | 0.330 | | 02 | 1430 | 32
36 | 0.490 | 73 | | 01 | 0915 | 16 | 0.270 | 17 | 02 | 1445 | 38 | 0.540 | 75 | | 10 | 0840 | 8.9 | | 18 | 02 | 1515 | 40 | 0.540 | 110 | | 16 | 1200 | 9.6 | | 4 | 02 | 1615 | 48 | 0.650 | | | 17 | 0030 | 22 | 0.150 | 46 | 02 | 1645 | 47 | | 92 | | 17 | 0130 | 33 | | 52 | 02 | 1945 | 41 | 0.450 | _ | | 17 | 0230 | 43 | | 128 | 02 | 2015 | 40 | | 46 | | 17 | 0330 | 33 | | 142 | 02 | 2345 | 33 | | 33 | | 17 | 0500 | 24 | | 40 | 03 | 0815 | 32 | | 26 | | 17 | 0830 | 24 | | 16 | 03 | 0845 | 33 | 0.380 | | | 17 | 0930 | 24 | | 20 | 03 | 0915 | 35 | | 36 | | 17 | 1100 | 27 | | 16 | 03 | 0945 | 35 | 0.420 | 71 | | 17
17 | 1200
1 330 | 26
24 | | 17
17 | 03
03 | 1015
1045 | 38
43 | 0.520 | 71 | | 17 | 1530 | 22 | | 16 | 03 | 1115 | 43
47 | 0.520 | 89 | | 17 | 1600 | 23 | 0.160 | | 03 | 1145 | 49 | 0.710 | | | 17 | 1630 | 24 | | 15 | 03 | 1215 | 49 | | 106 | | 17 | 1730 | 23 | | 13 | 03 | 1415 | 42 | | 55 | | 17 | 2100 | 22 | | 30 | 03 | 1545 | 41 | 0.510 | | | 18 | 0030 | 22 | | 19 | 03 | 1615 | 41 | | 52 | | 18 | 0500 | 21 | | 26 | 03 | 1845 | 39 | | 37 | | 28 | 1930 | 23 | | 58 | 03 | 2015 | 38 | 0.420 | | | 28 | 1945 | 22 | 0.340 | 66
6 | 03
04 | 2145
1045 | 37
35 | 0.390 | 27 | | 30
DEC | 1400 | 22 | 0.280 | o | 04 | 1130 | 36 | 0.500 | | | 11 | 0815 | 25 | 0.270 | | 04 | 1215 | 34 | 0.300 | 33 | | 11 | 0830 | 26 | | 49 | 04 | 1515 | 33 | | 24 | | 11 | 0930 | 27 | 0.140 | | 04 | 1600 | 32 | 0.450 | | | 11 | 1000 | 27 | | 36 | 04 | 1945 | 32 | | 18 | | 11 | 1200 | 24 | | 18 | 04 | 2030 | 32 | 0.390 | | | 11 | 1230 | 24 | 0.100 | | 05 | 0100 | 31 | | 15 | | JAN 1988 | | | | | 05 | 0400 | 29 | 0.320 |
15 | | 18 | 1200 | 5.6 | | 19 | 05
06 | 0700
1315 | 28
37 | | 15
26 | | FEB
17 | 1210 | 9.7 | 0.250 | 33 | 06 | 1500 | 37
49 | 0.420 | 20
 | | MAR | 1210 | 9.7 | 0.230 | 33 | 06 | 1915 | 57 | 0.420 | 62 | | 01 | 1015 | 14 | | 24 | 07 | 0500 | 49 | 0.270 | | | 01 | 1415 | 16 | | 25 | 07 | 0715 | 50 | | 25 | | 01 | 1445 | 16 | 0.700 | | 07 | 0915 | 59 | | 57 | | 01 | 1515 | 17 | | 23 | 07 | 1100 | 52 | | 39 | | 01 | 1615 | 20 | | 40 | 07 | 1315 | 62 | 0.410 | 61 | | 01 | 1645 | 22 | 0.600 | 7.7 | 07 | 1330 | 70 | 0.450 | | | 01 | 1845 | 23 | | 43 | 07 | 1600 | 73 | | 90 | | 01 | 2045 | 26 | 0 500 | 60 | 07 | 2100 | 72
75 | | 69
57 | | 01 | 2115 | 26 | 0.520 | | 07 | 2400 | 13 | | 37 | ### 040734644 SILVER CREEK AT SOUTH KORO ROAD NEAR RIPON, WI--CONTINUED | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|---|---|--
---|--|---|--|--|---| | MAR 1988 08 08 08 08 08 08 08 08 08 09 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 13 13 14 14 15 16 16 16 17 17 18 19 19 19 19 22 23 23 24 28 28 29 20 | 0300
0700
0800
0945
1045
1145
1345
1645
1700
1945
2245
2345
10045
11545
11745
1030
1230
1430
1230
1430
1230
1415
1100
1415
1215
1015
1215
1015
1215
1010
1400
1400
1400
1400
1400
1400
14 | | 0.290

0.440

0.490

0.290

0.230
0.250
0.250
0.230 | | APR 1988 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 05 05 05 05 05 06 06 06 06 06 06 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 09 10 22 27 MAY 05 10 22 27 MAY 05 10 21 21 21 22 27 27 MAY 05 10 22 27 27 MAY 05 10 26 JUN 08 10 21 26 JUN 08 10 10 11 15 16 17. | 0530
0630
0930
1230
1330
1530
1630
0230
0230
02330
0630
0930
1030
1245
1445
1845
1845
1845
1845
1845
1845
18 | 75
71
67
70
70
71
83
80
80
80
81
84
84
88
88
89
88
88
89
88
89
88
89
77
77
72
68
66
60
57
57
57
57
57
57
57
57
57
57
57
57
57 | (00665) 0.250 0.240 0.190 0.200 0.200 0.220 0.170 0.160 0.120 0.160 0.120 0.160 0.120 0.160 0.120 0.160 0.120 0.160 0.120 0.170 0.160 0.120 0.160 0.120 0.170 0.160 0.120 0.170 0.160 0.390 | | | APR
02
02
02
03
03 | 2130
2230
2330
0030
0130
0330 | 51
92
129
137
144
96 | 0.170 | 20

221
1030
473
120 | 18
18
18
18
18 | 1250
1330
1400
1430
1500
1530 | 3.9
26
29
24
20
18
16 | 0.360
0.760
0.590

0.360

0.300 | 194
142
83

42
40 | 040734644 SILVER CREEK AT SOUTH KORO ROAD NEAR RIPON, WI--CONTINUED | | ΔTE | TIME | IN
CUBIC
FEET
PER
SECOND | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | ATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |---|---|--|--|---|---|---|---|---|---|--|---|---| | JUL 19
25
28 | | 1242
1342 | | 3.7
3.4 | 0.800 | 3 | SEP 1
19.
19. | | 1130
1940 | 7.7
17 | 0.510
1.55 | 50
117 | | AUG
01
03 | | 1235
1830 | | 2.8
17 | 0.440 | 7
774 | 20.
20.
22. | | 1315
1400
0305 | 6.1
5.8
26 | 0.810 | 41
128 | | 03
04
04 | | 1900
1630
1700 |
 | 17
16
19 | 0.720

0.990 | 1170 | 22.
22.
22. | • • | 0315
0325
0335 | 38
52
64 | 1.12 | 266
486
855 | | 08
08
08 | | 0700
0730
0800 |
 | 17
18
17 | 0.750 | 428
 | 22.
22. | | 0345
0400 | 74
85 | 1.80 | 941
911 | | 08
09 | | 1300
0615 | | 7.9
35 | 0.850
1.64 | 75
10
 | 22.
22.
22. | | 0735
0835
1050 | 70
74
36 | 0.470
0.480 | 106
92
39 | | 09
09
09 | | 0630
0715
0730 | | 44
31
25 | 0.630 | 684

113 | 22.
22.
22. | | 1250
1650
1735 | 25
16
19 | 0.470
0.420
0.530 | 15
68 | | 09
09
15 | | 0800
0830
1210 | 4.4 | 19
16
 | 0.400

1.12 | 58
5 | 22.
22.
22. | | 1737
1820
1830 | 19
71
88 | 0.540
0.530
 | 85
68
132 | | 20
25
25 | • | 1245
1010
1110 | 9.0
3.1
3.1 | | 1.36

0.260 | 7
4
 | 22.
22.
22. | | 1840
1855
1930 | 95
105
113 | 1.57

1.56 | 918
806
938 | | 29
SEP
03 | | 1240
1655 | | 4.0
44 | 0.300
1.15 | 1
271 | 22.
22.
22. | | 2030
2120
2205 | 101
78
58 | 0.820 | 753

157 | | 03
03
03 | | 1700
1705
1715 |
 | 55
57
63 | 3.13
5.28
3.29 | 1310
2400
1260 | 23.
23.
23. | | 0115
0315
0715 | 30
24
20 | 0.490 | 52

22 | | 03
03
04 | | 1820
1930
0615 | | 27
14
22 | 1.14
0.390
1.36 | 472
66
615 | 23.
23.
23. | | 0915
1715
1915 | 20
16
16 | 0.440

0.370 | 12 | | 04
04 | | 0630
0645 | | 33
44 | 1.48
1.21 | 748
509 | 24.
24. | | 0315
1030 | 13
13 | 0.370 | 27
4 | | 04
07
18 | | 1100
1255
0855 | | 17
4.2
17 | 0.520 | 46
1
720 | 24.
25.
27. | | 1115
0115
2315 | 13
10
5.8 | 0.340 | 7

11 | | 19 | • • | 1115 | | 7.9 | 0.510 | 20 | | | | | | | | | , | CEDIMENT | DICCHARGE | CHOREM | DED (MONG | /T> 4.57.) 17.4 mi | DD VEAD OOM | OBER 100 | 0.7 MO 0121 | OMENDED 1 | 000 | | | DAY | | | | | | MEAN VALUI | | | | | | CED | | DAY | ОСТ
.18 | NOV
1.6 |
DEC
. 39 | JAN
. 34 | FEB
. 66 | MEAN VALUI
MAR
1.6 | ES
APR
1.9 | MAY
.55 | JUN
. 15 | JUL
.05 | AUG | SEP . 02 | | 1
2
3
4 | OCT .18 .14 .10 .06 | NOV
1.6
.66
.64 | DEC
. 39
. 40
. 45
. 43 | JAN
. 34
. 29
. 28
. 27 | FEB
.66
.73
1.1
1.0 | MEAN VALUE
MAR
1.6
4.5
4.5
2.1 | APR 1.9 6.1 47 7.8 | MAY
.55
.48
.42 | JUN . 15 . 18 . 15 . 14 | JUL
.05
.04
.04 | AUG
.04
.04
1.8
3.6 | .02
.03
9.2
4.8 | | 1
2
3
4
5 | OCT .18 .14 .10 .06 .04 | NOV
1.6
.66
.64
.59
.50 | DEC . 39 . 40 . 45 . 43 . 18 | JAN
. 34
. 29
. 28
. 27
. 25 | FEB . 66 . 73 1.1 1.0 . 98 | MEAN VALUE MAR 1.6 4.5 4.5 2.1 1.3 | APR 1.9 6.1 47 7.8 8.1 | MAY .55 .48 .42 .38 .35 | JUN . 15 . 18 . 15 . 14 . 12 | JUL
. 05
. 04
. 04
. 03
. 03 | AUG
.04
.04
1.8
3.6
.13 | .02
.03
9.2
4.8
.08 | | 1
2
3
4
5
6
7
8 | OCT .18 .14 .10 .06 .04 .04 .05 .06 .06 | NOV 1.6 .666.64 .59 .50 .46 .444 .51 | DEC .39 .40 .45 .43 .18 .16 .28 .69 1.8 | JAN . 34 . 29 . 28 . 27 . 25 . 23 . 19 . 19 | FEB6673 1.1 1.09897 1.0 1.1 1.0 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 | JUN .15 .18 .15 .14 .12 .12 .11 .10 | JUL
.05
.04
.03
.03
.03
.03 | AUG .04 1.8 3.6 .13 .05 .03 .91 | .02
.03
9.2
4.8
.08
.03
.01 | | 1
2
3
4
5
6
7
8 | OCT .18 .14 .10 .06 .04 .04 .05 .06 | NOV
1.6
.66
.64
.59
.50
.46
.44 | DEC . 39 . 40 . 45 . 43 . 18 . 16 . 28 . 69 | JAN . 34 . 29 . 28 . 27 . 25 . 23 . 19 | FEB .66 .73 1.1 1.0 .98 .97 1.0 1.1 1.0 .97 | MEAN VALUI
MAR
1.6
4.5
4.5
2.1
1.3
5.0
9.4
26 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 | MAY .55 .48 .42 .38 .35 .34 .33 | JUN . 15 . 18 . 15 . 14 . 12 . 12 . 11 | JUL .05 .04 .04 .03 .03 .03 | AUG .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 | .02
.03
9.2
4.8
.08
.03
.01
.01 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | OCT .18 .14 .10 .06 .04 .05 .06 .05 .06 .05 | NOV 1.6 .666.644 .59 .50 .466 .444 .511 .52 .444 .333 .266 .21 | DEC . 39 . 40 . 45 . 43 . 18 . 16 . 28 . 69 1. 8 1. 2 1. 3 . 96 . 78 | JAN . 34 . 29 . 28 . 27 . 25 . 23 . 19 . 18 . 17 . 20 . 22 . 22 | FEB .66 .73 1.1 1.0 .98 .97 1.0 1.1 1.0 .97 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 64 | MAY .55 .48 .42 .38 .35 .34 .34 .40 .42 .42 .39 .37 | JUN .15 .18 .15 .14 .12 .11 .10 .09 .09 .08 .07 .08 | JUL .055 .044 .033 .033 .033 .033 .031 .035 .040 | AUG .04 .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .11 .18 | .02
.03
9.2
4.8
.08
.01
.01
.01
.01 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | OCT .18 .14 .10 .06 .04 .05 .06 .05 .06 .05 .06 .07 | NOV 1.6 .666.644 .599.50 .466 .444 .511 .52 .444 .333 .266 .21 .166 .12 | DEC . 39 . 40 . 45 . 43 . 18 . 16 . 28 . 69 1. 8 1. 2 1. 3 . 96 . 78 . 72 . 62 | JAN .344 .299 .28 .27 .25 .23 .199 .18 .17 .20 .22 .22 .21 | FEB .66 .73 1.1 1.0 .98 .97 1.0 1.1 1.0 .97 .97 .97 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 1.5 1.0 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 .97 .78 .64 .53 .46 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .39 .37 .34 .33 .30 | JUN .15 .18 .15 .14 .12 .11 .10 .09 .09 .08 .07 .08 .08 .07 | JUL .055 .044 .033 .033 .033 .033 .031 .041 .055 .044 .044 .044 | AUG .04 .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .11 .08 .07 .09 .06 | .02
.03
9.2
4.8
.08
.01
.01
.01
.01
.01
.02
.02 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | OCT .18 .14 .10 .06 .04 .05 .06 .05 .06 .06 .07 .09 .14 .15 | NOV 1.6 .646 .59 .50 .46 .444 .511 .52 .44 .33 .26 .21 .166 .12 .19 2.5 .76 | DEC . 39 . 40 . 45 . 43 . 18 . 16 . 28 . 69 1.8 1. 2 1. 3 . 96 . 78 . 72 . 62 . 48 . 62 . 58 | JAN | FEB .66 .73 1.1 1.0 .98 .97 1.0 .91 .97 .97 .98 .98 .97 1.1 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 1.5 1.0 .77 .85 .44 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 .78 .64 .53 .46 .40 .29 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .39 .37 .34 .33 .30 .31 .29 | JUN .15 .18 .15 .14 .12 .12 .11 .10 .09 .09 .08 .07 .08 .07 | JUL .05 .04 .03 .03 .03 .03 .03 .03 .03 .11 .05 .04 .04 .04 .04 .07 .98 | AUG .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .11 .08 .07 .09 .06 | .02
.03
9.2
4.8
.08
.03
.01
.01
.01
.01
.02
.02
.02
.02 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | OCT .18 .14 .10 .06 .04 .05 .06 .05 .06 .06 .07 .09 .14 .15 .16 .17 | NOV 1.6 .646 .59 .50 .466 .444 .511 .52 .44 .333 .266 .21 .166 .12 .19 2.5 .76 .22 .16 | DEC .39 .40 .45 .43 .18 .16 .28 .69 .8 1.2 1.3 .96 .78 .72 .62 .48 .52 .55 | JAN | FEB .666 .73 1.1 1.0 .98 .97 1.0 .97 .97 .97 .98 .98 .97 1.1 1.1 1.1 .95 .77 .74 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 1.5 1.0 .77 .85 .44 .37 .54 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 .97 .78 .64 .53 .46 .40 .34 .29 .26 .23 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .42 .39 .37 .34 .33 .30 .31 .31 .29 .28 .27 | JUN .15 .18 .15 .14 .12 .12 .11 .10 .09 .09 .08 .07 .08 .08 .07 | JUL .05 .04 .03 .03 .03 .03 .03 .03 .11 .05 .04 .04 .04 .04 .07 .98 .14 | AUG .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .11 .08 .07 .09 .06 .06 .05 .05 .05 | .02
.03
9.2
4.8
.08
.03
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | OCT .18 .14 .10 .06 .04 .04 .05 .06 .06 .05 .06 .06 .07 .09 .14 .15 .16 .17 .19 .21 | NOV 1.6 .646.59 .50 .466.44 .511 .16 .12 .19 2.5 .76 .22 .16 .12 .11 .16 | DEC .39 .40 .45 .43 .18 .16 .28 .69 1.8 1.2 1.3 .96 .78 .72 .62 .48 .52 .55 .57 .57 | JAN | FEB .666 .73 1.1 1.0 .98 .97 1.0 .97 .97 .98 .98 .97 1.1 1.1 1.1 .1.1 .55 .77 .74 .655 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 1.5 1.0 .77 .85 .44 .37 .54 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 .97 .78 .64 .53 .46 .40 .34 .29 .26 .23 .20 .19 .23 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .42 .39 .37 .34 .33 .30 .31 .29 .28 .27 | JUN .15 .18 .15 .14 .12 .12 .11 .10 .09 .09 .08 .07 .08 .07 .06 .06 .07 .06 .06 .07 | JUL .05 .04 .03 .03 .03 .03 .03 .11 .05 .04 .04 .04 .04 .04 .04 .05 .07 .98 .14 .05 .05 .03 | AUG .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .08 .07 .09 .06 .05 .05 .05 .05 .05 .05 .05 .05 | .02
.03
9.2
4.8
.08
.03
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | OCT .18 .14 .10 .06 .04 .04 .05 .06 .06 .05 .06 .06 .07 .09 .14 .15 .16 .17 .19 .21 .18 .17 | NOV 1.6 .646.59 .50 .466.44 .511 .16 .12 .19 2.5 .76 .22 .16 .12 .11 .16 .16 .26 | DEC .39 .40 .45 .43 .18 .16 .28 .69 1.8 1.2 1.3 .96 .78 .72 .62 .48 .52 .55 .57 .57 .59 .63 .64 | JAN | FEB .666 .73 1.1 1.0 .98 .97 1.0 .97 .97 .98 .97 .11 1.1 1.1 .1.1 .65 .77 .74 .65 .62 .62 .55 .52 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 1.5 1.0 .77 .85 .44 .37 .54 .73 1.0 1.1 1.1 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 .97 .78 .64 .53 .46 .40 .34 .29 .26 .23 .20 .19 .23 .25 .26 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .42 .39 .37 .34 .33 .30 .31 .29 .28 .27 .25 .24 .23 .22 | JUN .15 .18 .15 .14 .12 .12 .11 .10 .09 .09 .08 .07 .08 .07 .06 .06 .07 .06 .06 .07 | JUL .05 .04 .03 .03 .03 .03 .03 .11 .05 .04 .04 .04 .04 .05 .05 .05 .05 .05 .05 .02 .02 | AUG .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .08 .07 .09 .06 .06 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 | .02
.03
9.2
4.8
.08
.03
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02
.03
.03
.3.1
1.7
.77
.77 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | OCT .18 .14 .10 .06 .04 .04 .05 .06 .06 .06 .07 .09 .14 .15 .17 .19 .21 .18 .17 .33 .25 .21 | NOV 1.6 .666.64 .599.50 .466.44 .511.52 .44 .333.266 .211.16 .12 .19 2.5 .766.22 .16 .12 .11 .166.16 .26 .20 .17 | DEC .39 .40 .45 .43 .18 .16 .28 .69 1.8 1.2 1.3 .96 .78 .72 .62 .48 .62 .58 .52 .55 .57 .57 .59 .63 .64 | JAN | FEB . 666 . 73 1.1 1.0 . 98 . 97 1.0 . 97 . 97 . 98 . 98 . 97 1.1 1.1 1.1 . 65 . 77 . 74 . 65 . 62 . 55 . 52 . 53 . 52 . 52 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 17 13 8.0 4.3 2.6 17 13 1.0 1.1 1.1 1.4 1.3 1.9 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 .97 .78 .64 .53 .46 .40 .34 .29 .26 .23 .20 .19 .23 .25 .26 .48 2.2 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .42 .39 .37 .34 .33 .30 .31 .29 .28 .27 .25 .24 .23 .22 .22 .22 .28 | JUN .15 .18 .15 .14 .12 .12 .11 .10 .09 .09 .08 .07 .08 .07 .06 .06 .06 .07 .07 .06 .06 .06 .07 .07 .06 .06 .07 .07 .07 .08 .08 .07 .07 .09 .08 .07 .07 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 | JUL .05 .04 .03 .03 .03 .03 .03 .11 .05 .04 .04 .04 .04 .05 .05 .07 .98 .14 .05 .05 .03 .02 .02 .02 .02 .02 .03 .03 | AUG .04 1.8 3.6 .13 .05 .03 .05 .05 .05 .05 .05 .05 .05 .03 .03 .03 .02 .02 .02 .01 | .02
.03
9.2
4.8
.08
.03
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27 | OCT .18 .14 .10 .06 .04 .05 .06 .06 .05 .06 .06 .07 .09 .14 .15 .16 .17 .19 .21 .18 .17 .33 | NOV 1.6 .666.64 .599.50 .466 .444 .511.52 .44 .333 .266 .211 .166 .12 .19 .19 .19 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 | DEC .39 .40 .45 .43 .18 .16
.28 .69 1.8 1.2 1.3 .96 .78 .72 .62 .48 .62 .58 .52 .55 .57 .57 .59 .63 .64 .60 .52 | JAN | FEB .666 .733 1.1 1.0 .98 .97 1.0 1.1 1.0 .97 .97 .98 .97 1.1 1.1 .95 .77 .74 .65 .62 .65 .62 .65 .52 .53 .52 .53 | MEAN VALUI MAR 1.6 4.5 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 1.5 1.0 .77 .85 .44 .37 .54 .73 1.0 1.1 1.1 1.4 1.3 1.2 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 .97 .78 .64 .53 .46 .40 .34 .29 .26 .23 .20 .19 .23 .25 .26 .48 2.2 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .42 .39 .37 .34 .33 .30 .31 .29 .28 .27 .25 .24 .24 .23 .22 .22 | JUN .15 .18 .15 .14 .12 .11 .10 .09 .09 .08 .07 .06 .06 .07 .06 .06 .06 .06 .06 .04 .03 .04 | JUL .055 .044 .033 .033 .033 .033 .111 .055 .044 .04 1.3 5.4 .07 .988 .14 .05 .04 .05 .05 .03 .02 .02 .02 .02 .02 | AUG .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .11 .08 .07 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 | .02
.03
9.2
4.8
.08
.03
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | OCT .18 .14 .10 .06 .04 .05 .06 .06 .06 .07 .09 .14 .15 .17 .19 .21 .21 .21 .21 .33 .25 .21 .19 | NOV 1.6 .666.64 .599.50 .466 .444 .511.52 .44 .333.266 .211 .166.12 .19 .2.5 .766 .12 .11 .166 .166 .16 .12 .19 .19 .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 | DEC .39 .40 .45 .43 .18 .16 .28 .69 1.8 1.2 1.3 .96 .78 .72 .62 .48 .62 .58 .57 .57 .59 .63 .64 .60 .52 .52 .51 .46 | JAN | FEB .666 .73 1.1 1.0 .98 .97 1.0 .97 .98 .97 .11 1.1 .95 .77 .74 .65 .62 .55 .52 .53 .52 .52 .51 .52 .6153 .82 | MEAN VALUI MAR 1.6 4.5 2.1 1.3 5.0 9.4 26 17 13 8.0 4.3 2.6 1.5 1.0 .77 .85 4.4 .73 1.0 1.1 1.1 1.4 1.3 1.2 1.9 2.4 2.2 | APR 1.9 6.1 47 7.8 8.1 5.3 2.5 1.8 1.2 1.2 1.2 .97 .78 .64 .53 .46 .40 .34 .29 .26 .23 .20 .19 .23 .25 .26 .48 2.2 .91 .73 .64 | MAY .55 .48 .42 .38 .35 .34 .33 .40 .42 .42 .42 .39 .37 .34 .33 .30 .31 .31 .29 .28 .27 .25 .24 .24 .24 .23 .22 .20 .18 .17 .16 | JUN .15 .18 .15 .14 .12 .11 .10 .09 .09 .08 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .06 .07 .07 .07 .08 .08 .07 .07 .07 .08 .08 .07 .07 .07 .08 .08 .07 .07 .07 .07 .08 .08 .07 .07 .07 .07 .07 .07 .07 .07 .07 .07 | JUL .055 .044 .033 .033 .033 .033 .031 .11 .055 .044 .04 1.3 5.4 .07 .98 .04 .05 .05 .03 .02 .02 .02 .02 .02 .03 .03 .03 .03 .03 .03 | AUG .04 1.8 3.6 .13 .05 .03 .91 3.1 .11 .08 .07 .09 .06 .05 .05 .05 .05 .05 .05 .05 .05 .05 .05 | .02
.03
9.2
4.8
.08
.03
.01
.01
.01
.01
.02
.02
.02
.02
.02
.02
.02
.02
.02
.02 | WTR YR 1988 TOTAL 389.62 MEAN 1.1 MAX 47 MIN .01 #### 040734644 SILVER CREEK AT SOUTH KORO ROAD NEAR RIPON, WI--CONTINUED PHOSPHORUS, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | MI | EAN VALUES | 3 | | | | | | |----------------------------------|------------------------------|---------------------------------|---------------------------------------|--------------------------------------|----------------------------|----------------------------------|------------------------------|----------------------------------|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 10
10
10
8.7
7.6 | 24
19
18
15 | 18
14
13
9.9
8.8 | 5.4
4.5
4.4
4.2
3.9 | 13
14
14
13
13 | 42
75
82
59
46 | 44
46
105
89
101 | 23
22
21
20
20 | 22
17
7.7
7.3
6.6 | 4.6
5.0
5.7
6.3
7.9 | 5.3
5.6
9.7
17
7.2 | 4.6
4.4
52
50
7.5 | | 6
7
8
9
10 | 9.8
12
12
11
9.5 | 10
9.0
9.9
9.3
7.7 | 7.9
9.4
17
35
36 | 3.6
3.1
3.0
2.9
2.7 | 12
13
13
12
11 | 78
122
193
151
130 | 78
51
39
29
26 | 19
18
18
20
20 | 7.0
6.6
6.1
5.8
6.4 | 8.5
7.6
5.5
5.1
5.0 | 3.4
2.3
21
30
12 | 7.1
7.1
6.9
6.3
5.1 | | 11
12
13
14
15 | 9.5
8.7
7.9
7.9 | 6.9
6.5
6.2
5.6
5.0 | 21
11
9.5
9.3
8.3 | 3.2
3.4
3.5
3.2
3.3 | 11
11
11
11 | 106
84
62
48
36 | 23
20
17
16
15 | 19
18
17
17
16 | 5.8
5.5
6.8
6.5
7.4 | 4.3
3.8
3.3
3.3
9.5 | 14
14
18
31
26 | 4.6
6.0
6.3
6.0
5.7 | | 16
17
18
19
20 | 9.5
14
14
14
14 | 5.6
33
18
15
12 | 6.8
9.1
8.9
8.5
9.1 | 3.2
3.2
3.8
4.1
4.9 | 12
12
12
12
11 | 26
23
22
20
17 | 14
13
12
11 | 17
17
17
17
17 | 7.9
9.3
9.3
9.9 | 27
3.0
9.9
5.6
4.1 | 28
23
20
18
64 | 6.4
6.3
21
25
11 | | 21
22
23
24
25 | 14
14
13
11 | 9.1
8.2
11
11
10 | 9.5
9.5
9.8
10 | 4.2
4.1
3.9
3.7
3.6 | 11
12
12
11
11 | 17
18
21
22
28 | 10
10
12
12
12 | 16
15
16
15 | 8.4
13
9.2
9.0
7.3 | 5.4
4.8
4.6
5.7
7.2 | 24
16
11
8.5
4.6 | 3.5
231
48
24
17 | | 26
27
28
29
30
31 | 14
14
13
12
12 | 9.5
9.1
16
21
30 | 10
8.6
8.7
8.4
7.6
6.8 | 3.6
3.5
3.6
4.1
10
28 | 11
12
12
15 | 26
23
30
42
41
44 | 16
33
27
26
25 | 15
16
17
17
18
21 | 5.9
6.8
15
5.8
4.5 | 8.1
8.8
9.7
8.0
6.5
5.0 | 4.2
5.0
4.4
4.8
4.5
5.3 | 14
11
8.6
7.0
6.3 | | TOTAL
MEAN
MAX
MIN | 346.0
11
14
7.6 | 382.6
13
33
5.0 | 370.4
12
36
6.8 | 145.8
4.7
28
2.7 | 349
12
15
11 | 1734
56
193
17 | 943
31
105
10 | 554
18
23
15 | 258.8
8.6
22
4.5 | 208.8
6.7
27
3.0 | 461.8
15
64
2.3 | 619.7
21
231
3.5 | WTR YR 1988 TOTAL 6373.9 MEAN 17 MAX 231 MIN 2.3 #### 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI LOCATION.--Lat 43°49'18", long 88°55'36" in NE 1/4 SE 1/4 SE 1/4 sec.27, T.16 N., R.13 E., Green Lake County, Hydrologic Unit 04030201, on left bank at downstream side of County Trunk Highway A, 2.3 mi southeast of Green Lake. DRAINAGE AREA. -- 53.5 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1987 to September 1988. GAGE.--Acoustical Velocity Meter (AVM) system. Single-path, mid-depth transducer installation. Data are stored using CR-21X datalogger with phone modem connection for daily retrieval. REMARKS.--Discharge estimated based on discharge from upstream station, Silver Creek near Ripon (040734644) adjusted for drainage area. Approximately 2.3 ft³/s of daily flow is effluent from Ripon Wastewater Greatment Plant. Discharge July 31 to Aug. 5, 1987, is in large part the result of draining the millpond in Ripon. EXTREMES FOR CURRENT PERIOD. --FEBRUARY TO SEPTEMBER 1987: Maximum daily discharge, 164 ft3/s, Apr. 24; minimum daily, $3.0 \text{ ft}^3/\text{s}$, Aug. 6, 7. WATER YEAR 1988: Maximum daily discharge, 163 ft³/s, Mar. 9; minimum daily, 1.6 ft³/s, July 31. | | | DISCHAR | GE, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1986 TO | SEPTEMBER | 1987 | | | |-------|-----|---------|-----------|----------|----------|--------------------------|----------|----------|-----------|-------|-------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | 15 | 40 | 36 | 46 | 61 | 13 | 43 | 9.0 | | 2 | | | | | 17 | 45 | 33 | 45 | 54 | 13 | 15 | 9.5 | | 3 | | | | | 18 | 54 | 36 | 42 | 42 | 13 | 11 | 8.4 | | 4 | | | | | 18 | 59 | 36 | 39 | 33 | 12 | 11 | 7.5 | | 5 | | | | | 18 | 58 | 37 | 37 | 27 | 12 | 9.1 | 6.7 | | J | | | | | 10 | 30 | 31 | 37 | 21 | 12 | 7.1 | 0., | | 6 | | | | | 18 | 61 | 37 | 36 | 30 | 13 | 3.0 | 5.8 | | 7 | | | | | 20 | 70 | 37 | 34 | 24 | 15 | 3.0 | 5.6 | | 8 | | | | | 20 | 70
80 | 36 | 33 | 23 | 14 | 10 | 6.1 | | 9 | | | | | 20 | 74 | 34 | 30 | 21 | 13 | 5.6 | | | 10 | | | | | 20 | 58 | 33 | 28 | 18 | 12 | 4.5 | 6.1
7.6 | | 10 | | | | | 20 | 30 | 33 | 20 | 10 | 12 | 4.3 | 7.0 | | 11 | | | | | 20 | 58 | 36 | 45 | 20 | 10 | 3.9 | 7.6 | | 12 | | | | | 21 | 49 | 39 | 36 | 20 | 9.5 | 3.8 | 7.3 | | 13 | | | | | 23 | 43 | 39 | 33 | 17 | 10 | 3.8 | 6.6 | | 14 | | | | | 21 | 39 | 57 | 39 | 17 | 10 | 4.7 | 7.0 | | | | | | | 18 | | 57
68 | 39
34 | 15 | 11 | 7.8 | 6.9 | | 15 | | | | | 18 | 36 | 60 | 34 | 13 | 11 | 7.0 | 0.9 | | 16 | | | | | 20 | 36 | 73 | 31 | 15 | 10 | 21 | 11 | | 17 | | | | | 20
18 | 36 | 73
70 | 28 | 15 | 9.2 | 20 | 33 | | 18 | | | | | 18 | 36
37 | 62 | 27 | 15 | 8.7 | 15 | 21 | | 18 | | | | | 18 | 37
45 | 52
52 | 33 | 17 | 7.9 | 12 | 20 | | 20 | | | | | 20 | 45
46 | 52
45 | 33
31 | 15 | 14 | 11 | 17 | | 20 | | | | | 20 | 40 | 45 | 21 | 13 | 14 | 11 | 17 | | 21 | | | | | 21 | 46 | 39 | 30 | 15 | 15 | 10 | 21 | | 22 | | | | | 24 | 48 | 89 | 28 | 17 | 12 | 9.1 | 24 | | 23 | | | | | 27 | 48 | 145 | 27 | 15 | 10 | 7.9 | 18 | | 24 | | | | | 26 | 46 | 164 | 27 | 15 | 8.8 | 8.7 | 12 | | 25 | | | | | 26 | 48 | 135 | 27 | 15 | 7.6 | 8.5 | 12 | | 23 | | | | | 20 | 40 | 133 | 2, | 13 | , | 0.0 | | | 26 | | | | | 27 | 49 | 104 | 30 | 15 | 8.8 | 8.5 | 12 | | 27 | | | | | 27 | 48 | 83 | 31 | 14 | 8.5 | 8.7 | 10 | | 28 | | | | | 27 | 45 | 68 | 39 | 13 | 8.8 | 15 | 7.9 | | 29 | | | | | | 49 | 59 | 39 | 15 | 17 | 11 | 7.9 | | 30 | | | | | | 42 | 51 | 33 | 14 | 13 | 8.5 | 8.4 | | 31 | | | | | | 37 | | 64 | | 43 | 7.9 | | | | | | | | | | | | | | | | | TOTAL | | | | | 586 | 1530 | 1833 | 1082 | 647 |
382.8 | 322.0 | 342.9 | | MEAN | | | | | 20.9 | 49.4 | 61.1 | 34.9 | 21.6 | 12.3 | 10.4 | 11.4 | | MAX | | | | | 27 | 80 | 164 | 64 | 61 | 43 | 43 | 33 | | MIN | | | | | 15 | 36 | 33 | 27 | 13 | 7.6 | 3.0 | 5.6 | | CFSM | | | | | .39 | . 92 | 1.14 | .65 | .40 | .23 | . 19 | .21 | | IN. | | | | | .41 | 1.06 | 1.27 | .75 | . 45 | . 27 | .22 | . 24 | | | | | | | | | | | | | | | TOTAL MEAN MAX MIN CFSM IN. 341.0 11.0 14 7.2 .24 537 17.9 36 .33 .37 STREAMS TRIBUTARY TO LAKE MICHIGAN 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC APR JUN JUL SEP JAN FEB MAR MAY AUG 10 3.2 21 28 8.7 17 51 31 7.3 2.9 2.2 1 2 24 2.6 2.4 10 24 18 45 58 28 9.1 3 9.8 10 20 23 6.9 18 54 120 26 7.8 8.5 7.2 7.0 5 17 15 17 15 2.2 7.8 7.2 6.6 17 46 125 24 18 6.0 6.0 23 6.0 15 129 46 2.2 2.3 1.9 2.3 2.9 13 17 21 33 5.4 4.5 4.4 4.2 6 9.7 13 12 15 15 13 61 119 21 3.8 3.5 3.0 2.3 12 12 1.9 15 89 98 20 5.6 8 83 8.4 15 20 4.8 136 11 23 14 163 70 10 9.2 33 3.8 13 153 58 21 4.8 5.4 4.1 3.6 4.5 3.0 2.6 2.2 1.9 2.7 3.0 11 12 9.2 12 33 28 5.7 4.7 4.7 12 12 142 123 52 2.0 5.1 5.3 8.5 12 45 18 12 23 12 17 5.0 89 2.2 14 15 7.5 7.5 12 21 4.8 11 68 36 17 4.1 7.8 2.6 11 18 5.0 12 55 33 15 3.9 7.9 5.6 4.1 2.9 2.9 16 9.2 13 36 14 4.7 12 51 31 15 3.6 20 3.9 17 18 14 18 4.8 12 28 15 3.6 14 3.0 2.7 3.5 10 7.3 4.4 30 26 17 15 5.8 12 43 27 14 3.2 7.2 9.7 19 6.3 7.8 12 11 27 14 13 39 14 20 15 6.9 33 26 5.6 4.8 4.7 5.3 21 22 14 15 17 6.6 24 12 3.2 4.4 10 31 5.0 5.4 3.3 3.3 3.5 2.6 2.7 14 13 13 18 24 17 17 6.4 6.0 70 10 33 11 23 28 28 39 11 11 11 18 18 28 42 10 25 10 18 18 5.6 11 9.8 3.0 2.7 2.4 2.3 26 13 17 17 5.4 5.3 5.4 11 49 30 9.7 1.9 3.2 11 15 20 2.3 15 15 8.5 7.2 14 45 9.1 3.8 12 45 28 13 12 48 42 3.0 29 12 12 27 14 6.3 15 58 40 7.9 6.1 2.0 3.3 6.0 30 31 13 11 14 55 36 7.5 3.6 1.9 3.0 5.6 31 10 28 55 1.6 2020 65.2 163 1.22 1.40 378 18 10 .24 . 26 13.0 1581 52.7 .99 1.10 499.0 16.1 31 7.5 .30 .35 137.0 4.57 9.1 1.9 .**0**9 .10 117.2 3.78 20 1.6 .08 155.9 5.03 13 1.9 .09 .11 270.2 9.01 70 1.9 .17 .19 .14 WTR YR 1988 TOTAL 6841.0 MEAN 18.7 MAX 163 MIN 1.6 CFSM .35 IN. 4.76 206.7 6.67 28 3.8 598 19.3 33 11 .36 .42 ### 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI--CONTINUED WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1987 to September 1988. PERIOD OF DAILY RECORD.--SUSPENDED-SEDIMENT DISCHARGE: February 1987 to September 1988. TOTAL-PHOSPHORUS DISCHARGE: February 1987 to September 1988. INSTRUMENTATION. -- Observer takes samples during periods of low flow and more frequently during runoff periods. REMARKS. -- Records fair. COOPERATION .-- Observer furnished by the Green Lake Sanitary District. EXTREMES FOR CURRENT PERIOD.--FEBRUARY TO SEPTEMBER 1987: SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 8.2 tons, Mar. 8; minimum daily, 0.4 tons, Aug. 6. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 126 lb, Apr. 24; minimum daily, 1.6 lb, Aug. 6-7. WATER YEAR 1988: SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 9.4 tons, Apr. 6; minimum daily, 0.03 tons, Sept. 10-11, 14-17. TOTAL-PHOSPHORUS DISCHARGE: Maximum daily, 229 lb, Apr. 5; minimum daily, 0.27 lb, Sept. 11. | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------------|------|--|--|---|----------|------|--|--|---| | MAR 1987 | | | | | JUL 1987 | | | | | | 05 | 1545 | 58 | 0.180 | 18 | 14 | 1400 | 10 | 0.320 | 33 | | APR | | | | | 21 | 0930 | 15 | 0.360 | 43 | | 14 | 1030 | 57 | 0.120 | 34 | 21 | 1500 | 15 | 0.180 | 6 | | 20 | 1430 | 45 | 0.070 | 41 | 22 | 1400 | 12 | 0.300 | 39 | | 22 | 1120 | 89 | 0.090 | 46 | 31 | 1030 | 43 | 0.420 | 18 | | 23 | 1410 | 145 | 0.080 | 23 | AUG | | | | | | 24 | 1555 | 164 | 0.160 | 34 | 07 | 1500 | 3.0 | 0.120 | 8 | | 29 | 1200 | 59 | 0.180 | 41 | 09 | 1400 | 5.6 | 0.350 | 34 | | MAY | | | | | 10 | 1500 | 4.5 | 0.290 | 43 | | 06 | 1400 | 36 | 0.170 | 30 | 18 | 1600 | 15 | | 42 | | 29 | 1000 | 39 | 0.120 | 27 | 27 | 0900 | 8.7 | 0.280 | | | 31 | 1415 | 64 | 0.140 | 24 | 28 | 1600 | 15 | 0.240 | | | JUN | | | | | SEP | | | | | | 01 | 1430 | 61 | 0.200 | 30 | 02 | 1130 | 9.5 | 0.060 | 9 | | 09 | 1500 | 21 | 0.040 | 29 | 15 | 1300 | 6.9 | 0.100 | | | 20 | 1146 | 15 | 0.190 | 43 | 15 | 1330 | 6.9 | | 12 | | 22 | 1130 | 17 | 0.230 | 34 | 16 | 1401 | 11 | 0.120 | | | 23 | 1400 | 15 | 0.190 | 48 | 17 | 1030 | 33 | 0.210 | 19 | | 24 | 1300 | 15 | 0.240 | 69 | 17 | 1430 | 33 | 0.180 | 24 | | 29 | 1600 | 15 | 0.090 | 20 | 18 | 1100 | 21 | 0.200 | 21 | | \mathtt{JUL} | | | | | 19 | 0730 | 20 | | 4 | | 01 | 1305 | 13 | 0.190 | 31 | 21 | 1100 | 21 | 0.140 | 20 | 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | WATER | QUALITY DA | TA, WATER | YEAR OCTOR | BER 1987 T | O SEPTE | MBER 198 | 88 | | | |-------------|-------|----------------------|--|--|---|----------------------------|--|-------------------|----------------------|--|--|---| | | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | DA | TE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | | OCT
16 | 1987 | 1130 | 9.2 | | 16 | | APR 19
12 | | 1325 | 39 | 0.180 | 34 | | | | 1030 | 17 | 0.120 | 29 | | 25
27 | | 1500
0615 | 135
83 | 0.080 | 22
46 | | DEC | • • • | 1450 | 31 | 0.100 | 9 | | MAY
10 | | 1330 | 28 | | 49 | | MAR | | 1530 | 17 | 0.060 | 12 | | JUN
02 | | 1600 | 54 | 0.170 | 31 | | 02 | • • • | 1325
1705
0830 | 45
45
54 | 0.350
0.360
0.360 | 14
15
17 | | 06
06
08 | | 1440
1518
1415 | 30
30
23 | 0.280

0.480 | 40
 | | 03 | | 1415
1045 | 54
46 | 0.360
0.330 | 14
12 | | 20
20 | | 1034
1130 | 15
15 | 0.190 |
25 | | 04 | | 1330
1710 | 46
46 | 0.320 | 10
10 | | 20
27 | | 1147
1134 | 15
14 | 0.340 | 147 | | | | 1235
1050 | 61
89 | 0.250
0.300 | 11
15 | | JUL
05 | | 1147 | 12 | | 83 | | 80 | | 1540
0850 | 89
136 | 0.270 | 31
16 | | 06
11 | | 1147
1226 | 13
10 | 0.370 | 29 | | 09 | | 1420
0935 | 136
163 | 0.250
0.220 | 16
10 | | 11
18 | | 1249
1019 | 10
8.7 | 0.250
0.340 |
 | | 10 | | 1340
1400
1100 | 163
153
142 | 0.220
0.190
0.190 | 10
8
6 | | 18
25
AUG | | 1222
1213 | 8.7
7.6 | 0.180 | 31
26 | | 12 | | 1400
1100 | 123
68 | 0.190

 | 7
6 | | 01
01 | | 1213
1220 | 43
43 | 0.630 |
66 | | 15 | • • • | 1340
1550 | 55
51 | 0.160 | 6
3 | | 05
08 | | 1300
1240 | 9.1
10 | 0.210
0.450 | 38
47 | | 21 | | 1120
1000 | 31
54 | 0.110
0.090 | 4
0 | | 15
22 | | 1200
1215 | 7. 8
9.1 | 0.240
0.230 | 24
35 | | 29 | | 0900
1515 | 58
58 | 0.130
0.120 | 11
12 | | 29
SEP | • | 1215 | 11 | 0.230 | 21 | | APR | | 1400 | 55 | 0.120 | 13 | | 07
19 | | 0945
1100 | 5.6
20 | 0.030
0.020 | 7
5 | | 04 |
 | 1430
1320 | 36
36 |
 | 22
25 | | 20
22 | | 1400
1445 | 17
24 | 0.360 | 21 | | 06 | | 0930
1350
1330 | 37
37
36 | 0.280
0.160 | 28
148
32 | | 22
24 | | 1450
1050 | 24
12 | 0.410
0.350 | 24 | | | | | | | ED (TONS/I | DAY), WATER
MEAN VALUES | YEAR OCT | OBER 19 | 86 TO SE | PTEMBER 1 | .987 | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUI | . AUG | SEP | | 1 | | | | | .61 | 1.9 | 2.1 | 4.7 | 4.7 | 1.0 | 1.7 | .30 | | 2
3
4 | | | | | . 69
. 74 | 2.2 | $\begin{array}{c} 1.8 \\ 2.0 \\ 2.1 \end{array}$ | 4.4
3.9
3.5 | 4.4
3.4
2.6 | $1.1 \\ 1.1 \\ 1.0$ | . 47
. 28
. 23 | .21 | | 5 | | | | | .74
.75 | 2.8
2.9 | 2.3 | 3.1 | 2.2 | 1.0 | . 15 | | | 6
7 | | | | | . 75
. 84 | 3.8
5.8 | 2.4
2.5 | 2.9
2.8 | 2.4
1.9 | $\frac{1.2}{1.3}$ | .04 | | | 8
9 | | | | | . 84
. 8 5 | 8.2
7.2 | 2.5
2.5 | 2.8 | 1.8
1.6 | $\frac{1.3}{1.2}$ | . 44
. 47 | | | 10 | | | | | . 85 | 5.1 | 2.5 | 2.6 | 1.4 | 1.1 | .50 | | | 11
12 | | | | | .86
.91 | 4.6
3.6 | 2.9
3.3 | 4.2
3.0 | 1.5 | .94 | . 46 | .22 | | 13
14 | | | | | 1.0 | 2.8
2.3 | 3.4
5.3 | 2.5
3.1 | 1.2 | .96 | .60 | .22 | | 15
16 | | | | | . 79
. 8 8 | 1.9
1.8 | 6.6
7.5 | 2.5 | 1.0 | . 91
. 89 | | .23 | | 17
18 | | | | | .80
.80 | 1.8
2.0 | 7.5
6.7 | 1.7
1.5 | 1.3 | . 87
. 87 | 2.5 | 1.9
1.0 | | 19
20 | | | | | .81
.90 | 2.6
2.8 | 5.7
5.0 | 2.0 | 1.8 | .83
1.5 | | . 29
. 46 | | 21 | | | | | .95 | 3.0 | 4.6 | 1.9 | | 1.0 | .93 | | | 22
23 | | | | | 1.1 1.2 |
3.3
3.5 | 10
10 | $\frac{1.7}{1.5}$ | 1.5
1.7
1.9 | .97
.71 | .79 | 1.2 | | 24
25 | | | | | 1.2 | 3.5
3.8 | 14
13 | 1.5 | 2.6 | .39 | .75 | . 56 | | 26 | | | | | 1.3 | 3.8 | 10 | 1.8 | 1.7 | . 26 | . 82 | .51 | | 27
28 | | | | | $\substack{1.3\\1.3}$ | $\frac{3.5}{3.1}$ | 8.5
7.2 | 2.0
2.7 | 1.3
.94 | . 28 | 1.5 | . 31 | | 29
30 | | | | | | 3.2
2.6 | 6.5
5.4 | 2.8
2.3 | . 87
. 92 | . 68
. 58 | | .29 | | 31 | | | | | | 2.2 | | 4.3 | | 2.0 | . 35 | | | TOTAL | | | | | 25.88 | 104.2 | 165.8 | 82.1 | 55.73 | 28.28 | | | ## 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI--CONTINUED SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | SI | EDIMENT DI | SCHARGE, | SUSPENDED | | AN VALUES | | OBER 1987 | TO SEPTE | MBER 1988 | | | |----------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------------|--|--------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .35
.32
.29
.23 | 2.3
2.2
1.9
1.3 | . 49
. 46
. 48
. 39
. 37 | .28
.23
.22
.21
.19 | .90
.93
.88
.79
.66 | .55
1.6
2.2
1.4
1.2 | 1.5
2.3
6.8
7.2
9.3 | 3.9
3.6
3.3
3.1
3.0 | .52
.74
.69
.66 | . 46
. 45
. 45
. 45
. 50 | .39
.46
.89
1.5
.82 | .06
.05
.28
.86
.23 | | 6
7
8
9
10 | .31
.47
.46
.39 | .76
.65
.81
.81 | .35
.53
.74
1.3 | . 17
. 15
. 14
. 14
. 12 | .63
.60
.57
.51
.45 | 1.9
4.9
6.1
4.6
3.4 | 9.4
8.1
7.1
6.1
5.2 | 2.7
2.6
2.6
3.0
2.8 | . 64
. 49
. 33
. 25
. 29 | . 42
. 36
. 25
. 26
. 27 | .25
.14
1.0
2.2
.63 | .12
.07
.06
.05 | | 11
12
13
14
15 | .29
.25
.21
.19 | . 65
. 65
. 65
. 65
. 74 | 1.4
1.1
.81
.68
.53 | .15
.17
.17
.16 | . 40
. 38
. 36
. 31
. 32 | 2.4
2.3
1.6
1.1
.87 | 4.7
4.1
3.2
2.5
2.0 | 2.5
2.2
2.0
1.9 | .27
.26
.36
.31
.28 | .24
.18
.13
.13 | . 40
. 22
. 34
. 75
. 37 | .03
.04
.04
.03 | | 16
17
18
19
20 | . 39
. 74
. 74
. 68
. 60 | 2.2
7.6
4.6
2.6
1.3 | .38
.50
.49
.44 | .15
.16
.19
.20
.25 | .31
.29
.28
.27
.23 | . 62
. 45
. 37
. 36
. 33 | 1.7
1.3
1.1
.96 | 1.5
1.5
1.3
1.2 | .24
.22
.17
.15
.72 | 2.0
.37
.85
.60
.35 | .29
.17
.11
.10 | .03
.03
.09
.14 | | 21
22
23
24
25 | .54
.48
.40
.30
.25 | .64
.37
.49
.49 | . 53
. 55
. 55
. 58
. 58 | .21
.21
.19
.18 | .20
.19
.20
.19 | .34
.43
.60
.77 | .68
.79
1.1
1.3 | .97
.85
.81
.71
.66 | .66
.57
.33
.35 | .39
.27
.19
.19
.21 | .60
.46
.41
.43 | .15
3.7
1.7
1.0
.65 | | 26
27
28
29
30
31 | .41
.54
.45
.35
.33 | .46
.41
.63
.99
.99 | . 55
. 49
. 49
. 45
. 42
. 36 | .17
.17
.18
.23
.59 | .17
.18
.17
.22 | .84
.66
1.0
1.8
1.9 | 2.7
5.5
5.2
5.0
4.5 | .63
.56
.50
.45
.41 | .22
.28
.77
.83
.53 | . 22
. 22
. 24
. 24
. 26
. 25 | .23
.25
.18
.18
.12 | .42
.25
.16
.11
.08 | | TOTAL
MEAN
MAX
MIN | 12.23
.39
.74
.18 | 39.97
1.3
7.6
.37 | 18.95
.61
1.5
.35 | 7.22
.23
1.3
.12 | 11.77
.41
.93
.17 | 49.39
1.6
6.1
.33 | 113.84
3.8
9.4
.68 | 54.42
1.8
3.9
.41 | 12.99
.43
.83
.15 | 12.01
.39
2.0
.13 | 15.47
.50
2.2
.10 | 10.64
.35
3.7
.03 | | WTR YR | 1988 1 | COTAL 358. | 90 MEAN | .98 MAX | 9.4 MIN | .03 | | | | | | | WTR YR 1988 TOTAL 358.90 MEAN .98 MAX 9.4 MIN .03 | | | РНОЅРНО | DRUS, TOTAL | , POUNE | | , WATER YE
EAN VALUES | | 1986 T | O SEPTEMBER | 1987 | | | |-------|-----|---------|-------------|---------|-------|--------------------------|------|--------|-------------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | 8.1 | 36 | 14 | 44 | 61 | 13 | 82 | 3.9 | | 2 | | | | | 9.4 | 41 | 12 | 43 | 49 | 13 | 24 | 3.2 | | 3 | | | | | 10 | 50 | 13 | 40 | 31 | 13 | 15 | 2.6 | | 4 | | | | | 10 | 56 | 13 | 36 | 20 | 12 | 13 | 2.3 | | 5 | | | | | 10 | 57 | 13 | 34 | 14 | 13 | 8.8 | 2.0 | | 6 | | | | | 11 | 65 | 13 | 32 | 12 | 19 | 2.4 | 1.6 | | 7 | | | | | 12 | 84 | 13 | 26 | 8.1 | 28 | 2.2 | 1.6 | | 8 | | | | | 12 | 104 | 12 | 20 | 6.4 | 27 | 13 | 2.1 | | 9 | | | | | 12 | 86 | 11 | 14 | 4.8 | 24 | 9.9 | 2.6 | | 10 | | | | | 13 | 57 | 11 | 11 | 4.0 | 22 | 7.2 | 4.0 | | 11 | | | | | 13 | 49 | 14 | 20 | 4.4 | 18 | 4.6 | 4.1 | | 12 | | | | | 14 | 35 | 18 | 19 | 4.4 | 17 | 3.3 | 3.9 | | 1:3 | | | | | 15 | 26 | 22 | 17 | 3.7 | 18 | 3.8 | 3.6 | | 14 | | | | | 14 | 20 | 37 | 19 | 3.7 | 17 | 5.9 | 3.8 | | 15 | | | | | 13 | 16 | 48 | 15 | 3.3 | 19 | 12 | 3.8 | | 16 | | | | | 14 | 14 | 55 | 13 | 3.2 | 18 | 39 | 7.4 | | 17 | | | | | 13 | 12 | 55 | 11 | 3.5 | 17 | 37 | 33 | | 18 | | | | | 13 | 12 | 40 | 11 | 5.6 | 16 | 27 | 22 | | 19 | | | | | 14 | 16 | 26 | 16 | 11 | 15 | 21 | 19 | | 20 | | | | | 15 | 17 | 18 | 18 | 15 | 27 | 19 | 14 | | 21 | | | | | 16 | 17 | 17 | 16 | 17 | 23 | 17 | 17 | | 22 | | | | | 19 | 19 | 42 | 13 | 20 | 18 | 15 | 25 | | 23 | | | | | 22 | 19 | 68 | 11 | 16 | 13 | 13 | 18 | | 24 | | | | | 21 | 19 | 126 | 10 | 18 | 9.1 | 14 | 11 | | 25 | | | | | 22 | 21 | 119 | 11 | 16 | 6.5 | 13 | 10 | | 26 | | | | | 23 | 21 | 94 | 14 | 13 | 8.9 | 13 | 9.2 | | 27 | | | | | 23 | 20 | 77 | 16 | 10 | 11 | 13 | 7.0 | | 28 | | | | | 24 | 18 | 65 | 23 | 7.9 | 14 | 20 | 5.1 | | 29 | | | | | | 20 | 57 | 25 | 7.8 | 32 | 11 | 4.7 | | 30 | | | | | | 17 | 49 | 23 | 9.7 | 27 | 6.6 | 4.5 | | 31 | | | | | | 14 | | 49 | | 94 | 4.6 | | | TOTAL | | | | | 415.5 | 1058 | 1172 | 670 | 403.5 | 622.5 | 490.3 | 252.0 | | MEAN | | | | | 15 | 34 | 39 | 22 | 13 | 20 | 16 | 8.4 | | MAX | | | | | 24 | 104 | 126 | 49 | 61 | 94 | 82 | 33 | | MIN | | | | | 8.1 | 12 | 11 | 10 | 3.2 | 6.5 | 2.2 | 1.6 | #### 04073468 GREEN LAKE INLET AT COUNTY TRUNK HIGHWAY A NEAR GREEN LAKE, WI--CONTINUED PHOSPHORUS, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | 111 | PWM AWPOR | • | | | | | | |----------------------------------|--|---------------------------------|--|---------------------------------|---------------------------------|----------------------------------|-------------------------------|--|---------------------------------|--|--|-------------------------------| | DAY | OCT | NOV | DEC | J AN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.4
4.7
4.1
3.0
2.2 | 24
12
11
10
9.1 | 14
11
10
6.9
5.6 | 2.8
2.3
2.2
2.1
1.9 | 13
12
12
10
8.3 | 26
79
106
80
64 | 29
43
123
175
229 | 23
19
16
14
12 | 3.8
9.4
8.0
8.1
7.9 | 7.2
6.2
5.5
4.8
4.8 | 7.2
7.0
11
16
9.3 | 4.0
3.7
16
34
5.9 | | 6
7
8
9
10 | 2.8
4.4
5.6
4.9
3.8 | 7.4
6.4
7.5
7.1
5.8 | 4.5
5.7
8.1
15 | 1.7
1.5
1.4
1.4 | 7.7
7.1
6.6
5.7
4.9 | 84
139
190
194
161 | 182
115
75
62
53 | 10
9.1
12
18
17 | 9.2
11
12
11 | 4.4
4.2
3.2
3.6
4.2 | 4.4
3.6
20
39
13 | 1.8
.67
.55
.45 | | 11
12
13
14
15 | 3.5
3.0
2.4
2.2
2.1 | 5.0
4.7
4.4
4.1
3.8 | 17
14
11
9.6
7.9 | 1.5
1.7
1.7
1.6 | 4.2
3.9
3.9
3.6
3.9 | 145
121
84
61
48 | 49
43
37
31
27 | 15
13
12
12
10 | 8.8
7.3
8.4
6.7
5.6 | 4.1
3.9
3.7
4.2 | 10
6.9
9.1
17
7.5 | .27
.37
.40
.34 | | 16
17
18
19
20 | 2.8
4.8
5.4
6.1
6.6 | 6.8
27
20
15
9.4 | 5.9
7.2
6.6
5.6
5.3 | 1.5
1.6
1.9
2.0
2.5 | 3.9
3.9
3.9
3.9
3.6 | 42
39
31
26
21 | 24
20
18
17
15 | 10
9.8
8.9
8.6
7.8 | 4.5
3.9
2.8
2.3
3.8 | 47
8.2
18
12
6.7 | 6.5
4.2
2.9
2.7
27 | .35
.33
.80
13 | | 21
22
23
24
25 | 6.3
5.8
5.0
3.9
3.4 | 5.9
4.4
6.2
6.6
7.1 | 5.8
5.6
5.5
5.8
5.8 | 2.1
2.1
1.9
1.8 | 3.2
3.2
3.6
3.6
3.6 | 18
19
21
21
27 | 13
13
14
13
13 | 7.0
6.2
6.1
5.4
5.1 | 5.2
12
6.1
4.7
2.6 | 7.0
4.5
3.0
2.9
3.0 | 10
6.3
5.8
6.6
4.4 | 9.1
152
57
32
22 | | 26
27
28
29
30
31 | 5.2
6.6
5.7
4.8
4.3
5.6 | 7.1
6.7
9.5
14
16 | 5.5
4.9
4.9
4.5
4.2
3.6 | 1.7
1.7
1.8
2.8
8.5 | 3.6
3.9
4.2
9.0 | 26
27
31
39
35
33 | 20
45
41
36
30 | 4.9
4.5
4.1
3.7
3.4
3.4 | 1.8
4.0
13
16
9.3 | 3.2
3.3
3.8
4.0
4.5
4.6 |
4.0
4.7
3.7
4.1
3.7
4.7 | 17
12
9.4
7.1
6.1 | | TOTAL
MEAN
MAX
MIN | 136.4
4.4
6.6
2.1 | 284.0
9.5
27
3.8 | 244.0
7.9
17
3.6 | 84.3
2.7
22
1.2 | 163.9
5.7
13
3.2 | 2038
66
194
18 | 1605
53
229
13 | 311.0
10
23
3.4 | 220.2
7.3
16
1.8 | 216.7
7.0
47
2.9 | 282.3
9.1
39
2.7 | 421.29
14
152
.27 | WTR YR 1988 TOTAL 6007.09 MEAN 16 MAX 229 MIN .27 #### 04073500 FOX RIVER AT BERLIN, WI LOCATION.--Lat 43°57'14", long 88°57'08", in NE 1/4 sec.16, T.17 N., R.13 E., Green Lake County, Hydrologic Unit 04030201, on left bank, 0.4 mi downstream from government dam, 1.0 mi south of Huron Street bridge in Berlin, 2.5 mi upstream from Barnes Creek, and at mile 89.0. DRAINAGE AREA. -- 1,340 mi². PERIOD OF RECORD. -- January 1898 to current year. REVISED RECORDS.--WSP 1337: 1910. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 744.52 ft above mean tide at New York City (by U.S. Army Corps of Engineers). Prior to Oct. 27, 1954, nonrecording gage at site 0.3 mi upstream at same datum. REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records good except for period of ice effect, which is fair. Usually less than about 20 ft³/s was diverted into the basin from the Wisconsin River at Portage Canal throughout the year. Data-collection platform and gage-height telemeter at station AVERAGE DISCHARGE.--90 years, 1,124 ft3/s, 11.39 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,900 $\rm ft^3/s$, Mar. 17, 18, 1946, gage height, 15.5 ft; minimum observed, 210 $\rm ft^3/s$, June 27, 1988, gage height, 7.30 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,540 ft³/s, Apr. 6, gage height, 11.97 ft, but may have been more on Mar. 10 during period of ice effect; maximum gage height, 12.72 ft, Mar. 10 (backwater from ice); minimum discharge, 210 ft³/s, June 27, gage height, 7.30 ft. RATING TABLE (gage height, in feet, and discharge in cubic feet per second). (Stage-discharge relation affected by ice Dec. 18 to Mar. 13.) | 7.3 | 210 | 10.0 | 1,370 | |-----|-----|------|-------| | 8.0 | 490 | 11.0 | 1,950 | | 9.0 | 910 | 12.0 | 2,560 | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | |------------|-------|------|-----|---------|--------|------|---------|------|----|-----------|------| | | | | | M | EAN VA | LUES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|--|---|--|-----------------------------------|--|---|--|-----------------------------------|--|--|---| | 1 | 1010 | 971 | 1330 | 1100 | 800 | 860 | 2200 | 1470 | 483 | 311 | 354 | 459 | | 2 | 1000 | 1010 | 1350 | 1000 | 840 | 900 | 2220 | 1440 | 506 | 318 | 334 | 446 | | 3 | 929 | 1030 | 1370 | 960 | 880 | 980 | 2350 | 1400 | 477 | 331 | 327 | 465 | | 4 | 932 | 1040 | 1360 | 920 | 860 | 1100 | 2440 | 1350 | 495 | 330 | 333 | 449 | | 5 | 919 | 1040 | 1310 | 880 | 860 | 1200 | 2490 | 1240 | 489 | 319 | 412 | 409 | | 6
7
8
9
10 | 868
806
781
804
779 | 1020
1020
1030
1020
1020 | 1400
1440
1410
1420
1420 | 820
780
760
740
720 | 840
840
840
840 | 1400
1800
2000
2400
2500 | 2530
2520
2490
2470
2440 | 1110
1040
1020
1040
1050 | 460
448
439
372
396 | 308
294
296
298
309 | 433
432
457
424
414 | 422
436
451
423
395 | | 11 | 759 | 1020 | 1430 | 700 | 820 | 2500 | 2400 | 1000 | 414 | 318 | 427 | 386 | | 12 | 752 | 1030 | 1440 | 680 | 820 | 2400 | 2360 | 1010 | 404 | 323 | 422 | 393 | | 13 | 736 | 1030 | 1440 | 680 | 800 | 2400 | 2310 | 996 | 408 | 328 | 427 | 365 | | 14 | 740 | 1020 | 1440 | 680 | 800 | 2380 | 2260 | 931 | 395 | 344 | 444 | 361 | | 15 | 738 | 1020 | 1390 | 680 | 800 | 2290 | 2220 | 914 | 381 | 340 | 440 | 355 | | 16 | 734 | 1030 | 1220 | 680 | 800 | 2230 | 2160 | 881 | 330 | 413 | 429 | 353 | | 17 | 777 | 1100 | 1170 | 680 | 800 | 2200 | 2090 | 836 | 321 | 414 | 415 | 377 | | 18 | 805 | 1150 | 1100 | 680 | 800 | 2170 | 2010 | 796 | 321 | 441 | 411 | 389 | | 19 | 801 | 1180 | 1300 | 680 | 800 | 2150 | 1920 | 801 | 339 | 471 | 407 | 440 | | 20 | 800 | 1190 | 1400 | 700 | 780 | 2110 | 1850 | 777 | 330 | 485 | 431 | 494 | | 21 | 797 | 1160 | 1500 | 720 | 780 | 2070 | 1770 | 760 | 300 | 498 | 455 | 490 | | 22 | 803 | 1130 | 1500 | 700 | 780 | 2030 | 1710 | 738 | 310 | 484 | 468 | 622 | | 23 | 802 | 1190 | 1600 | 700 | 780 | 2020 | 1670 | 699 | 288 | 477 | 504 | 748 | | 24 | 818 | 1220 | 1600 | 700 | 780 | 2000 | 1640 | 653 | 294 | 484 | 504 | 898 | | 25 | 830 | 1220 | 1500 | 680 | 780 | 2010 | 1600 | 629 | 311 | 478 | 494 | 992 | | 26
27
28
29
30
31 | 851
870
866
908
941
936 | 1200
1200
1210
1240
1300 | 1500
1500
1400
1400
1300
1200 | 680
680
680
680
700
740 | 780
780
800
820
 | 2010
2000
2000
2110
2160
2190 | 1560
1550
1520
1510
1490 | 651
618
564
549
502
481 | 241
217
262
273
297 | 445
450
443
414
387
346 | 474
480
490
488
468
471 | 1030
1050
1030
1010
1050 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 25892
835
1010
734
.62
.72 | 33041
1101
1300
971
.82
.92 | 43140
1392
1600
1100
1.04
1.20 | 23180
748
1100
680
.56 | 23540
812
880
780
.61 | 60570
1954
2500
860
1.46
1.68 | 61750
2058
2530
1490
1.54
1.71 | 27946
901
1470
481
.67 | 11001
367
506
217
.27 | 11897
384
498
294
. 29 | 13469
434
504
327
.32
.37 | 17188
573
1050
353
. 43
. 48 | CAL YR 1987 TOTAL 425089 MEAN 1165 MAX 2390 MIN 604 CFSM .87 IN. 11.80 WTR YR 1988 TOTAL 352614 MEAN 963 MAX 2530 MIN 217 CFSM .72 IN. 9.79 #### 04074950 WOLF RIVER AT LANGLADE, WI LOCATION.--Lat 45°11'24", long 88°44'00", between secs. 3 and 10, T.31 N., R.14 E., Langlade County, Hydrologic Unit 04030202, on left bank, upstream of bridge on State Highway 64 at Langlade, 1.5 mi east of White Lake, 3.0 mi upstream from White Lake Creek, and at about mile 170 above mouth. DRAINAGE AREA. -- 463 mi². PERIOD OF RECORD. -- March 1966 to September 1979, October 1980 to current year. REVISED RECORDS.--WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 1,240 ft, from topographic map. Prior to Oct. 1, 1976, nonrecording gage 50 ft downstream at same elevation. REMARKS.--Estimated daily discharges: Ice periods listed in rating tables below. Records good except those for ice-affected periods, which are fair. AVERAGE DISCHARGE.--21 years (water years 1967-79, 1981-88), 453 ft³/s, 13.29 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 2,200 ft³/s, Mar. 15, 1973, gage height, 9,48 ft; maximum gage height, 10.06 ft, Dec. 20, 21, 24, 1984, backwater from ice; minimum discharge, 119 ft³/s, Nov. 8, 1976, gage height, 7.24 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,160 $\rm ft^3/s$, Apr. 7, gage height, 9.22 ft; minimum discharge, 132 $\rm ft^3/s$, July 8, gage height, 7.29 ft. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 5, 6, and Dec. 17 to Apr. 1.) | | Oct. 1 | to April | 1 | | Apr. 2 to | Sept. 3 | 30 | |------------|------------|------------|--------------|-------------------|-------------------|-------------------|---------------------| | 7.5
8.0 | 207
390 | 8.5
9.0 | 640
1,000 | 7.3
7.5
8.0 | 135
197
397 | 8.5
9.0
9.5 | 647
973
1,420 | | | | DISCHARGE | R, CUBIC | FEET PER | SECOND, | WATER YEAD
EAN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|---|--|--|---|---|---|---|--|---|--|---|---| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 229 | 303 | 380 | 310 | 290 | 290 | 820 | 435 | 216 | 166 | 193 | 217 | | 2 | 228 | 320 | 348 | 270 | 290 | 280 | 750 | 422 | 213 | 159 | 181 | 216 | | 3 | 227 | 345 | 355 | 280 | 270 | 280 | 879 | 402 | 211 | 154 | 181 | 217 | | 4 | 222 | 392 | 345 | 290 | 260 | 290 | 1020 | 385 | 208 | 149 | 177 | 259 | | 5 | 222 | 386 | 360 | 270 | 260 | 300 | 1030 | 329 | 203 | 146 | 185 | 254 | | 6 | 228 | 367 | 360 | 250 | 260 | 310 | 1110 | 305 | 192 | 141 | 178 | 247 | | 7 | 241 | 348 | 346 | 250 | 260 | 320 | 1160 | 295 | 187 | 137 | 172 | 235 | | 8 | 248 | 352 | 337 | 240 | 260 | 350 | 1120 | 306 | 184 | 138 | 195 | 235 | | 9 | 300 | 352 | 360 | 230 | 260 | 370 | 1060 | 393 | 191 | 201 | 222 | 250 | | 10 | 285 | 325 | 375 | 230 | 270 | 390 | 998 | 429 | 178 | 220 | 205 | 237 | | 11 | 250 | 318 | 383 | 220 | 260 | 370 | 925 | 407 | 170 | 199 | 196 | 229 | | 12 | 231 | 318 | 431 | 220 | 270 | 360 | 856 | 402 | 162 | 180 | 212 | 225 | | 13 | 228 | 304 | 428 | 220 | 260 | 350 |
784 | 427 | 157 | 170 | 234 | 228 | | 14 | 226 | 299 | 428 | 230 | 260 | 340 | 709 | 435 | 150 | 165 | 275 | 208 | | 15 | 227 | 294 | 413 | 240 | 260 | 330 | 663 | 418 | 145 | 164 | 247 | 195 | | 16 | 237 | 312 | 352 | 250 | 270 | 330 | 624 | 393 | 143 | 235 | 214 | 199 | | 17 | 316 | 446 | 350 | 250 | 270 | 330 | 580 | 368 | 144 | 365 | 223 | 261 | | 18 | 374 | 544 | 340 | 250 | 280 | 330 | 546 | 349 | 141 | 276 | 248 | 236 | | 19 | 339 | 489 | 360 | 240 | 290 | 330 | 520 | 330 | 155 | 231 | 254 | 263 | | 20 | 318 | 445 | 390 | 250 | 270 | 330 | 473 | 320 | 184 | 208 | 238 | 420 | | 21 | 317 | 367 | 400 | 250 | 260 | 340 | 429 | 347 | 165 | 247 | 224 | 408 | | 22 | 328 | 455 | 400 | 250 | 260 | 350 | 412 | 344 | 177 | 353 | 216 | 364 | | 23 | 331 | 535 | 410 | 250 | 260 | 370 | 425 | 335 | 168 | 322 | 255 | 351 | | 24 | 337 | 509 | 360 | 260 | 260 | 420 | 441 | 318 | 155 | 277 | 258 | 332 | | 25 | 338 | 450 | 330 | 260 | 270 | 560 | 481 | 295 | 153 | 259 | 251 | 316 | | 26
27
28
29
30
31 | 334
350
343
325
314
306 | 425
406
380
363
396 | 320
320
330
340
320
330 | 250
250
260
260
270
280 | 280
290
290
290
 | 720
680
720
860
960
880 | 464
468
495
486
464 | 283
240
230
235
235
225 | 150
147
161
202
184 | 241
230
222
207
200
191 | 251
257
258
242
229
220 | 305
284
267
260
262 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 8799
284
374
222
.61
.71 | 11545 1
385
544
294
.83
.93 | 1301
365
431
320
.79 | 7830
253
310
220
.55
.63 | 7830
270
290
260
.58
.63 | 13440
434
960
280
.94
1.08 | 21192
706
1160
412
1.53
1.70 | 10637
343
435
225
.74
.85 | 5196
173
216
141
.37
.42 | 6553
211
365
137
.46 | 6891
222
275
172
. 48
. 55 | 7980
266
420
195
.57
.64 | CAL YR 1987 TOTAL 119713 MEAN 328 MAX 591 MIN 187 CFSM .71 IN. 9.62 WTR YR 1988 TOTAL 119194 MEAN 326 MAX 1160 MIN 137 CFSM .70 IN. 9.58 #### 04075050 WOLF RIVER AT HIGHWAY M NEAR LANGLADE, WI LOCATION.--Lat 45°07'38", long 88°39'45", in SE 1/4 NE 1/4 sec.31, T.31 N., R.14 E., Langland County, Hydrologic Unit 04030202, at County Highway M bridge near State Highway 55, 5.7 mi southeast of Langlade. DRAINAGE AREA. -- 489 mi². PERIOD OF RECORD. -- April 1986 to current year. REMARKS.--Discharge values are estimated from record at station 04074950 Wolf River at Langlade. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | |---|---|--|--|--|--|--|--|---|---| | OCT_1987 | 1//0 | | 0.07 | | 0.50 | 0.5 | 100 | 0.0 | 1.0 | | NOV_ | 1440 | | 227 | | 8.50 | 9.5 | 120 | 2 6 | 13 | | 17
D EC | 1215 | | 445 | 215 | 8.30 | 7.0 | 100 | 22 | 11 | | 16
JAN 1988 | 1125 | | 337 | 230 | 8.30 | 0.0 | 100 | 23 | 11 | | 21
F EB | 1145 | 290 | | 263 | 7.80 | 0.0 | 120 | 27 | 13 | | 22
MAR | 1115 | 26 0 | | 2 85 | 7.80 | 0.0 | 130 | 30 | 14 | | 15
MAY | 1115 | 330 | | 260 | 8.10 | 0.0 | 12 0 | 27 | 13 | | 03 | 1200 | | 406 | 180 | 8.43 | 14.5 | 89 | 20 | 9.5 | | 31
JUN | 1345 | | 225 | 223 | 8.60 | 25. 0 | 12 0 | 26 | 13 | | 28
JUL | 1050 | | 158 | 235 | 8.30 | 18.5 | 130 | 27 | 14 | | 2 6
AUG | 1215 | | 239 | 210 | 8.60 | 21.5 | 110 | 24 | 12 | | 16
SEP | 1050 | | 211 | 215 | 8.40 | 24.0 | 120 | 27 | 13 | | 15 | 1105 | | 190 | 245 | 8.50 | 13.5 | 120 | 2 6 | 14 | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 1987 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | PERCENT (00932) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 1987
15
NOV | DIS-
SOLVED
(MG/L
AS NA)
(00930) | PERCENT (00932) | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 1987
15
NOV
17 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | PERCENT
(00932)
5 | AD-
SORP-
TION
RATIO
(00931)
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
0.30 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 1987
15
NOV
17
DEC
16
JAN 1988 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
2.6
2.2 | PERCENT (00932) 5 5 5 | AD-
SORP-
TION
RATIO
(00931) | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.0
5.4
8.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 1987
15
NOV
17
DEC
16 | DIS-
SOLVED
(MG/L
AS NA)
(00930) | PERCENT
(00932)
5 | AD-
SORP-
TION
RATIO
(00931)
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
0.30 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
2.6
2.2 | PERCENT (00932) 5 5 5 | AD-
SORP-
TION
RATIO
(00931)
0.1
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.1
1.0 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6
15 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.4
3.1
2.8 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.30
0.20 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.0
5.4
8.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
2.6
2.2
2.4
2.5 | PERCENT (00932) 5 5 5 4 | AD-
SORP-
TION
RATIO
(00931)
0.1
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.1
1.0
1.0 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6
15
16 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.4
3.1
2.8
2.8 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
0.30
0.20
0.20 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.0
5.4
8.5 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
127
117
118
143 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
2.6
2.2
2.4
2.5
2.7 | PERCENT (00932) 5 5 5 4 4 | AD-
SORP-
TION
RATIO
(00931)
0.1
0.1
0.1
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.1
1.0
1.0 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6
15
16
12 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.4
3.1
2.8
2.8
2.6 |
RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.30
0.20
0.20
0.20 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.0
5.4
8.5
12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
127
117
118
143 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15
MAY
03
31
JUN
28 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
2.6
2.2
2.4
2.5
2.7
2.7 | PERCENT (00932) 5 5 5 4 4 5 5 5 5 | AD-
SORP-
TION
RATIO
(00931)
0.1
0.1
0.1
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.1
1.0
1.0
1.0
1.5
0.10 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6
15
16
12
10 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.4
3.1
2.8
2.8
2.6
2.4
2.2 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.30
0.20
0.20
0.20
0.20 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.0
5.4
8.5
12
14 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
127
117
118
143
.144
137 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15
MAY
03
31
JUN
28
JUL
26 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
2.6
2.2
2.4
2.5
2.7
2.7
2.7 | PERCENT (00932) 5 5 5 4 4 5 5 4 | AD-
SORP-
TION
RATIO
(00931)
0.1
0.1
0.1
0.1
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.1
1.0
1.0
1.5
0.10 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6
15
16
12
10 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.4
3.1
2.8
2.8
2.6
2.4
2.2 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
0.30
0.20
0.20
0.20
0.20
0.20 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.0
5.4
8.5
12
14
13
3.5
6.3 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
127
117
118
143
.144
137 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15
MAY
03
31
JUN
28 | DIS-
SOLVED
(MG/L
AS NA)
(00930)
2.6
2.2
2.4
2.5
2.7
2.7
2.7 | PERCENT (00932) 5 5 5 4 4 5 5 4 4 | AD-
SORP-
TION
RATIO
(00931)
0.1
0.1
0.1
0.1
0.1
0.1 | SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935)
1.1
1.0
1.0
1.0
0.10
0.80
0.90
0.70 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
9.6
15
16
12
10
10
12
9.5
9.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
4.4
3.1
2.8
2.6
2.4
2.2
2.6 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.30
0.20
0.20
0.20
0.20
0.20
0.30 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
5.0
5.4
8.5
12
14
13
3.5
6.3
5.9 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300)
127
117
118
143
.144
137
111
128 | # STREAMS TRIBUTARY TO LAKE MICHIGAN 04075050 WOLF RIVER NEAR LANGLADE, WI--CONTINUED | DATE | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | ARSENIC
TOTAL
(UG/L
AS AS)
(01002) | BARIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS BA)
(01007) | CADMIUM
TOTAL
RECOV-
ERABLE
(UG/L
AS CD)
(01027) | CHRO-
MIUM,
TOTAL
RECOV-
ERABLE
(UG/L
AS CR)
(01034) | COPPER,
TOTAL
RECOV-
ERABLE
(UG/L
AS CU)
(01042) | |---|---|---|--|--|--|--|--|---|---| | OCT 1987
15 | 131 | 0.17 | 77.8 | <0.010 | <1 | <100 | <1 | <1 | 5 | | NOV
17 | 116 | 0.16 | 141 | 0.020 | <1 | <100 | 1 | 1 | 1 | | DEC 16 | 122 | 0.16 | 107 | <0.010 | <1 | | | | | | JAN 1988
21 | 138 | 0.19 | 112 | 0.060 | <1 | <100 | <1 | 2 | 1 | | FEB 22 | 149 | 0.20 | 101 | 0.060 | <1 | <100 | <1 | 1 | 3 | | MAR
15
MAY | 136 | 0.19 | 122 | 0.040 | 4 | <100 | <1 | 2 | 4 | | 03
31 | 99
126 | 0.15
0.17 | 122
77.8 | 0.010 | <1
1 | <100 | |
<1 | | | JUN
28 | 133 | 0.18 | 56.7 | 0.010 | 1 | <100 | <1 | 1 | 2 | | JUL.
26 | 120 | 0.19 | 91.0 | 0.020 | 1 | <100 | | | | | AUG
16 | 139 | 0.19 | 78.0 | <0.010 | 2 | | | | | | SEP
15 | 130 | 0.18 | 68.7 | <0.010 | 1 | <100 | 3 | <1 | 2 | | | | | | | | | | | | | DATE | IRON,
TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | LEAD,
TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | MANGA-
NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | MERCURY
TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | NICKEL,
TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | SELE-
NIUM,
TOTAL
(UG/L
AS SE)
(01147) | SILVER,
TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | ZINC,
TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | CYANIDE
TOTAL
(MG/L
AS CN)
(00720) | | OCT 1987 |
TOTAL
RECOV-
ERABLE
(UG/L
AS FE) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NIUM,
TOTAL
(UG/L
AS SE)
(01147) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG)
(01077) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | TOTAL
(MG/L
AS CN) | | OCT 1987
15
NOV | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900) | TOTAL
RECOV-
ERABLE
(UG/L
AS NI) | NIUM,
TOTAL
(UG/L
AS SE) | TOTAL
RECOV-
ERABLE
(UG/L
AS AG) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN) | TOTAL
(MG/L
AS CN)
(00720) | | OCT 1987
15
NOV
17
DEC | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045) | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051) | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055) | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900)
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NIUM,
TOTAL
(UG/L
AS SE)
(01147)
<1 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092) | TOTAL
(MG/L
AS CN)
(00720) | | OCT 1987
15
NOV
17
DEC
16
JAN 1988 | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051)
8
<5 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10 | TOTAL
RECOV-
ERABLE
(UG/L
AS HG)
(71900)
<0.10
<0.10 | TOTAL
RECOV-
ERABLE
(UG/L
AS NI)
(01067) | NIUM,
TOTAL
(UG/L
AS SE)
(01147)
<1
<1 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <1 <1 | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092)
<10
<10 | TOTAL
(MG/L
AS CN)
(00720)

<0.010 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230
 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051)
8
<5 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10
40 | TOTAL RECOV-ERABLE (UG/L AS HG) (71900) <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) (01067) | NIUM,
TOTAL
(UG/L
AS SE)
(01147)
<1
<1
<1 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <1 <1 1 | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092)
<10
<10
 | TOTAL (MG/L AS CN) (00720) <0.010 <0.010 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230

260
250 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051)
8
<5

<5 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10
40

30
50 | TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 1 <1 1 5 | NIUM,
TOTAL (UG/L
AS SE) (01147) <1 <1 <1 <1 <1 <1 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <1 <1 1 <1 | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092)
<10
<10

<10
<10 | TOTAL (MG/L AS CN) (00720) <0.010 <0.010 <0.010 <0.010 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15 | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230
 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051)
8
<5 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10
40

30
50 | TOTAL RECOVERABLE (UG/L AS HG) (71900) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOVERABLE (UG/L AS NI) (01067) | NIUM,
TOTAL
(UG/L
AS SE)
(01147)
<1
<1
<1
<1
<1 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <1 <1 1 | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092)
<10
<10
 | TOTAL (MG/L AS CN) (00720) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15
MAY
03
31 | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230

260
250 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051)
8
<5

<5
<5 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10
40

30
50 | TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 1 <1 1 5 | NIUM,
TOTAL (UG/L
AS SE) (01147) <1 <1 <1 <1 <1 <1 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <1 <1 1 <1 | TOTAL RECOVERABLE (UG/L AS ZN) (01092) <10 <10 < | TOTAL (MG/L AS CN) (00720) <0.010 <0.010 <0.010 <0.010 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15
MAY
03 | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230

260
250
310 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051)
8
<5

<5
<5 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10
40

30
50
30 | TOTAL RECOV- ERABLE (UG/L AS HG) (71900) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV- ERABLE (UG/L AS NI) (01067) 1 <1 1 5 2 | NIUM,
TOTAL
(UG/L
AS SE)
(01147)
<1
<1
<1
<1
<1
<1 | TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <1 <1 1 <1 1 1 | TOTAL
RECOV-
ERABLE
(UG/L
AS ZN)
(01092)
<10
<10

<10
<10 | TOTAL (MG/L AS CN) (00720) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | | OCT 1987
15
NOV
17
DEC
16
JAN 1988
21
FEB
22
MAR
15
MAY
03
31
JUN
28
JUN
28 | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230

260
250
310 | TOTAL
RECOV-
ERABLE
(UG/L
AS PB)
(01051)
8
<5

<5
<5 | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10
40

30
50
30 | TOTAL RECOV-ERABLE (UG/L AS HG) (71900) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 | TOTAL RECOV-ERABLE (UG/L AS NI) (01067) 1 <1 1 5 2 | NIUM, TOTAL (UG/L AS SE) (01147) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | TOTAL RECOV-ERABLE (UG/L AS AG) (01077) <1 <1 1 1 <1 1 1 1 | TOTAL RECOVERABLE (UG/L AS ZN) (01092) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | TOTAL (MG/L AS CN) (00720) <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 <0.010 | | OCT 1987 15 NOV 17 DEC 16 JAN 1988 21 FEB 22 MAR 15 MAY 03 31 JUN 28 JUL | TOTAL
RECOV-
ERABLE
(UG/L
AS FE)
(01045)
90
230

260
250
310 | TOTAL RECOV-ERABLE (UG/L AS PB) (01051) 8 <5 <5 <5 <5 <- <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- > <5 <- | NESE,
TOTAL
RECOV-
ERABLE
(UG/L
AS MN)
(01055)
10
40

30
50
30

80 | TOTAL RECOVERABLE (UG/L AS HG) (71900) <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10
<0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0. | TOTAL RECOV-ERABLE (UG/L AS NI) (01067) 1 <1 1 5 2 6 | NIUM, TOTAL (UG/L AS SE) (01147) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | TOTAL RECOV-ERABLE (UG/L AS AG) (01077) <1 <1 1 1 <1 1 1 1 | TOTAL RECOVERABLE (UG/L AS ZN) (01092) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | TOTAL (MG/L AS CN) (00720) (0.010 | #### 04077400 WOLF RIVER NEAR SHAWANO, WI LOCATION.--Lat 44°50'09", long 88°37'30", in SE 1/4 NW 1/4 sec.12, T.27 N., R.15 E., Shawano County, Hydrologic Unit 04030202, on left bank 350 ft downstream from dam, 3.7 mi north of Shawano, 1.5 mi upstream from Red River, and at mile 130.6. DRAINAGE AREA. -- 816 mi². PERIOD OF RECORD.--May 1907 to March 1909, October 1910 to current year. Monthly discharge only for some periods, published in WSP 1307. Published as "at Keshena" prior to April 1928. Published as "at Keshena Falls" April 1928 to September 1981. Published as "at Keshena Falls near Keshena" October 1981 to September 1985. REVISED RECORDS.--WSP 1337: 1914-15(M), 1918-19(M), 1921, 1923(M), 1926(M), 1928(M), 1933. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 810 ft above National Geodetic Vertical Datum of 1929, from topographic map. Prior to Mar. 23, 1928, nonrecording gage at bridge in Keshena 4.1 mi upstream at different datum, and from Mar. 23, 1928 to Sept. 30, 1985, water-stage recorder at site 5.8 mi upstream at different datum. REMARKS.--Estimated daily discharges: Oct. 3, 7-8, 10-13, 19-31, Nov. 5-15, 17-28, Nov. 30 to Dec. 1, and ice period, Dec. 17 to Mar. 31. Records good except those for estimated daily discharges, which are fair. Minor regulation by power dam upstream. AVERAGE DISCHARGE.--79 years (1907-8, 1910-88), 762 ft³/s, 12.68 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge 5,200 ft³/s, Mar. 15, 1973; maximum gage height, 15.59 ft, Dec. 2, 1983, from high-water mark in well, at site and datum then in use (backwater from ice); minimum discharge, 91 ft³/s, Dec. 22, 1939, gage height, 4.67 ft, site and datum then in use, result of ice storage. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,490 ft³/s, Apr. 5, gage height 10.53 ft; minimum daily, 253 ft³/s June 27. | | | DISCHA | RGE, CUBIO | C FEET PER | | WATER YEAR
IEAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------------|-------|--------|------------|------------|-------|---------------------------|---------|-------------|--------------|-------------|-------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 359 | 558 | 800 | 540 | 440 | 430 | 1530 | 822 | 397 | 349 | 361 | 340 | | | 427 | 550 | 774 | 450 | 460 | 440 | 1550 | 755 | 368 | 342 | 363 | 343 | | 3 | 380 | 625 | 594 | 400 | 450 | 430 | 1730 | 701 | 326 | 317 | 381 | 316 | | 2
3
4 | 324 | 718 | 491 | 430 | 430 | 440 | 1990 | 710 | 341 | 304 | 386 | 313 | | 5 | 374 | 720 | 531 | 470 | 410 | 460 | 1840 | 669 | 343 | 284 | 422 | 332 | | | | 720 | 331 | 470 | 410 | 400 | 1040 | 00) | 343 | 204 | | 332 | | 6 | 382 | 700 | 588 | 450 | 430 | 490 | 1810 | 580 | 342 | 276 | 456 | 412 | | 7 | 400 | 660 | 692 | 440 | 420 | 540 | 1730 | 534 | 330 | 291 | 389 | 417 | | 8 | 420 | 620 | 735 | 420 | 420 | 520 | 1580 | 613 | 3 3 5 | 293 | 331 | 368 | | 9 | 416 | 600 | 699 | 410 | 420 | 580 | 1600 | 6 03 | 276 | 305 | 351 | 421 | | 10 | 440 | 660 | 719 | 410 | 410 | 620 | 1420 | 690 | 403 | 32 8 | 452 | 345 | | 11 | 520 | 580 | 718 | 400 | 410 | 680 | 1300 | 737 | 345 | 439 | 468 | 327 | | 12 | 440 | 500 | 704 | 400 | 400 | 720 | 1240 | 737 | 326 | 335 | 464 | 333 | | | 400 | 600 | 704
727 | 410 | 400 | 700 | 1140 | 671 | 261 | 324 | 526 | 317 | | 13 | | | | | | | | 0/1 | 201 | 324 | | 279 | | 14 | 397 | 520 | 683 | 420 | 410 | 640 | 1050 | 705 | 313 | 335 | 675 | 2/9 | | 15 | 404 | 500 | 641 | 440 | 410 | 620 | 990 | 627 | 332 | 352 | 535 | 305 | | 16 | 411 | 571 | 721 | 450 | 410 | 620 | 918 | 650 | 325 | 465 | 575 | 329 | | 17 | 464 | 760 | 700 | 420 | 430 | 620 | 878 | 635 | 319 | 616 | 477 | 340 | | 18 | 622 | 980 | 660 | 430 | 430 | 660 | 839 | 535 | 304 | 706 | 523 | 388 | | 19 | 720 | 1200 | 640 | 440 | 420 | 640 | 835 | 596 | 335 | 680 | 514 | 457 | | 20 | 600 | 840 | 800 | 460 | 410 | 620 | 803 | 541 | 315 | 450 | 470 | 515 | | | | | | | | | _ | | | | - | | | 21 | 580 | 640 | 760 | 450 | 440 | 620 | 745 | 481 | 332 | 549 | 481 | 684 | | 22 | 620 | 580 | 760 | 440 | 480 | 620 | 709 | 563 | 434 | 411 | 454 | 665 | | 2 3 | 620 | 760 | 780 | 460 | 470 | 680 | 686 | 570 | 314 | 615 | 487 | 454 | | 24 | 640 | 840 | 800 | 470 | 440 | 740 | 748 | 558 | 307 | 535 | 561 | 542 | | 25 | 620 | 780 | 700 | 440 | 440 | 820 | 806 | 498 | 294 | 456 | 492 | 542
468 | | 26 | 600 | 720 | 520 | 460 | 450 | 1000 | 828 | 446 | 292 | 461 | 409 | 361 | | | 600 | | | | | 1000 | | | | | 377 | 446 | | 27 | | 600 | 460 | 440 | 450 | 1200 | 859 | 451 | 253 | 449 | | | | 28 | 680 | 660 | 500 | 430 | 440 | 1100 | 909 | 443 | 312 | 414 | 423 | 432 | | 29 | 620 | 730 | 600 | 440 | 430 | 1200 | 953 | 420 | 328 | 370 | 448 | 358 | | 30 | 560 | 780 | 580 | 430 | | 1300 | 890 | 403 | 336 | 369 | 409 | 400 | | 31 | 540 | | 600 | 460 | | 1400 | | 401 | | 368 | 367 | | | TOTAL | 15580 | 20552 | 20677 | 13610 | 12460 | 22150 | 34906 | 18340 | 9838 | 12788 | 14027 | 12007 | | MEAN | 503 | 685 | 667 | 439 | 430 | 715 | 1164 | 592 | 328 | 413 | 452 | 400 | | MAX | 720 | 1200 | 800 | 540 | 480 | 1400 | 1990 | 822 | 434 | 706 | 675 | 684 | | MIN | 324 | 500 | 460 | 400 | 400 | 430 | 686 | 401 | 253 | 276 | 331 | 279 | | CFSM | .62 | .84 | .82 | .54 | .53 | . 88 | 1.43 | .73 | . 40 | .51 | .55 | .49 | | IN. | .71 | .94 | .94 | .62 | | | 1.43 | . 73 | . 45 | .58 | .64 | .55 | | TIN. | ./1 | . 94 | .94 | .02 | .57 | 1.01 | 1.39 | . 84 | . 40 | . 30 | .04 | . 33 | CAL YR 1987 TOTAL 216153 MEAN 592 MAX 1200 MIN 324 CFSM .73 IN. 9.85 WTR YR 1988 TOTAL 206935 MEAN 565 MAX 1990 MIN 253 CFSM .69 IN. 9.43 #### 04079000 WOLF RIVER AT NEW LONDON, WI LOCATION.--Lat 44°23'32", long 88°44'25", in NE 1/4 SE 1/4 sec.12, T.22 N., R.14 E., Waupaca County, Hydrologic Unit 04030202, on right bank 100 ft downstream from Pearl Street bridge in New London, 0.2 mi downstream from Embarrass River, and at mile 56.3. DRAINAGE AREA. -- 2,260 mi². PERIOD OF RECORD.--March 1896 to current year. Prior to October 1913 monthly discharges only, published in WSP 1307. REVISED RECORDS.--WSP 1114: 1943(M). WSP 1337: 1931. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 747.94 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 4, 1951, nonrecording gage. REMARKS.--Estimated daily discharges: Ice period listed in table below. Records good except those for ice-affected period, which is fair. Gage-height telemeter and data-collection platform at station. AVERAGE DISCHARGE. -- 92 years, 1,761 ft³/s, 10.58 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 15,500 ft³/s, Apr. 13, 1922, gage height, 11.4 ft; maximum gage height, 11.83 ft, Apr. 3, 1979, backwater from ice; minimum daily, 150 ft³/s, Mar. 1, 1900. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of Apr. 16, 1888, reached a stage of 11.6 ft, from information by U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,350 $\rm ft^3/s$ Apr. 9, gage height, 7.70 ft; minimum discharge, 404 $\rm ft^3/s$, part of each day, July 8-9, gage height, 0.08 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 16 to Apr. 1.) | 0.1 | 410 | 5.0 | 2,230 | |-----|-------|-----|-------| | 1.0 | 680 | 6.0 | 2,760 | | 2.0 | 1,000 | 7.0 | 3,450 | | 4.0 | 1,740 | 8.0 | 4,900 | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | J AN | FEB | MAR | APR | MAY | JUN | JUL. | AUG | SEP | |------------------|-------|-------|-------|-------------|-------|-------|-------|-------|-------|-------|-------|-------| | 1 | 752 | 1110 | 1770 | 980 | 880 | 840 | 3100 | 2080 | 870 | 548 | 541 | 670 | | 2 | 746 | 1100 | 1850 | 900 | 900 | 840 | 3280 | 2040 | 839 | 557 | 523 | 655 | | 2
3
4
5 | 718 | 1100 | 1900 | 820 | 900 | 860 | 3460 | 1950 | 833 | 550 | 503 | 631 | | 4 | 725 | 1120 | 1900 | 800 | 920 | 860 | 3680 | 1840 | 815 | 522 | 466 | 625 | | 3 | 739 | 1100 | 1730 | 780 | 900 | 860 | 3910 | 1740 | 778 | 503 | 445 | 606 | | 6
7 | 719 | 1090 | 1480 | 760 | 880 | 880 | 4080 | 1590 | 765 | 496 | 454 | 593 | | , | 670 | 1130 | 1410 | 740 | 880 | 900 | 4210 | 1450 | 750 | 451 | 516 | 597 | | 8 | 656 | 1190 | 1370 | 720 | 880 | 960 | 4290 | 1420 | 743 | 416 | 573 | 574 | | 9 | 673 | 1190 | 1340 | 700 | 880 | 1100 | 4330 | 1380 | 693 | 413 | 611 | 530 | | 10 | 657 | 1160 | 1350 | 680 | 880 | 1400 | 4300 | 1370 | 623 | 484 | 606 | 489 | | 11 | 660 | 1150 | 1420 | 680 | 880 | 1700 | 4220 | 1450 | 603 | 473 | 560 |
444 | | 12 | 673 | 1130 | 1530 | 680 | 880 | 1900 | 4080 | 1530 | 566 | 453 | 518 | 506 | | 13 | 683 | 1110 | 1550 | 680 | 880 | 2100 | 3900 | 1540 | 585 | 507 | 515 | 529 | | 14 | 703 | 1060 | 1500 | 700 | 880 | 2200 | 3690 | 1450 | 587 | 527 | 551 | 516 | | 15 | 728 | 1020 | 1450 | 700 | 880 | 2300 | 3470 | 1390 | 556 | 519 | 550 | 510 | | 16 | 749 | 1020 | 1200 | 720 | 880 | 2300 | 3280 | 1330 | 501 | 578 | 651 | 521 | | 17 | 795 | 1090 | 1100 | 740 | 900 | 2200 | 3110 | 1270 | 459 | 591 | 684 | 533 | | 18 | 828 | 1230 | 1100 | 760 | 900 | 2200 | 2950 | 1230 | 462 | 611 | 640 | 491 | | 19 | 889 | 1430 | 1200 | 760 | 900 | 2200 | 2800 | 1200 | 466 | 655 | 612 | 500 | | 20 | 944 | 1650 | 1200 | 780 | 900 | 2200 | 2640 | 1180 | 445 | 691 | 567 | 543 | | 21 | 996 | 1740 | 1100 | 820 | 900 | 2100 | 2470 | 1130 | 445 | 748 | 537 | 578 | | 22 | 1020 | 1760 | 1100 | 820 | 900 | 2000 | 2290 | 1080 | 442 | 748 | 536 | 697 | | 23 | 1010 | 1790 | 1100 | 860 | 880 | 2000 | 2090 | 1030 | 420 | 723 | 599 | 818 | | 24 | 970 | 1750 | 1200 | 860 | 880 | 2000 | 1940 | 995 | 452 | 691 | 628 | 943 | | 25 | 958 | 1580 | 1200 | 860 | 880 | 2100 | 1890 | 978 | 527 | 663 | 632 | 984 | | 26 | 950 | 1520 | 1200 | 880 | 860 | 2200 | 1820 | 948 | 507 | 708 | 651 | 890 | | 27 | 1020 | 1520 | 1100 | 880 | 860 | 2200 | 1810 | 914 | 503 | 695 | 687 | 862 | | 28 | 1060 | 1550 | 1000 | 880 | 860 | 2300 | 1860 | 882 | 518 | 661 | 684 | 821 | | 29 | 1110 | 1590 | 1000 | 880 | 840 | 2500 | 1990 | 854 | 538 | 633 | 674 | 762 | | 30 | 1120 | 1640 | 1000 | 880 | | 2700 | 2070 | 864 | 547 | 614 | 673 | 742 | | 31 | 1120 | | 1000 | 880 | | 2900 | | 892 | | 582 | 675 | | | TOTAL | 26041 | 39620 | 41350 | 24580 | 25640 | 55800 | 93010 | 40997 | 17838 | 18011 | 18062 | 19160 | | MEAN | 840 | 1321 | 1334 | 793 | 884 | 1800 | 3100 | 1322 | 595 | 581 | 583 | 639 | | MAX | 1120 | 1790 | 1900 | 980 | 920 | 2900 | 4330 | 2080 | 870 | 748 | 687 | 984 | | MIN | 656 | 1020 | 1000 | 680 | 840 | 840 | 1810 | 854 | 420 | 413 | 445 | 444 | | CFSM | . 37 | .58 | .59 | . 35 | .39 | .80 | 1.37 | .59 | .26 | .26 | . 26 | . 28 | | IN. | .43 | .65 | . 68 | . 40 | . 42 | .92 | 1.53 | . 67 | . 29 | .30 | . 30 | .32 | CAL YR 1987 TOTAL 454137 MEAN 1244 MAX 2770 MIN 626 CFSM .55 IN. 7.48 WTR YR 1988 TOTAL 420109 MEAN 1148 MAX 4330 MIN 413 CFSM .51 IN. 6.92 #### 440654089120500 LAKE MORRIS AT MOUNT MORRIS, WI LOCATION.--Lat 44°06'54", long 89°12'05", in SE 1/4 SE 1/4 sec.16, T.19 N., R.11 E., Waushara County, Hydrologic Unit 04030202, at Mount Morris. DRAINAGE AREA. -- 8.94 mi². #### LAKE-STAGE RECORDS PERIOD OF RECORD .-- June 1983 to current year. GAGE. -- Staff gage read at dam outlet by Henry Pagenkopf and Clair Miller. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 5.82 ft May 1, 1984; minimum observed, 4.80 ft Feb. 8, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 5.42 ft, May 15, 16, June 29; minimum observed, 4.80 ft Feb. 8. ## GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | | MAN VILLOUI | • | | | | | | |-----|------|------|------|------|------|-------------|------|------|------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | 5.36 | 5.38 | | | | 2 | | | | | | | | | 5.38 | 5.36 | | 5.31 | | 3 | 5.20 | 5.23 | | | | | | | 5.38 | 5.34 | | | | 4 | | | | | 4.82 | | | | 5.36 | 5.32 | | | | 5 | | | | | | | 5.32 | | 5.34 | 5.32 | 5.50 | | | 6 | | | | | | | | 5.28 | 5.32 | 5.30 | | | | 7 | | | | | | | | | 5.32 | 5.30 | | | | 8 | | 5.10 | | | 4.80 | | | 5.30 | 5.30 | 5.28 | | | | 9 | | | 4.98 | | | | | | 5.28 | 5.30 | | 5.23 | | 10 | | | | | | | | 5.33 | 5.27 | 5.30 | | | | 11 | | | | | | | 5.04 | 5.38 | 5.26 | 5.32 | | | | 12 | 5.22 | | | | | | | 5.36 | 5.28 | 5.32 | 5.26 | | | 13 | | | | | | | | 5.36 | 5.30 | 5.33 | | | | 14 | | | 4.92 | | | | | 5.40 | 5.32 | 5.34 | | | | 15 | | 4.92 | | | | | | 5.42 | 5.32 | 5.36 | | 5.29 | | 16 | | | | | 4.84 | | | 5.42 | 5.31 | 5.38 | | | | 17 | | | | | | | | 5.40 | 5.32 | 5.38 | | | | 18 | | | | 4.82 | | | | 5.38 | 5.20 | 5.40 | | | | 19 | | 5.12 | | | | | | 5.32 | 5.28 | 5.38 | | | | 20 | | | | | | | | 5.34 | 5.30 | 5.36 | 5.40 | | | 21 | 5.18 | | | | | 5.06 | | 5.30 | 5.32 | 5.32 | | | | 22 | | | | | | | | 5.26 | 5.34 | 5.32 | | | | 23 | | 5.02 | | | | | | 5.26 | 5.37 | 5.30 | | 5.70 | | 24 | | | 4.95 | | 4.83 | | | 5.28 | 5.38 | 5.30 | | | | 25 | | | | | | | | 5.30 | 5.38 | 5.30 | 5.40 | | | 26 | | | | | | | | 5.32 | 5.38 | 5.31 | | | | 27 | | | | | | 5.13 | | 5.34 | 5.38 | 5.32 | | | | 28 | 5.20 | | | 4.82 | | | | 5.34 | 5.40 | 5.28 | 5.35 | | | 29 | | | 4.92 | | | | | 5.36 | 5.42 | 5.30 | | | | 30 | | 5.08 | | | | | | 5.38 | 5.38 | 5.30 | | 5.13 | | 31 | | | | | | | | 5.36 | | 5.32 | | | ### 440654089120500 LAKE MORRIS AT MOUNT MORRIS, WI--CONTINUED WATER-QUALITY RECORDS PERIOD OF RECORD. -- June 1983 to current year. REMARKS.--Lake sampled near center at a lake depth of about 43 feet. Lake ice-covered during February 24 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. WATER-QUALITY DATA, FEBRUARY 24 TO AUGUST 25, 1988 (Milligrams per liter unless otherwise indicated) | | Fel | b. 24 | Apı | r. 11 | Ju | ne 24 | Ju] | Ly 26 | Au | g. 25 | |--|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------| | Depth of sample (ft)
Specific conductance (µS/cm)
pH (units) | 1.5
378
7.80 | 38.0
413
7.10 | 1.5
389
8.30 | 41.5
411
7.30 | 1.5
322
8.60 | 40.5
420
7.40 | 1.5
339
8.40 | 40.5
424
7.10 | 1.5
339
8.10 | 40.5
438
6.90 | | Water temperature (°C) Color (Pt-Co. scale) | 0.0 | 3.0 | 11.5
30 | 4.0
5 | 26.5 | 5.0 | 26.5 | 5.0 | 23.0 | 5.0 | | Turbidity (NTU) | | | 1.0 | 0.50 | | | | | | | | Secchi-disc (meters) | | | 1. | | | . 2 | 2. | | | .1 | | Dissolved oxygen | 9.3 | 2.7 | 11.3 | 0 | 8.9 | 0.2 | 9.1 | 0 | 8.5 | 0 | | Hardness, total (as CaCO3) | | | 170 | 200 | | | | | | | | Calcium, dissolved (Ca) | | | 37 | 43 | | | | | | | | Magnesium, Dissolved (Mg) | | | 19 | 23 | | | | | | | | Sodium, dissolved (Na) | | | 1.6 | 2.0 | | | | | | | | Potassium, dissolved (K) | | | 1.0 | 1.3 | | | | | | | | Alkalinity, total (as CaCO ₂) | | | 162 | 198 | | | | | | | | Sulfate, dissolved (SO,) | | | 12 | 14 | | | | | | | | Fluoride, total (as F) | | | 0.1 | 0.1 | | | | | | | | Chloride, dissolved (Cl) | | | 2.0 | 3.0 | | | | | | | | Silica, dissolved (SiO ₂) | | | 7.6 | 14 | | | | | | | | Solids, dissolved, at 180°C | | | 194 | 230 | | | | | | | | Nitrogen, nitrite plus | | | | | | | | | | | | nitrate, diss (as N) | | | 0.61 | 0.83 | | | | | | | | Nitrogen, ammonia, diss (as N) | | | ∢0.02 | 0.03 | | | | | | | | Nitrogen, ammonia plus | | | | | | | | | | | | organic, total (as N) | | | 0.70 | 0.20 | | | | | | | | Total phosphorus (as P) | | | 0.022 | 0.012 | 0.006 | 0.130 | 0.006 | 0.330 | 0.012 | 0.360 | | Phosphorus, ortho, diss (as P) | | | 0.004 | 0.003 | | <0.002 | | 0.181 | | 0.276 | | Iron, dissolved (Fe) µg/L | | | | <100 | | | | | | | | Manganese, dissolved (Mn) µg/L | | | <40 | <40 | | | | | | | | Chlorophyll a, phyto. (µg/L) | | | 10 | | 3 | | 4 | | 5 | | #### 04082500 LAKE WINNEBAGO AT OSHKOSH, WI LOCATION.--Lat $44^{\circ}00'35''$, long $88^{\circ}31'38''$, in NE $1/^{\ell}$ NE 1/4 sec.25, T.18 N., R.16 E., Winnebago County, Hydrologic Unit 04030203, at 905 Bay Shore Drive, 800 ft east of mouth of the upper Fox River. DRAINAGE AREA.--5,880 mi², at lake outlet at Menasha Dam. Area of Lake Winnebago, 215 mi². PERIOD OF RECORD.--October 1938 to current year in reports of Geological Survey. Records from 1882 to 1938 in files of Geological Survey and U.S. Army Corps of Engineers. A report on Fox River by U.S. Army Corps of Engineers, published as House Document No. 146, 67th Congress, 2nd session, contains semi-monthly records of inflow of Lake Winnebago for the period 1896-1917. REVISED RECORD. -- WDR WI-83-1: Drainage area. GAGE.--Water-stage recorder. Nonrecording gage read once daily October 1938 to October 1978. Datum of gage is 745.05 ft above mean tide at New York City (levels by U.S. Army Corps of Engineers). Datum of Deuchman gage is 745.00 ft above mean tide at New York City. REMARKS.--Records good. Lake elevations controlled by dams at Menasha and Neenah, which are operated in the interest of navigation. Crests of both dams are at elevation 746.73 ft. Present limits of regulation are from 21 1/4 in. above the crest of Menasha dam to crest during navigation season, plus additional 18 in. below crest during winter. Oshkosh staff gage gives true level of lake, while Deuchman gage readings are affected by loss of head in the channel between lake and dam. Date-collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 5.33 ft (Deuchman gage) Nov. 8, 1881; minimum observed, -2.00 ft (Deuchman gage) Nov. 28, 1891. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 3.23 ft, May 13, local condition due to seiche; minimum, 0.50 ft, Mar. 7. | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988
MEAN VALUES | | | | | | | | | | | | | |---|--|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV
| DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.54
2.54
2.55
2.49
2.45 | 2.61
2.63
2.63
2.60
2.61 | 2.58
2.56
2.54
2.50
2.52 | 2.28
2.26
2.24
2.22
2.20 | 1.55
1.51
1.47
1.43
1.40 | .62
.61
.59
.58 | 1.58
1.61
1.69
1.82
1.89 | 2.92
2.94
2.94
2.95
2.96 | 2.81
2.82
2.78
2.76
2.76 | 2.29
2.27
2.26
2.25
2.23 | 2.15
2.14
2.14
2.14
2.15 | 2.18
2.18
2.23
2.34
2.35 | | 6
7
8
9
10 | 2.48
2.50
2.47
2.37
2.45 | 2.60
2.56
2.57
2.55
2.55 | 2.53
2.53
2.51
2.47
2.53 | 2.18
2.15
2.13
2.10
2.08 | 1.36
1.33
1.29
1.26
1.22 | . 56
. 56
. 59
. 63
. 67 | 1.96
2.05
2.07
2.09
2.13 | 2.98
2.96
2.93
2.88
2.99 | 2.76
2.76
2.78
2.69
2.65 | 2.23
2.22
2.21
2.21
2.19 | 2.15
2.14
2.14
2.16
2.15 | 2.33
2.31
2.27
2.29
2.30 | | 11
12
13
14
15 | 2.43
2.44
2.44
2.43
2.45 | 2.52
2.54
2.54
2.55
2.54 | 2.49
2.41
2.48
2.46
2.48 | 2.06
2.04
2.02
2.00 | 1.19
1.15
1.12
1.08
1.06 | .70
.73
.80
.87
.90 | 2.20
2.24
2.29
2.34
2.39 | 2.95
2.93
2.94
2.92
2.83 | 2.63
2.62
2.60
2.58
2.57 | 2.20
2.20
2.11
2.14
2.14 | 2.12
2.15
2.13
2.11
2.15 | 2.29
2.27
2.29
2.30
2.28 | | 16
17
18
19
20 | 2.47
2.51
2.52
2.55
2.55 | 2.53
2.57
2.60
2.56
2.58 | 2.42
2.45
2.44
2.42
2.44 | | 1.03
1.00
.97
.94 | .94
.99
1.04
1.09 | 2.46
2.47
2.51
2.56
2.58 | 2.93
2.91
2.88
2.87
2.88 | 2.58
2.53
2.48
2.47
2.48 | 2.16
2.19
2.20
2.20
2.19 | 2.11
2.14
2.32
2.28
2.26 | 2.23
2.26
2.29
2.28
2.24 | | 21
22
23
24
25 | 2.56
2.54
2.56
2.55
2.55 | 2.59
2.56
2.56
2.62
2.62 | 2.43
2.41
2.39
2.38
2.38 | 1.83
1.80
1.78
1.76 | .88
.85
.81
.78
.75 | 1.15
1.16
1.19
1.23
1.27 | 2.61
2.68
2.67
2.72
2.73 | 2.89
2.90
2.90
2.90
2.85 | 2.46
2.47
2.45
2.38
2.38 | 2.25
2.23
2.22
2.20
2.23 | 2.27
2.24
2.21
2.22
2.21 | 2.35
2.41
2.52
2.55
2.55 | | 26
27
28
29
30
31 | 2.53
2.56
2.57
2.56
2.56
2.58 | 2.60
2.59
2.58
2.56
2.58 | 2.38
2.37
2.36
2.34
2.31
2.28 | 1.74
1.71
1.67
1.62
1.58
1.57 | .71
.69
.67
.64 | 1.31
1.39
1.40
1.45
1.52 | 2.81
2.83
2.86
2.90
2.90 | 2.82
2.82
2.82
2.82
2.82
2.81 | 2.38
2.34
2.34
2.35
2.31 | 2.21
2.18
2.18
2.17
2.17
2.15 | 2.23
2.20
2.21
2.21
2.21
2.18 | 2.56
2.60
2.62
2.54
2.56 | | MEAN
MAX
MIN | 2.51
2.58
2.37 | 2.58
2.63
2.52 | 2.44
2.58
2.28 | | 1.07
1.55
.64 | .96
1.56
.56 | 2.35
2.90
1.58 | 2.90
2.99
2.81 | 2.57
2.82
2.31 | 2.20
2.29
2.11 | 2.18
2.32
2.11 | 2.36
2.62
2.18 | CAL YR 1987 MEAN 2.38 MAX 3.00 MIN .97 #### 04084255 LAKE WINNEBAGO NEAR STOCKBRIDGE, WI LOCATION.--Lat 44°04'17", long 88°19'52", Stockbridge Indian Reservation, Calumet County, Hydrologic Unit 04030203, on east shore of Lake Winnebago, 300 ft south of County Highway E and 1.6 mi west of Stockbridge. DRAINAGE AREA.--5,880 mi^2 , at lake outlet at Menasha Dam. Area of Lake Winnebago, 215 mi^2 . PERIOD OF RECORD. -- November 1982 to current year. GAGE.--Water-stage recorder. Datum of gage is 745.05 ft above mean tide of New York City (levels by U. S. Army Corps of Engineers). REMARKS.--Records good. Lake elevations controlled by dams at Menasha and Neenah, which are operated in the interest of navigation. Crests of both dams are at elevation 746.73 ft. Present limits of regulation are from 21 1/4 in. above the crest of Menasha dam to crest during navigation season, plus additional 18 in. below crest during winter. Data-collection platform at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 3.73 ft, Nov. 20, 1985, local condition due to seiche. Minimum observed, 0.30 ft, Mar. 1, 1986. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 3.24 ft, May 12, local condition due to seiche; minimum, 0.49 ft, Mar. 8. | | | | GAGE HEI | GHT, FEET | | EAR OCTOB
AN VALUES | | O SEPTEMB | ER 1988 | | | | |----------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.67
2.56
2.54
2.54
2.53 | 2.56
2.60
2.63
2.68
2.70 | 2.56
2.58
2.48
2.50
2.49 | 2.26
2.23
2.21
2.20
2.18 | 1.53
1.49
1.45
1.41
1.39 | .59
.58
.56
.55 | 1.54
1.58
1.71
1.82
1.86 | 2.89
2.90
2.91
2.92
2.94 | 2.79
2.72
2.74
2.74
2.76 | 2.23
2.24
2.24
2.22
2.21 | 2.13
2.15
2.13
2.15
2.21 | 2.19
2.17
2.18
2.24
2.32 | | 6
7
8
9
10 | 2.53
2.49
2.46
2.49
2.41 | 2.62
2.55
2.51
2.55
2.50 | 2.47
2.47
2.48
2.58
2.55 | 2.15
2.12
2.10
2.08
2.05 | 1.34
1.30
1.26
1.23
1.20 | .53
.53
.56
.61
.64 | 1.94
2.03
2.04
2.07
2.12 | 2.93
2.91
2.90
2.99
2.97 | 2.75
2.73
2.58
2.59
2.62 | 2.20
2.21
2.21
2.18
2.21 | 2.19
2.14
2.13
2.11
2.12 | 2.33
2.32
2.32
2.30
2.26 | | 11
12
13
14
15 | 2.45
2.42
2.43
2.44
2.43 | 2.56
2.53
2.52
2.50
2.49 | 2.50
2.62
2.57
2.44
2.36 | 2.03
2.01
2.00
1.97
1.94 | 1.16
1.13
1.09
1.05
1.04 | .67
.72
.79
.84 | 2.16
2.22
2.28
2.33
2.42 | 2.93
2.97
2.93
2.89
2.90 | 2.64
2.62
2.61
2.61
2.58 | 2.20
2.13
2.14
2.14
2.09 | 2.12
2.13
2.15
2.18
2.11 | 2.24
2.26
2.29
2.26
2.20 | | 16
17
18
19
20 | 2.46
2.57
2.55
2.53
2.56 | 2.51
2.64
2.66
2.69
2.66 | 2.48
2.44
2.41
2.39
2.43 | 1.90
1.88
1.85
1.82
1.87 | 1.00
.97
.93
.90
.89 | .92
.97
1.02
1.07
1.10 | 2.47
2.51
2.55
2.58
2.60 | 2.88
2.82
2.83
2.83
2.85 | 2.50
2.46
2.49
2.49
2.45 | 2.13
2.16
2.17
2.18
2.17 | 2.11
2.10
2.14
2.20
2.23 | 2.16
2.24
2.27
2.31
2.42 | | 21
22
23
24
25 | 2.60
2.55
2.56
2.55
2.55 | 2.58
2.57
2.60
2.56
2.50 | 2.40
2.38
2.37
2.36
2.36 | 1.84
1.80
1.78
1.75
1.74 | .84
.81
.79
.75
.72 | 1.12
1.13
1.17
1.21
1.25 | 2.62
2.55
2.58
2.71
2.75 | 2.85
2.83
2.80
2.77
2.81 | 2.43
2.46
2.40
2.40
2.39 | 2.18
2.19
2.18
2.20
2.18 | 2.20
2.17
2.24
2.31
2.31 | 2.32
2.41
2.55
2.53
2.54 | | 26
27
28
29
30
31 | 2.56
2.61
2.59
2.55
2.54
2.52 | 2.53
2.52
2.48
2.55
2.56 | 2.35
2.34
2.33
2.31
2.27
2.27 | 1.72
1.68
1.64
1.59
1.55 | .69
.66
.63
.61 | 1.33
1.37
1.36
1.45
1.51
1.53 | 2.72
2.72
2.85
2.87
2.88 | 2.87
2.83
2.79
2.80
2.79
2.79 | 2.31
2.30
2.27
2.23
2.22 | 2.18
2.19
2.19
2.18
2.15
2.13 | 2.24
2.22
2.23
2.21
2.18
2.18 | 2.53
2.54
2.46
2.47
2.52 | | MEAN
MAX
MIN | 2.52
2.67
2.41 | 2.57
2.70
2.48 | 2.44
2.62
2.27 | 1.92
2.26
1.55 | 1.04
1.53
.61 | .94
1.53
.53 | 2.34
2.88
1.54 | 2.87
2.99
2.77 | 2.53
2.79
2.22 | 2.18
2.24
2.09 | 2.17
2.31
2.10 | 2.34
2.55
2.16 | CAL YR 1987 MEAN 2.37 MAX 3.01 MIN .95 WTR YR 1988 MEAN 2.16 MAX 2.99 MIN .53 #### 04084445 FOX RIVER AT APPLETON, WI LOCATION.--Lat 44°14'53", long 88°25'23" in NW 1/4 SE 1/4 sec.34, T.21 N., R.17 E., Outagamie County, Hydrologic Unit 04030204, on left bank at south end of Lutz Park, approximately 2,600 ft upstream of Memorial Drive bridge at Appleton. DRAINAGE AREA. -- 5,950 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1986 to current year. GAGE.--Acoustical Velocity Meter (AVM) system. Single-path, mid-depth transducer installation. Data are stored using CR-21x datalogger with phone modem connection for daily retrieval. REMARKS.--Stage-discharge relationship prior to September 30, 1986, is possibly affected by downstream dam gate adjustment, powerhouse operations, and navigation locks. Records prior to September 30, 1986, are based on short-term stage ratings and are considered fair. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 16,300 $\rm ft^3/s$, Oct. 7, 1986; minimum daily, 840 $\rm ft^3/s$, Aug. 17, 1988. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 7,740 ft³/s Apr. 4, stage 6.30 ft; minimum daily, 840 ft³/s, Aug. 17, stage 5.07 ft. | | | DISCH | ARGE, CUBIC | FEET PER | | , WATER YEAR
MEAN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |------------------|--------|--------|-------------|----------|--------|-----------------------------|-----------|---------|-----------|-------
-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4 | 2940 | 2620 | 5420 | 3980 | 5600 | 3810 | 6260 | 3290 | 1680 | 920 | 962 | 974 | | 2 | 2610 | 2690 | 6140 | 4140 | 5480 | 3740 | 6300 | 3300 | 1550 | 939 | 986 | 948 | | 3 | 2620 | 2750 | 6040 | 4140 | 5680 | 3830 | 7530 | 3490 | 1480 | 969 | 981 | 1110 | | 4 | 2790 | 3420 | 5260 | 3040 | 5370 | 3620 | 7740 | 3370 | 1540 | 966 | 973 | 1340 | | 5 | 2490 | 4290 | 4870 | 3790 | 4780 | 3600 | 7350 | 3360 | 1550 | 973 | 985 | 1070 | | 6 | 1880 | 4160 | 4920 | 3760 | 5630 | 3690 | 6990 | 3410 | 1600 | 901 | 997 | 1030 | | 7 | 1940 | 4180 | 5050 | 3780 | 5420 | 3750 | 7140 | 3410 | 1580 | 884 | 922 | 1070 | | 8 | 1700 | 4120 | 4960 | 3710 | 4960 | 3760 | 6770 | 3500 | 1260 | 889 | 943 | 1130 | | 9 | 2030 | 4050 | 4950 | 3620 | 5190 | 3710 | 6330 | 3630 | 1230 | 892 | 937 | 1040 | | 10 | 1220 | 3300 | 5580 | 3540 | 5450 | 3710 | 6220 | 3410 | 1350 | 923 | 918 | 1020 | | 11 | 1130 | 2760 | 6180 | 2680 | 4940 | 4410 | 5610 | 3450 | 1440 | 956 | 926 | 1030 | | 12 | 1140 | 2820 | 6050 | 3560 | 5040 | 4150 | 4510 | 3390 | 1370 | 921 | 975 | 1020 | | 13 | 1160 | 2820 | 6020 | 3590 | 5060 | 3950 | 4570 | 3380 | 1310 | 887 | 979 | 945 | | 14 | 1210 | 2760 | 5930 | 3580 | 4990 | 3840 | 4050 | 3380 | 1370 | 871 | 994 | 971 | | 15 | 1160 | 2770 | 5560 | 4160 | 4690 | 4160 | 3320 | 3565 | 1340 | 843 | 963 | 971 | | 16 | 1140 | 2850 | 5450 | 4710 | 4790 | 4160 | 3510 | 3070 | 1260 | 962 | 932 | 983 | | 17 | 1240 | 3160 | 4840 | 4880 | 4440 | 3970 | 3650 | 2960 | 1060 | 939 | 840 | 1040 | | 18 | 1250 | 3520 | 4490 | 4630 | 5290 | 3840 | 3500 | 2800 | 1110 | 903 | 1210 | 1050 | | 19 | 1210 | 4380 | 4530 | 5080 | 5090 | 3910 | 3660 | 2090 | 1090 | 899 | 1070 | 1160 | | 20 | 1230 | 4040 | 4590 | 4920 | 5100 | 3950 | 3630 | 1690 | 1140 | 897 | 1010 | 1140 | | 21 | 1180 | 4130 | 4550 | 4830 | 5000 | 4030 | 3100 | 1760 | 1180 | 940 | 981 | 1040 | | 22 | 1720 | 4360 | 4530 | 4820 | 4630 | 4090 | 3130 | 1820 | 1250 | 989 | 986 | 1280 | | 23 | 2600 | 4290 | 4770 | 4840 | 4700 | 4030 | 2700 | 1710 | 921 | 1004 | 1110 | 1380 | | 24 | 2600 | 4690 | 4830 | 4750 | 4580 | 4080 | 2800 | 1630 | 1080 | 1036 | 978 | 1300 | | 25 | 2570 | 5020 | 4530 | 4730 | 4290 | 4190 | 3010 | 1660 | 999 | 992 | 884 | 1310 | | 26 | 2650 | 5070 | 4300 | 4590 | 4060 | 4180 | 2900 | 1740 | 887 | 979 | 907 | 1320 | | 27 | 2610 | 5210 | 4410 | 4580 | 4030 | 4280 | 2900 | 1860 | 870 | 1028 | 978 | 1290 | | 28 | 2550 | 5180 | 4320 | 5400 | 4050 | 4300 | 3020 | 1790 | 893 | 984 | 960 | 1560 | | 29 | 2560 | 5350 | 5160 | 6180 | 4040 | 5160 | 3180 | 1750 | 1000 | 1018 | 907 | 2680 | | 30 | 2600 | 5300 | 5220 | 6220 | | 5980 | 3230 | 1730 | 907 | 1000 | 937 | 2570 | | 31 | 2530 | | 4140 | 6400 | | 6180 | | 1740 | | 963 | 959 | | | TOTAL | 60260 | 116060 | | | 142370 | | 38610 | 83135 | 37297 | 29267 | 30090 | 36772 | | MEAN | 1944 | 3869 | 5084 | 4407 | 4909 | 4131 | 4620 | 2682 | 1243 | 944 | 971 | 1226 | | MAX | 2940 | 5350 | 6180 | 6400 | 5680 | 6180 | 7740 | 3630 | 1680 | 1040 | 1210 | 2680 | | MIN | 1130 | 2620 | 4140 | 2680 | 4030 | 3600 | 2700 | 1630 | 870 | 843 | 840 | 945 | | AC-FT | 119500 | 230200 | | | 282400 | | | 164900 | 73980 | 58050 | 59680 | 72940 | | CFSM | . 33 | .65 | . 85 | .74 | .83 | . 69 | .78 | . 45 | . 21 | . 16 | . 16 | .21 | | | | | | | | | | | | | | | CAL YR 1987 TOTAL 1258050 MEAN 3447 MAX 8080 MIN 1130 AC-FT 2495000 CFSM .58 WTR YR 1988 TOTAL 1096141 MEAN 2995 MAX 7740 MIN 840 AC-FT 2174000 CFSM .50 #### 04084445 FOX RIVER AT APPLETON, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD .-- July 1986 to current year. PERIOD OF DAILY RECORD. - SUSPENDED-SEDIMENT DISCHARGE: July 1986 to current year. WATER TEMPERATURE: October 1986 to current year. REMARKS.--Suspended-sediment records are considered good, except for periods of estimated record, when the automated sampler was not functioning. Two samples per day were normally collected using the automated samplers, and EWI suspended-sediment measurements were made approximately every two weeks during the openwater period. Suspended-sediment records are considered fair for winter periods due to estimated record, and fewer EWI measurements. Water-temperature records are considered good to excellent, based on the daily average of 15-minute thermistor probe readings. Daily average temperature values were estimated for Jan. 15-21, Feb. 27 to Mar. 3, and June 13-15, due to a data recorder malfunction. EXTREMES FOR PERIOD OF RECORD. -- SUSPENDED-SEDIMENT CONCENTRATION--Maximum daily average concentration, 128 mg/L, Mar. 24, 1988; minimum daily average concentration, 5.0 mg/L, Jan. 19, 21-22, and Feb. 25, 1988. SUSPENDED-SEDIMENT DISCHARGE--Maximum discharge, 1,356 tons, Sept. 24, 1987; minimum discharge, 31 tons, Oct. 12, 13, 1987. WATER TEMPERATURE: Maximum daily average, 29.0°C Aug. 2, 3, 1987; minimum daily average, 0.5°C on many days during the 1987 water year. EXTREMES FOR CURRENT YEAR.-SUSPENDED-SEDIMENT CONCENTRATION--Maximum daily average concentration, 128 mg/L, Mar. 24; minimum daily average concentration, 5.0 mg/L, Jan. 19, 21-22, and Feb. 25. SUSPENDED-SEDIMENT DISCHARGE--Maximum discharge, 1,918 tons, Apr. 4; minimum discharge, 31 tons, Oct. 12, 13. WATER TEMPERATURE: Maximum daily average, 28.5°C Aug. 4; minimum daily average, 1.0°C on many days during the January and February. | DATE | TIME | SEDI-
MENT,
SUS-
PENDED | DATE | TIME | SEDI-
MENT,
SUS-
PENDED | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L) | |----------|--------------|----------------------------------|----------|--------------|----------------------------------|------------|--------------|--| | | | (MG/L)
(80154) | | | (MG/L)
(80154) | | | (80154) | | OCT 1987 | | | OCT 1987 | | | NOV 1987 | | | | 01 | 0400 | 19 | 23 | 0400 | 10 | 13 | 1600 | 8 | | 01 | 1600 | 22 | 23 | 1600 | 12 | 14 | 0400 | 10 | | 02 | 0400 | 22 | 24 | 0400 | 11 | 14 | 1600 | 9 | | 02 | 1600 | 45 | 24 | 1600 | 11 | 15 | 0400 | 10 | | 03 | 0400 | 16 | 25 | 0400 | 10 | 15 | 1600 | 9 | | 03 | 1600 | 21 | 25 | 1600 | 17 | 16 | 0400 | 11 | | 04 | 0400 | 12 | 26 | 0400 | 15 | 16 | 1600 | 19 | | 04 | 1600 | 20 | 26 | 1600 | 13 | 17 | 0400 | 17 | | 05 | 0400 | 17 | 27 | 0400 | 13 | 17 | 1600 | 50 | | 05 | 1600 | 19 | 27 | 1600 | 13 | 18 | 0400 | 24 | | 06 | 0400 | 13 | 28 | 0400 | 13 | 18 | 1600 | 35 | | 06 | 1600 | 15 | 28 | 1600 | 15 | 19 | 0400 | 33 | | 07 | 0400 | 14 | 29 | 0400 | 14 | 19 | 1600 | 15 | | 07 | 1600 | 10 | 29 | 1600 | 14 | 20 | 0400 | 13 | | 08 | 0400 | 8 | 30 | 0400 | 17 | 20 | 1600 | 9 | | 08 | 1600 | 9 | 30 | 1600 | 15 | 21 | 0400 | 10 | | 09 | 0400 | 10 | 31 | 0400 | 13 | 21 | 1600 | 10 | | 09 | 1600 | 12 | 31 | 1600 | 16 | 22 | 0400 | 14 | | 10 | 0400 | 8 | NOV | | | 22 | 1600 | 10 | | 10 | 1600 | 9 | 01 | 0400 | 13 | 23 | 0400 | 11 | | 11 | 0400 | 10 | 01 | 1600 | 16 | 23 | 1600 | 11
11 | | 11 | 1600 | 8 | 02 | 0400 | 13 | 24 | 0400 | | | 12 | 0400 | 8 | 02 | 1600 | 16 | 24 | 1600 | 11 | | 12 | 1600 | 7 | 03 | 0400 | 17 | 25 | 0400 | 10
12 | | 13 | 0400 | 7 | 03 | 1600 | 20 | 25 | 1600 | 13 | | 13 | 1600 | 7 | 04 | 0400 | 21 | 26 | 0400 | 11 | | 14 | 0400 | 12 | 04 | 1600 | 24 | 26 | 1600
0400 | 11 | | 14
15 | 1600 | 14
10 | 05 | 0400 | 19
17 | 27
27 | 1600 | 10 | | 15 | 0400
1600 | 10 | 05 | 1600
0400 | 13 | 28 | 0400 | 10 | | 15
16 | 0400 | 10 | 06
06 | 1600 | 15
15 | 2 8 | 1600 | 10 | | 16 | 1600 | 13 | 07 | 0400 | 11 | 29 | 0400 | 11 | | 17 | 0400 | 13
14 | 07 | 1600 | 11 | 29 | 1600 | 10 | | 17 | 1600 | 14 | 08 | 0400 | 12 | 30 | 0400 | 9 | | 18 | 0400 | 13 | 08 | 1600 | 11 | 30 | 1600 | 10 | | 18 | 1600 | 10 | 09 | 0400 | 11 | DEC | 1000 | 10 | | 19 | 0400 | 11 | 09 | 1600 | 13 | 01 | 0400 | 9 | | 19 | 1600 | 12 | 10 | 0400 | 10 | 01 | 1600 | 10 | | 20 | 0400 | 12 | 10 | 1600 | 10 | 02 | 0400 | 11 | | 20 | 1600 | 11 | 11 | 0400 | 9 | 02 | 1600 | 12 | | 21 | 0400 | 14 | 11 | 1600 | 19 | 03 | 0400 | 10 | | 21 | 1600 | 12 | 12 | 0400 | 10 | 04 | 0400 | - 9 | | 22 | 0400 | 13 | 12 | 1600 | j
9 | 04 | 1600 | 9
9
9 | | 22 | 1600 | 15 | 13 | 0400 | 12 | 05 | 0400 | 9 | | | | | | | | - | | | ## STREAMS TRIBUTARY TO LAKE MICHIGAN 04084445 FOX RIVER AT APPLETON, WI--CONTINUED | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------|--------------|---|----------|--------------|---|-------------------|--------------|---| | DEC 1987 | | | JAN 1988 | | | MAR 1988 | | | | 05 | 1600 | 9 | 29 | 1600 | 5 | 28 | 1600 | 22 | | 06 | 0400 | 8 | 30 | 0400 | 2 | 29 | 0400 | 34 | | 06
07 | 1600
0400 | 8
6 | 30
31 | 1600
0400 | 16
4 | 29
30 | 1600
0400 | 33
32 | | 07 | 1600 | 8 | 31 | 1600 | 34 | 30 | 1600 | 22 | | 08 | 0400 | 9 | FEB | | | 31 | 0400 | 27 | | 08 | 1600 | 10 | 01 | 0400 | 5 | 31 | 1600 | 17 | | 09
09 | 0400
1600 | 7
10 | 14
15 | 1600
1600 | 87
23 | APR
01 | 0400 | 33 | | 10 | 0400 | Ď | 16 | 1600 | 8 | 01 | 1600 | 31 | | 10 | 1600 | 12 | 17 | 1600 | 6 | 02 | 0400 | 52 | | 11
12 | 0400
0400 | 9
18 | 19
19 | 0400
1600 | 7
32 | 02
03 | 1600
0400 | 28
75 | | 12 | 1600 | 12 | 20 | 0400 | 2 | 03 | 1600 | 94 | | 13 | 0400 | 11 | 21 | 0400 | 5 | 04 | 0400 | 98 | | 13
14 | 1600
0400 | 10
10 | 21 | 1600 | 16 | 04
05 | 1600
0400 | 65
69 | | 14 | 1600 | 11 | 22
22 | 0400
1600 | 7
15 | 05 | 1600 | 35 | | 15 | 0400 | 11 | 23 | 0400 | 7 | 06 | 1600 | 48 | | 15 | 1600 | 14 | 23 | 1600 | 18 | 07 | 0400 | 46 | | 16
16 | 0400
1600 | 13
12 | 24
24 | 0400
1600 | 7
3 | 07
08
 1600
0400 | 30
23 | | 17 | 0400 | 9 | 25 | 0400 | 4 | 08 | 1600 | 24 | | 17 | 1600 | 8 | 25 | 1600 | 4 | 09 | 0400 | 40 | | 18
18 | 0400
1600 | 7
7 | 26
26 | 0400
1600 | 2
8 | 09
10 | 1600
0400 | 36
29 | | 19 | 0400 | 7 | 27 | 0400 | 3 | 10 | 1600 | 29 | | 19 | 1600 | 6 | 27 | 1600 | 17 | 11 | 0400 | 20 | | 20
20 | 0400
1600 | 5
7 | 28
28 | 0400
1600 | 3
24 | 11
12 | 1600
0400 | 26
19 | | 21 | 0400 | 7 | 29 | 1600 | 41 | 12 | 1600 | 22 | | 21 | 1600 | 8 | MAR | 0.1.00 | | 13 | 0400 | 72 | | 22
22 | 0400
1600 | 6
6 | 01
01 | 0400
1600 | 4
26 | 13
14 | 1600
0400 | 24
44 | | 23 | 0400 | 6 | 02 | 0400 | 80 | 14 | 1600 | 24 | | 23 | 1600 | 5 | 02 | 1600 | 15 | 15 | 0400 | 31 | | 24
24 | 0400
1600 | 5
6 | 03
03 | 0400
1600 | 26
16 | 15
16 | 1600
0400 | 17
14 | | 25 | 0400 | 5 | 04 | 0400 | 5 | 16 | 1600 | 24 | | 25 | 1600 | 4 | 04 | 1600 | 16 | 17 | 0400 | 9
26 | | 26
26 | 0400
1600 | 3
5 | 05
05 | 0400
1600 | 4
19 | 17
18 | 1600
0400 | 26
21 | | 27 | 0400 | 5 | 06 | 0400 | 6 | 18 | 1600 | 27 | | 27 | 1600 | 3 | 06 | 1600 | 79 | 19 | 0400 | 29 | | 28
28 | 0400
1600 | 4 | 07
07 | 0400
1600 | 15
27 | 19
20 | 1600
0400 | 26
22 | | 29 | 0400 | 4 | 08 | 0400 | ~,
9 | 20 | 1600 | 29 | | 29 | 1600 | 4 | 08 | 1600 | 69 | 21 | 0400 | 26 | | 30
30 | 0400
1600 | 3
5 | 09
10 | 0400
0400 | 37
39 | 21
22 | 1600
0400 | 33
22 | | 31 | 1600 | 6 | 11 | 0400 | 22 | 22 | 1600 | 27 | | JAN 1988 | 1600 | 5 | 12 | 0400 | 88 | 23 | 0400
1600 | 29
23 | | 15
16 | 1600
1600 | 3 | 12
13 | 1600
0400 | 57
56 | 24
25 | 0400 | 24 | | 17 | 0400 | 13 | 13 | 1600 | 30 | 26 | 0400 | 27 | | 17
18 | 1600
0400 | 3
19 | 14 | 0400
1600 | 37
65 | 26 | 1600
0400 | 32
39 | | 18 | 1600 | 2 | 14
15 | 0400 | 15 | 27
27 | 1600 | 41 | | 19 | 0400 | 5 | 15 | 1600 | 13 | 28 | 0400 | 31 | | 19
20 | 1600
0400 | 2
5
2
5 | 16
16 | 0400
1600 | 28
11 | 28
29 | 1600
0400 | 28
23 | | 20 | 1600 | 3 | 17 | 0400 | 30 | 29 | 1600 | 26 | | 21 | 0400 | 3 | 17 | 1600 | 13 | 30 | 0400 | 30 | | 21
22 | 1600
0400 | 3
5 | 18
18 | 0400
1600 | 41
10 | 30
MAY | 1600 | 26 | | 22 | 1600 | 3
3
5
2 | 18
20 | 0400 | 58 | 01 | 1600 | 36 | | 23 | 0400 | 6 | 20 | 1600 | 22 | 02 | 0400 | 28 | | 23
24 | 1600
0400 | 15
15 | 21
21 | 0400
1600 | 121
9 | 02
04 | 1600
0400 | 29
18 | | 24 | 1600 | 1 | 22 | 0400 | 19 | 05 | 0400 | 24 | | 25 | 0400 | 8
4 | 22 | 1600 | 12 | 06 | 0400
0400 | 15
23 | | 25
26 | 1600
0400 | 7 | 23
23 | 0400
1600 | 14
15 | 07 <i>.</i>
08 | 0400 | 23
36 | | 26 | 1600 | 15 | 24 | 0400 | 130 | 09 | 0400 | 40 | | 27 | 0400
1600 | 14
14 | 24 | 1600 | 88
52 | 10 | 0400
0400 | 33
22 | | 27
28 | 0400 | 10 | 26
27 | 1600
0400 | 52
118 | 11
12 | 0400 | 15 | | 28 | 1600 | 6 | 27 | 1600 | 17 | 13 | 0400 | 28 | | 29 | 0400 | 4 | 28 | 0400 | 38 | 14 | 0400 | 19 | 04084445 FOX RIVER AT APPLETON, WI--CONTINUED | | | SEDI-
MENT,
SUS- | | | SEDI-
MENT,
SUS- | | | SEDI-
MENT,
SUS- | |-----------|--------------|-----------------------------|-----------|--------------|-----------------------------|----------|--------------|-----------------------------| | DATE | TIME | PENDED
(MG/L)
(80154) | DATE | TIME | PENDED
(MG/L)
(80154) | DATE | TIME | PENDED
(MG/L)
(80154) | | MAY 1988 | | | JUL 1988 | | | AUG 1988 | | | | 15 | 0400 | 26 | 06 | 0400 | 31 | 29 | 0400 | 20 | | 16
18 | 0400
0400 | 14
10 | 07
09 | 0400
0400 | 26
24 | 29
30 | 1600
0400 | 22
20 | | 19 | 0400 | 23 | 12 | 1600 | 24 | 30 | 1600 | 21 | | 20 | 0400 | 11 | 13 | 1600 | 28 | 31 | 0400 | 20 | | 20 | 1600 | 17 | 14 | 1600 | 24 | 31 | 1600 | 23 | | 21 | 0400 | 14 | 15 | 1600 | 30 | SEP | | | | 21
22 | 1600
0400 | 18
19 | 16
17 | 1600
1600 | 26
27 | 01
01 | 0400
1600 | 29
24 | | 22 | 1600 | 21 | 18 | 1600 | 24 | 02 | 0400 | 27 | | 23 | 0400 | 26 | 19 | 1600 | 24 | 02 | 1600 | 22 | | 23 | 1600 | 24 | 20 | 1600 | 31 | 03 | 0400 | 20 | | 24
24 | 0400
1600 | 31
28 | 21
22 | 1600
1600 | 22
27 | 03
04 | 1600
0400 | 24
115 | | 25 | 0400 | 33 | 23 | 1600 | 31 | 04 | 1600 | 49 | | 25 | 1600 | 31 | 24 | 1600 | 30 | 05 | 0400 | 45 | | 26 | 0400 | 33 | 25 | 1600 | 27 | 05 | 1600 | 20 | | 26
27 | 1600
1600 | 32
31 | 26
27 | 1600
1600 | 25
24 | 06
06 | 0400
1600 | 26
22 | | 28 | 1600 | 19 | 28 | 1600 | 24
29 | 07 | 0400 | 18 | | 29 | 1600 | 20 | 29 | 1600 | 36 | 07 | 1600 | 16 | | 30 | 1600 | 20 | 30 | 1600 | 42 | 08 | 0400 | 29 | | 31
JUN | 1600 | 23 | 31 | 1600 | 33 | 08
09 | 1600
0400 | 25
19 | | 01 | 1600 | 33 | AUG
01 | 0400 | 50 | 09 | 1600 | 15 | | 03 | 1600 | 35 | 01 | 1600 | 40 | 10 | 0400 | 21 | | 04 | 1600 | 19 | 02 | 1600 | 21 | 10 | 1600 | 20 | | 05
05 | 0400
1600 | 24
26 | 03 | 1600 | 38
40 | 11
11 | 0400
1600 | 19
22 | | 06 | 0400 | 40 | 04
05 | 1600
1600 | 38 | 12 | 0400 | 23 | | 06 | 1600 | 19 | 06 | 1600 | 43 | 12 | 1600 | 16 | | 07 | 0400 | 25 | 07 | 1600 | 46 | 13 | 0400 | 22 | | 07 | 1600 | 21
26 | 08 | 1600 | 38 | 13 | 1600 | 20
21 | | 08
08 | 0400
1600 | 20
29 | 09
10 | 1600
1600 | 30
38 | 14
14 | 0400
1600 | 19 | | 09 | 0400 | 26 | 11 | 0400 | 28 | 15 | 0400 | 18 | | 09 | 1600 | 32 | 11 | 1600 | 34 | 15 | 1600 | 20 | | 10
10 | 0400 | 28
28 | 12 | 0400 | 46 | 16 | 0400
1600 | 23
23 | | 11 | 1600
0400 | 26
27 | 12
13 | 1600
0400 | 29
37 | 16
17 | 0400 | 20 | | 11 | 1600 | 26 | 13 | 1600 | 30 | 17 | 1600 | 20 | | 12 | 0400 | 28 | 15 | 0400 | 41 | 18 | 0400 | 19 | | 12
13 | 1600
0400 | 28
33 | 15 | 1600 | 27
22 | 18
19 | 1600
0400 | 23
21 | | 13 | 1600 | 30
30 | 16
16 | 0400
1600 | 22 | 19 | 1600 | 23 | | 14 | 0400 | 32 | 17 | 0400 | 33 | 20 | 0400 | 31 | | 14 | 1600 | 34 | 17 | 1600 | 38 | 20 | 1600 | 39 | | 15
15 | 0400
1600 | 25
27 | 18
18 | 0400
1600 | 24
28 | 21
21 | 0400
1600 | 26
18 | | 16 | 0400 | 20 | 19 | 0400 | 33 | 22 | 0400 | 25 | | 16 | 1600 | 26 | 19 | 1600 | 34 | 22 | 1600 | 25 | | 17 | 0400 | 24 | 20 | 0400 | 38 | 23 | 0400 | 35 | | 17
18 | 1600
0400 | 24
24 | 20 | 1600 | 28
29 | 23
24 | 1600
0400 | 23
16 | | 18 | 1600 | 24 | 21
21 | 0400
1600 | 32 | 24 | 1600 | 16 | | 19 | 0400 | 34 | 22 | 0400 | 25 | 25 | 0400 | 14 | | 19 | 1600 | 29 | 22 | 1600 | 26 | 25 | 1600 | 20 | | 20
22 | 1600
0400 | 25
21 | 23 | 0400 | 28 | 26 | 0400
1600 | 22
28 | | 24 | 0400 | 41 | 23
24 | 1600
0400 | 32
32 | 26
27 | 0400 | 20 | | 28 | 0400 | 23 | 24 | 1600 | 27 | 27 | 1600 | 27 | | 29 | 0400 | 20 | 25 | 0400 | 25 | 28 | 0400 | 22 | | 30
JUL | 0400 | 25 | 25 | 1600 | 24
27 | 28
29 | 1600
0400 | 33
31 | | 01 | 0400 | 29 | 26
26 | 0400
1600 | 32 | 29 | 1600 | 5 0 | | 02 | 0400 | 28 | 27 | 0400 | 30 | 30 | 0400 | 25 | | 03 | 0400 | 31 | 28 | 0400 | 25 | 30 | 1600 | 23 | | 04 | 0400 | 36 | 28 | 1600 | 24 | | | | # 04084445 FOX RIVER AT APPLETON, WI--CONTINUED SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | MEAN | SEDIMENI, | | | MEAN | | MIZ AN | | MICAN | | MEAN | | |--|--|--|--|--|--|---|--|---|--|---|--|---| | DAY | CONCEN-
TRATION
(MG/L) | LOAD
(TONS/
DAY) | MEAN
CONCEN-
TRATION
(MG/L) | LOAD
(TONS/
DAY) | | | осто | BER | NOVE | MBER | DECEM | IBER | JANU | ARY | FEBR | UARY | MAR | СН | | 1
2
3
4
5 | 25
41
23
20
22 | 201
255
174
155
143 | 18
18
23
27
22 | 127
135
169
238
254 | 12
14
12
12
11 | 179
223
200
169
145 | e8
e8
e8
e8 | 86
88
89
66
82 | 6
e11
e11
e11
e11 |
121
152
169
159
142 | 18
56
27
13
15 | 233
461
289
143
173 | | 6
7
8
9
10 | 18
15
11
13
10 | 92
78
54
68
34 | 17
14
15
15 | 193
163
165
161
122 | 10
9
10
11
13 | 133
126
134
149
190 | e8
e8
e8
e8 | 81
82
80
78
76 | e11
e11
e11
e11 | 167
161
147
154
162 | 50
26
46
45
42 | 407
310
437
448
429 | | 11
12
13
14
15 | 11
10
9
16
13 | 33
31
31
48
42 | 17
12
13
12
12 | 118
97
97
90
95 | 12
18
13
13 | 214
269
221
214
234 | e8
e8
e8
7 | 58
77
78
76
79 | e11
e11
e11
59
28 | 147
150
200
620
362 | 46
86
51
61
17 | 592
844
597
544
243 | | 16
17
18
19
20 | 14
17
14
14
15 | 44
54
48
46
50 | 18
40
35
29
15 | 149
308
331
327
177 | 16
11
10
8
8 | 225
149
120
101
102 | 6
10
13
5
6 | 83
129
142
81
76 | 11
8
e16
24
e19 | 158
110
225
306
258 | 24
26
31
e40
48 | 262
282
326
420
535 | | 21
22
23
24
25 | 16
17
14
13
16 | 51
77
99.9
95
109 | 13
15
13
14
13 | 150
170
155
174
181 | 10
8
8
7
6 | 116
101
101
91
75 | 5
5
13
10
8 | 67
75
149
129
113 | 13
14
15
7
5 | 186
175
174
93
63 | 77
19
18
128
e95 | 688
262
279
1141
1066 | | 26
27
28
29
30
31 | 17
16
17
17
19
18 | 120
114
116
119
131
124 | 15
13
13
14
12 | 198
186
184
197
175 | 6
6
6
6
7 | 70
71
70
84
86
77 | 14
17
10
6
11
24 | 167
193
149
116
195
329 | 7
12
17
29 | 80
129
193
281 | 62
80
36
40
33
27 | 765
821
475
537
534
483 | | TOTAL | | 2836.9 | | 5286 | | 4439 | | 3369 | | 5444 | | 15026 | | | APR | IL | MA | | JUI | ΙE | JU | LY | AUG | UST | SEPTE | MBER | | 1
2
3
4
5 | 38
48
100
96
62 | 637
884
1867
1918
1285 | 40
34
e28
22
29 | 341
302
263
214
241 | 21
39
42
24
30 | 107
154
156
111
125 | 35
34
38
43
e40 | 85
88
99.7
109 | 39
45
46
48
45 | 103
118
122
124
123 | 32
30
26
97
39 | 81
76
98
277
125 | | 6
7
8
9
10 | 54
46
29
45 | 1018
860 | 18
27 | 186 | | | | | | | | 81 | | | 35 | 597
708
592 | 43
47
40 | 253
390
447
358 | 35
28
33
35
34 | 144
126
111
115
123 | 37
31
e30
29
e28 | 89
75
72
70
69 | 51
54
46
36
46 | 136
131
116
97
108 | 29
21
33
21
25 | 67
90
64
67 | | 11
12
13
14
15 | | 708 | 43
47 | 253
390
447 | 28
33
35 | 126
111
115 | 31
e30
29 | 75
72
70 | 54
46
36 | 131
116
97 | 21
33
21 | 67
90
64 | | 12
13
14 | 35
28
25
57
41 | 708
592
431
348
617
451 | 43
47
40
26
18
34
23 | 253
390
447
358
247
188 | 28
33
35
34
32
34
38
40 | 126
111
115
123
126
127
133
142 | 31
e30
29
e28
e26
25
34
29 | 75
72
70
69
67
65
77
72 | 54
46
36
46
37
44
40
54 | 131
116
97
108
97
112
111
135 | 21
33
21
25
25
24
25
24 | 67
90
64
67 | | 12
13
14
15
16
17
18
19 | 35
28
25
57
41
29
23
29
29
33 | 708
592
431
348
617
451
265
231
278
279
318 | 43
47
40
26
18
34
23
31
18
11
13
28 | 253
390
447
358
247
188
275
230
270
153
96
108 | 28
33
35
34
32
34
38
40
30
28
29
36
38 | 126
111
115
123
126
127
133
142
112
97
85
106
108 | 31
e30
29
e28
e26
25
34
29
36
31
33
29 | 75
72
70
69
67
65
77
72
78
83
82
73 | 54
46
36
46
37
44
40
54
41
27
43
31
40 | 131
116
97
108
97
112
111
135
106
76
89
109 | 21
33
21
25
25
24
25
24
23
28
25
26
27 | 67
90
64
67
67
63
63
62
72
74
89
116
82
104
120
76 | | 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 35
28
25
57
41
29
23
29
29
33
31
35
30
37
31 | 708
592
431
348
617
451
265
231
278
279
318
311
283
266
257 | 43
47
40
26
18
34
23
31
18
11
13
28
17
20
24
36
38
39
37
24
24 | 253
390
447
358
247
188
275
230
270
153
96
108
137
85
95
119
138
156
170 | 28
33
35
34
32
34
38
40
30
28
29
36
38
30
26
26
49 | 126
111
115
123
126
127
133
142
112
97
85
106
108
94 | 31
e30
29
e28
e28
e26
25
34
29
36
31
33
29
29
37
26
45
36
32
30
29
35 | 75
72
70
69
67
65
77
72
78
83
82
72
73
83
74
110
103
99.6
86 | 54
46
36
46
37
44
40
54
41
27
43
31
40
40
36
31
35
29
36
31
30
26
25 | 131
116
97
108
97
112
111
135
106
76
89
109
112
108
95
86
106
106
91
73 | 21
33
21
25
25
24
25
24
23
28
25
26
27
42
27
30
35
20 | 67
90
64
67
69
63
63
62
72
74
89
116
82
104
120 | | 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 35
28
25
57
41
29
23
29
29
33
31
35
30
37
31
30
36
48
36
30 | 708
592
431
348
617
451
265
231
278
279
318
311
283
266
257
239
251
287
351
298
268
298 | 43
47
40
26
18
34
23
31
18
11
13
28
17
20
24
30
36
38
39
37
24 | 253
390
447
358
247
188
275
230
270
153
96
108
137
85
119
138
156
170 | 28
33
35
34
38
40
30
28
29
36
38
30
26
26
237
49
e38
e38
e38
e38
24 | 126
111
115
123
126
127
133
142
112
97
85
106
108
94
84
92
134
106 | 31
e30
29
e28
e28
e26
25
34
29
36
31
33
29
29
37
26
45
37
36
32
30
29
30
29 | 75
72
70
69
67
65
77
72
78
83
82
72
73
83
74
110
103
99.6
86
80
83
93
116 | 54
46
36
46
37
44
40
54
41
27
43
31
40
40
36
31
36
35
29
36
31
30
26 | 131
116
97
108
97
112
111
135
106
76
89
109
112
108
95
86
106
91
73 | 21
33
21
25
25
24
25
24
25
24
23
28
25
26
27
42
27
30
30
35
20
21
30
21
21
21
21
21
21
21
21
21
21
21
21
21 | 67
900
64
67
69
67
63
63
62
72
74
89
116
82
104
120
76
77
102
100
143
313
204 | | 12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 35
28
25
57
41
29
23
29
29
33
31
35
30
37
31
30
36
48
36
30
34 | 708
592
431
348
617
451
265
231
278
279
318
311
283
266
257
239
251
287
351
287 | 43
47
40
26
18
34
23
31
18
11
13
28
17
20
24
30
36
38
39
37
24
24
24
27 | 253
390
447
358
247
188
275
230
270
153
96
108
137
85
95
119
138
156
170
181
178
123
113
114
121 | 28
33
35
34
32
34
38
40
30
28
29
36
38
30
26
26
27
49
e38
e38
e38
e38
e38
e38
e38
e38
e38
e38 | 126
111
115
123
126
127
133
142
112
97
85
106
108
94
84
92
134
106 | 31
e30
29
e28
e28
e26
25
34
29
36
31
33
29
29
37
26
45
37
36
32
30
29
35
42
50
40 | 75
72
70
69
67
65
77
72
78
83
82
72
73
83
74
110
103
99.6
86
80
83
93
116
129
107 | 54
46
36
46
37
44
40
54
41
27
43
31
40
40
36
31
36
35
29
36
31
30
26
25
26 | 131
116
97
108
97
112
111
135
106
76
89
109
112
108
95
86
106
91
73
84
83
77
65
64 | 21
33
21
25
25
24
25
24
23
28
25
26
27
42
27
30
35
20
21
30
28
33
48
29
 | 67
90
64
67
69
67
63
63
62
72
74
89
116
82
104
120
76
77 | e Estimated # 04084445 FOX RIVER AT APPLETON, WI--CONTINUED | | | WATER | TEMPERATURE, | DEGREES
 | WATE: | | BER 1987 | TO SEPTE | MBER 1988 | | | |----------------------------------|--|-----------------------------------|---------------------------------|--|---------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 17.1
15.4
13.6
13.5
14.6 | 8.6
9.3
10.4
11.2
9.8 | 2.6
2.5 | 1.1
1.1
1.2
1.2 | 1.6
1.1
1.3
1.2 | 2.8
3.1
3.4
3.7
4.0 | 7.6
7.4
7.4
8.9
8.9 | 13.6
14.9
16.0
17.4
17.6 | 25.5
24.0
22.9
26.7
23.9 | 21.0
21.2
23.1
24.1
24.7 | 26.2
26.8
27.7
28.7
27.5 | 21.8
21.8
22.5
20.8
19.7 | | 6
7
8
9 | 13.4
12.6
11.3
11.2
10.5 | 7.6
7.3
7.7
7.0
6.2 | 1.5
1.6
2.1
2.7
2.7 | 1.1
1.2
1.1
1.2
1.2 | 1.0
1.1
1.1
1.2 | 4.5
5.0
4.8
5.3
5.4 | 9.7
10.2
10.8
11.6
11.7 | 18.9
18.0
18.3
18.5
17.4 | 25.7
26.3
24.0
23.1
22.0 | 25.8
26.8
27.0
27.2
26.6 | 26.7
26.3
26.7
25.7
25.4 | 18.8
19.0
19.0
19.2
19.4 | | 11
12
13
14
15 | 9.7
9.9
10.3
11.3
12.0 | 5.8
5.9
6.2
6.4
6.7 | 2.6
2.4
1.8
1.5 | 1.1
1.1
1.1
1.1
1.0 | 1.1
1.2
1.2
1.3
1.6 | 5.3
5.0
4.0
3.5
3.3 | 11.2
11.5
12.2
11.2
9.8 | 19.3
19.8
20.0
20.1
17.2 | 22.7
22.3
22.6
22.9
23.2 | 26.4
25.4
24.3
25.3
25.3 | 26.5
27.2
28.2
27.5
27.9 | 19.9
21.1
21.2
20.8
20.4 | | 16
17
18
19
20 | 12.3
12.2
11.8
11.8 | 7.4
8.7
7.7
6.0
4.4 | 1.1
1.1
1.1
1.1 | 1.0
1.0
1.0
1.1 | 1.5
2.1
2.3
2.8
2.6 | 3.7
4.4
4.7
4.6
3.8 | 10.0
10.4
10.6
10.1
10.0 | 17.3
16.6
16.9
18.0
19.1 | 23.4
23.6
23.9
24.0
24.8 | 25.2
24.8
26.2
25.5
25.2 | 28.0
28.6
26.3
25.6
24.9 | 20.0
20.2
21.5
21.6
19.5 | | 21
22
23
24
25 | 10.4
9.3
8.4
8.5
8.7 | 3.0
2.7
3.8
3.9
3.5 | 1.2
1.3
1.3
1.3 | 1.1
1.2
1.2
1.2 | 1.3
1.8
2.1
1.2
2.2 | 3.4
4.3
5.8
6.3
7.4 | 10.7
10.3
8.8
8.9
11.0 | 20.7
21.0
20.8
20.5
19.3 | 25.9
26.7
26.8
26.2
26.1 | 25.2
24.5
24.2
25.3
25.4 | 24.8
24.6
24.2
24.0
23.3 | 18.4
17.9
18.0
17.9
18.4 | | 26
27
28
29
30
31 | 8.3
8.3
7.9
7.8
8.2
8.3 | 3.2
3.4
4.1
4.2 | 1.2
1.4
1.3
1.2
1.2 | 1.0
1.0
1.0
1.2
1.7
2.1 | 2.0
2.2
2.5
2.8 | 6.5
5.6
6.0
5.6
6.2
7.2 | 11.2
9.4
9.5
11.0
12.1 | 19.4
20.0
20.8
22.4
23.1
24.2 | 25.2
24.5
23.5
22.3
21.7 | 25.0
25.4
25.9
26.2
27.0
26.4 | 22.6
21.9
21.2
20.8
20.8
21.4 | 18.6
19.0
17.8
17.1
17.6 | | TOTAL
MEAN
MAX
MIN | 340.0
11.0
17.1
7.8 | 185.3
6.2
11.2
2.7 | 51.8
1.7
3.4
1.1 | 35.9
1.2
2.1
1.0 | 47.6 1.6
1.6
2.8
1.0 | 48.6
4.8
7.4
2.8 | 304.1
10.1
12.2
7.4 | 587.1
18.9
24.2
13.6 | 726.4
24.2
26.8
21.7 | 781.6
25.2
27.2
21.0 | 788.0
25.4
28.7
20.8 | 588.9
19.6
22.5
17.1 | CAL YR 1987 TOTAL 4446.1 MEAN 12.2 MAX 29.0 MIN .5 WTR YR 1988 TOTAL 4585.3 MEAN 12.5 MAX 28.7 MIN 1.0 # 04084500 FOX RIVER AT RAPIDE CROCHE DAM, NEAR WRIGHTSTOWN, WI LOCATION.--Lat 44°19'03", long 88°11'50", in SE 1/4 sec.4, T.21 N., R.19 E., Outagamie County, Hydrologic Unit 04030204, at Rapide Croche Dam, 2.0 mi upstream from Wrightstown, and 18 mi upstream from mouth. DRAINAGE AREA. -- 6.010 mi². PERIOD OF RECORD.--March 1896 to September 1917 (monthly discharge only), October 1917 to current year. REVISED RECORD. -- WDR WI-80-1: Drainage area. WDR WI-81-1: 1980. ${\tt GAGE.--Recording\ headwater\ and\ tailwater\ gages\ and\ electric\ generation\ are\ read\ three\ times\ a\ day\ and\ used\ to\ compute\ the\ discharge\ records.}$ REMARKS.--Flow regulated by storage in Lake Winnebago (see sta. 04082500 and 04084255). Daily discharge determined from records of flow through turbines, head, gate openings, and lockages through navigation canal. Usually less than about 20 ft³/s is diverted into basin from Wisconsin River at Portage Canal throughout the year. COOPERATION.--Figures of daily discharge furnished by U.S. Army Corps of Engineers. Records reviewed by Geological Survey. AVERAGE DISCHARGE. -- 92 years, 4,260 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 24,000 $\rm ft^3/s$, Apr. 18, 1952; minimum daily, 138 $\rm ft^3/s$, Aug. 2, 1936. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge during year, 8,310 $\rm ft^3/s$, Apr. 4; minimum daily, 871 $\rm ft^3/s$, Aug. 17. | | | DISCH | ARGE, CUBIC | C FEET PER | SECOND | , WATER YEAR
MEAN VALUES | R OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------------|--------------|-----------------------|---------------|--------------|--------------|-----------------------------|--------------|--------------|--------------|--------------|--------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEE | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 2 | 3080
2670 | 2520
2590 | 6080
6800 | 4040
4100 | 6100
5980 | 4060
3980 | 6660
6810 | 3640
3740 | 1700
1700 | 980
1050 | 1130
1100 | 1100
1100 | | 3
4 | 2690
2800 | 2690
36 10 | 6600
5770 | 4190
3900 | 6180
5610 | 4080
3860 | 7510
8310 | 4080
3770 | 1550
1710 | 1100
1020 | 1070
1160 | 1340
1560 | | 5 | 2400 | 4450 | 5370 | 3850 | 4830 | 3850 | 7790 | 3810 | 1580 | 1000 | 1160 | 1100 | | 6
7 | 1360
1980 | 4330
4210 | 5290
5130 | 3810
3830 | 5870
5670 | 3940
3340 | 7540
7340 | 3720
3990 | 2070
1580 | 950
1010 | 1110
1020 | 1100 | | 8 | 1960 | 4280 | 5090 | 3760 | 5200 | 3350 | 6980 | 3860 | 1160 | 983 | 1110 | 993
1370 | | 9
10 | 1820
1110 | 4180
2940 | 5120
5930 | 3670
3590 | 5430
5700 | 3220
3140 | 6560
6410 | 4220
3840 | 1380
1630 | 985
998 | 1060
1020 | 1020
1040 | | | | 2940 | 3930 | 3390 | 3700 | 3140 | | | 1630 | | | | | 11 | 1220 | 2910 | 6740 | 3540 | 4990 | 4120 | 5500 | 3950 | 1470 | 1050 | 1140 | 1080 | | 12
13 | 1080
1240 | 2520
2830 | 6610
6520 | 3610
3640 | 5090
5110 | 3910
3670 | 5500
5070 | 3640
3800 | 1420
1420 | 917
1000 | 1100
1100 | 1080
1080 | | 14 | 1050 | 2660 | 6680 | 3630 | 5040 | 3110 | 3820 | 3950 | 1510 | 878 | 1210 | 996 | | 15 | 1180 | 2720 | 6010 | 4210 | 4740 | 4060 | 3490 | 3680 | 1180 | 968 | 1010 | 973 | | 16 | 1190 | 2980 | 5520 | 4770 | 4840 | 3880 | 3880 | 3280 | 1300 | 1160 | 1020 | 1360 | | 17
18 | 1180
1240 | 3080
3600 | 4710 | 4930 | 4490 | 3240 | 3920
3760 | 3070
2840 | 1360
1280 | 967
885 | 871
1170 | 1080
1180 | | 18 | 1240 | 4490 | 4650
4980 | 4680
5130 | 5340
4680 | 4080
4120 | 3760
3870 | 2840
1960 | 1340 | 1010 | 1170 | 1230 | | 20 | 1200 | 4190 | 4670 | 4970 | 4690 | 4150 | 3900 | 1650 | 1320 | 1010 | 1090 | 1180 | | 21 | 1170 | 4240 | 4650 | 4880 | 4580 | 4350 | 3140 | 1950 | 1320 | 979 | 1070 | 1100 | | 22
23 | 1960 | 4440 | 4900 | 4880 | 4220 | 4340 | 3230 | 1850 | 1330 | 1110
1100 | 1200
1280 | 1660
1520 | | 23
24 | 2490
2680 | 4590
5 3 90 | 4850
4860 | 4900
4800 | 4290
4170 | 4200
4310 | 2870
2980 | 1990
1480 | 1220
1290 | 1110 | 1060 | 1240 | | 25 | 2650 | 4620 | 4510 | 4780 | 3880 | 4430 | 3340 | 1920 | 1160 | 1110 | 942 | 1360 | | 26
27 | 2760 | 5680 | 4430 | 4640 | 4310 | 4360 | 3060 | 1980 | 988 | 1100 | 1020 | 1350 | | 27 | 2490 | 5420 | 4510 | 4630 | 4280 | 4390 | 3120 | 1960 | 1060 | 1070 | 1020 | 1700
1530 | | 28
29 | 2660
2500 | 6010
5 98 0 | ·4350
5100 | 5440
6680 | 4300
4290 | 4520
6080 | 3380
3600 | 2040
1990 | 1230
1010 | 1090
1110 | 1080
1020 | 3150 | | 30 | 2540 | 6080 | 5340 | 6720 | 4290 | 6520 | 3620 | 1830 | 980 | 1110 | 986 | 2720 | | 31 | 2490 | | 4580 | 6820 | | 6440 | | 1970 | | 1100 | 1090 | | | TOTAL | 60050 | 120230 | 166350 | | 143900 | | 46960 | 91450 | 41248 | 31910 | 33559 | 40292 | | MEAN
MAX | 1937
3080 | 4008
6080 | 5366
6800 | 4549
6820 | 4962
6180 | 4165
6520 | 4899
8310 | 2950
4220 | 1375
2070 | 1029
1160 | 1083
1280 | 1343
3150 | | MIN | 1050 | 2520 | 4350 | 3540 | 3880 | 3110 | 2870 | 1480 | 980 | 878 | 871 | 973 | CAL YR 1987 TOTAL 1316800 MEAN 3608 MAX 9060 MIN 1050 WTR YR 1988 TOTAL 1146069 MEAN 3131 MAX 8310 MIN 871 # 04085000 FOX RIVER AT WRIGHTSTOWN, WI (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) LOCATION.--Lat 44°19'36", long 88°09'54", in NE 1/4 NW 1/4 sec.2, T.21 N., R.19 E., Brown County, Hydrologic Unit 04030204, at bridge on State Highway 96 at Wrightstown. DRAINAGE AREA.--6,050 mi², approximately. PERIOD OF RECORD. -- Water years 1970, 1974 to current year. REMARKS. -- Records of discharge used are for 04084500 Fox River at Rapide Croche Dam near Wrightstown. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | IN
CUBIC
FEET
PER
SECOND (| DUCT- (S
ANCE
US/CM) UN | TAND- A
ARD W
ITS) (D | | BID-
ITY
FTU) | M
P
XYGEN,
DIS-
SOLVED
(MG/L) | ETRIC D
RES- SO
SURE (D
(MM G
OF SA
HG) A | GEN,
COL DIS- FOR DLVED FEC DER- 0.7 CENT UM- ATUR- (COL PION) 100 0301) (316 | M,
AL,
MF
S./
ML) | |----------------------------|--|--|---|---|-----------------------------------|--|---|---|--|-------------------------------| | OCT 1987
21 | 0730 | 1170 | 440 | 8.50 | 8.0 | 0.50 | 10.6 | 749 | 91 | 54 | | MAR 1988
17 | 1000 | 3240 | 430 | 8.00 | 3.5 | 2.2 | 14.0 | 755 | 107 | K65 | | JUN
22 | 0845 | 1330 | 440 | 8.50 | 26.0 | 9.7 | 7.5 | 740 | 95 | 120 | | AUG
31 | 1030 | 1090 | 410 | 8.50 | 20.5 | 40 | 8.4 | 754 | 95 | 25 | | DATE | STREI
TOCOCC
FECAI
KF AGA
(COLS.
PER
100 MI
(31673 | HARD-
NESS
NR TOTAL
(MG/L
AS
L) CACO3 | TOT FLD
MG/L AS
CACO3 | DIS- | DIS-
SOLVEI
(MG/L
AS MG | , SODIUM
DIS-
D SOLVED
(MG/L
) AS NA | SODIUM
) PERCENT | | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | | OCT 1987
21 | 2 | 28 19 | 31 | 37 | 23 | 19 | 18 | 0.6 | 3.0 | | | MAR 1988 | K3 | 38 210 | 28 | 42 | 25 | 13 | 12 | 0.4 | 2.8 | | | JUN
22
AUG | 3 | 33 20 | 37 | 42 | 23 | 20 | 18 | 0.6 | 3.2 | | | 31 | | 7 17 | 34 | 30 | 23 | 24 | 23 | 0.8 | 3.4 | | | DATE | BICAR-
BONATE
WATER
DIS II
FIELL
MG/L A
HCO3
(00453 | BONATE WATER DIS IT FIELD S MG/L AS CO3 | CACO3 | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS-
SOLVEI
(MG/L
AS CL) | (MG/L
AS F) | DIS-
SOLVED
D (MG/L
AS
SIO2) | AT 180 | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | | OCT 1987
21 | 18 | 13 ! | 5 158 | 30 | 22 | 0.2 | 0 0.13 | 240 | 231 | | | MAR 1988
17 | 21 | .0 | - 172 | 26 | 18 | 0.2 | 0 1.4 | 268 | 237 | | | JUN
22 | 20 |)1 | 7 166 | 34 | 24 | 0.4 | 0 0.39 | 242 | 248 | | | AUG
31 | 16 | 6 : | 1 138 | 40 | 27 | 0.2 | 0 0.61 | 245 | 231 | | | DATE | SOLIDS
DIS-
SOLVE
(TONS
PER
AC-FT
(70303 | DIS- D SOLVEI TONS PER DAY) | NO2+NO3
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | AMMONÍA
DIS- | GEN, AM A MONIA ORGANIO TOTAL (MG/L AS N) | + PHOS-
C PHOROUS
TOTAL
(MG/L
AS P) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | OCT 1987
21
MAR 1988 | 0.3 | 3 758 | 0.290 | 0.270 | 0.240 | 1.3 | 0.110 | 0.050 | 0.020 | | | 17
JUN | 0.3 | 6 2340 | <0.100 | 0.130 | 0.130 | 1.0 | 0.040 | 0.010 | <0.010 | | | 22
AUG | 0.3 | 3 869 | 0.680 | 0.030 | 0.060 | 1.0 | 0.160 | 0.020 | <0.010 | | | 31 | 0.3 | 3 721 | 0.210 | 0.130 | 0.120 | 2.3 | 0.100 | 0.020 | <0.010 | | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). # 04085000 FOX RIVER AT WRIGHTSTOWN, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | D. | ATE | TIME | DIS
CHARC
IN
CUB:
FEI
PEI
SECC
(0006 | GE, ALU I INU IC DI ET SOI R (UC DND AS | JM, A
IS-
LVED
G/L
AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS) | BARIUI
DIS-
SOLVEI
(UG/I
AS B | D
L
A) | BERYI
LIUM,
DIS-
SOLVI
(UG/I
AS BI | ED
ED | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVE
(UG/L
AS CR | (UC
) AS | S-
/ED
G/L
CO) | COPPER,
DIS-
SOLVEI
(UG/L
AS CU) | D:
SOI
(UC
AS | ON,
IS-
LVED
G/L
FE)
O46) | |------------|-----------------------|---------------------|---|---|---|---|--|-------------------------|---|---------------------------------------|---|---|--|---|--|---|--| | OCT 1 | | 0730 | 1170 | | 20 | 1 | : | 22 | <0. | . 5 | <1 | | 2 | <3 | 1 | L | 14 | | MAR 1 | | 1000 | 3240 | | 20 | <1 | : | 22 | <0. | . 5 | <1 | < | 1 | <3 | 1 | L | 9 | | JUN
22. | | 0845 | 1330 | | 40 | 1 | : | 29 | <0. | . 5 | <1 | | 1 | <3 | 1 | L | 9 | | AUG
31. | | 1030 | 1090 | | 70 | 1 | : | 23 | <0. | . 5 | 2 | < | 1 | <3 | 1 | L | <3 | | | DATE | D
SO
(U
AS | AD,
IS-
LVED
G/L
PB)
049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANG
NESE
DIS
SOLV
(UG/
AS M | E, MEF
S- I
/ED SC
'L (U
IN) AS | CURY
IS-
DLVED
IG/L
HG)
890) | DEN
DI
SOI
(UC | S-
LVED
G/L
MO) | VICKI
DIS-
SOLV
(UG,
AS 1 | EL, NI
- D
VED SO
/L (U
NI) AS | UM,
IS-
LVED :
G/L
SE) . | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
01080) | VANA
DIUI
DIS
SOL'
(UG,
AS ' | M, 2
S-
VED S
/L (
V) A | CINC,
DIS-
SOLVED
UG/L
AS ZN)
(1090) | | | | 21 | | 11 | <4 | | 3 | <0.1 | | <10 | | <1 | <1 | 310 | | <6 | 9 | | | | MAR 1988
17
JUN | | <5 | <4 | | 24 | 0.3 | | <10 | | 4 | <1 | 170 | | <6 | <3 | | | | 22
AUG | | <5 | 7 | | 2 | 0.1 | | <10 | | <1 | <1 | 390 | | <6 | 10 | | | • | 31 | | <5 | 6 | | <1 | <0.1 | | <10 | | <1 | <1 | 430 | | <6 | 12 | | | | | | DATI | C TI | ME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
00060) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CI | C
-
M) | TEMPER
ATURE
WATER
(DEG (| E
R
C) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE
SUS-
PENDE
(T/DAY
(80155 | SU
SIE
, DI
% FI
D TH
) .062 | AM.
NER
IAN
MM | | | | | | | | T 1987
21
R 1988 | 07 | 30 1 | 170 | 4 | 40 | 8. | . 0 | 12 | 38 | | 100 | | | | | | | | 17 | | 000 3 | 3240 | 4: | 30 | 3. | . 5 | 4 | 3 5 | | 81 | | | | | | | | 22 | 08 | 345 1 | 330 | 4 | 40 | 26. | 0 | 30 | 108 | | 92 | | | | | | | | 31 | 10 | 30 1 | 1090 | 4 | 10 | 20. | . 5 | 29 | 85 | | 90 | | | | LAKE MICHIGAN BASIN ## 04085200 KEWAUNEE RIVER NEAR KEWAUNEE, WI LOCATION.--Lat 44°27'30", long 87°33'23", in SW 1/4 sec.14, T.23 N., R.24 E., Kewaunee County, Hydrologic Unit 04030102, on left bank just downstream from bridge on County Trunk Highway F, 2.3 mi west of Kewaunee, and about 7.0 mi upstream from mouth. DRAINAGE AREA. -- 127 mi². PERIOD OF RECORD.--Annual maximum, water years 1958-65, and occasional low-flow measurements, water years 1963-64. September 1964 to current year. No winter records for years 1965 and 1966. REVISED RECORDS.--WDR WI-79-1: Drainage area. WDR WI-85-1: 1962(M), 1965(M), 1967-69(M), 1971(M), 1973-74(M), 1976(M), 1978(M), 1980-82(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 579.64 ft above National Geodetic Vertical Datum of 1929 (Wisconsin State Highway Commission benchmark). Apr. 3, 1957, to Sept. 2, 1964, crest-stage gage only at same site and datum. REMARKS.--Estimated daily discharges: Aug. 9-10 and ice periods listed in rating table below. Records good except those for ice periods, which are poor. AVERAGE DISCHARGE.--22 years, 85.8 ft³/s, 9.17 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,500 ft³/s, Mar. 30, 1960, gage height, 16.03 ft (backwater from ice); minimum recorded, 4.0 ft³/s, Nov. 22, 1977, gage height, 8.06 ft, result of freezeup. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ${\rm ft}^3/{\rm s}$ and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|----------|------|-----------------------------------|---------------------| | Mar. 9 | 1115 | (a) *3,600 | (a) *16.00 | No other | peak | greater than base | discharge. | | (a) Ice | iam | | | | | | | Minimum discharge, 6.9 ft³/s, Aug. 3, gage height, 8.29 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 19-22, Dec. 15 to Mar. 12, and Mar. 15-22.) | 8.2 | 6.0 | 9.1 | 7. | |-----|------|------|-----| | 8.3 | 9.0 | 9.5 | 137 | | 8.5 | 18 | 10.0 | 263 | | 8.7 | 31 | 10.5 | 448 | | Ω Ω | /, Ω | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------|----------------------------|----------------------------------|-----------------------------------|----------------------------|--|--------------------------------|----------------------------------|------------------------------|--------------------------------------|------------------------------------|---------------------------------| | 1 | 15 | 17 | 84 | 17 | 120 | 20 | 121 | 72 | 17 | 11 | 7.8 | 9.4 | | 2 | 16 | 18 | 63 | 16 | 90 | 21 | 111 | 64 | 16 | 11 | 7.5 | 9.2 | | 3 | 15 | 18 | 48 | 15 | 74 | 22 | 282 | 58 | 16 | 10 | 7.2 | 10 | | 4 | 14 | 19 | 39 | 14 | 64 | 23 | 333 | 55 | 16 | 9.5 | 7.5 | 9.5 | | 5 | 14 | 18 | 34 | 13 | 58
 25 | 240 | 52 | 16 | 9.3 | 9.0 | 9.5 | | 6
7
8
9
10 | 14
14
13
13 | 17
17
19
21
20 | 30
29
30
70
89 | 12
12
11
11 | 52
47
43
40
37 | 40
120
400
2900
1900 | 206
199
143
111
95 | 49
46
44
44 | 15
14
14
14
13 | 9.3
9.4
9.4
9.0 | 9.0
8.1
8.4
8.7
9.3 | 9.4
8.9
8.6
8.5
8.4 | | 11
12
13
14
15 | 13
13
13
13 | 19
18
18
18
17 | 76
63
54
44
40 | 12
16
15
15
15 | 35
32
30
28
25 | 1000
640
387
285
200 | 86
79
73
68
64 | 42
39
38
36
35 | 13
13
12
12
11 | 16
13
11
11
13 | 9.6
11
12
13
11 | 8.2
8.1
8.5
8.5
8.5 | | 16 | 14 | 19 | 35 | 17 | 23 | 130 | 60 | 34 | 11 | 29 | 9.7 | 8.5 | | 17 | 21 | 35 | 31 | 18 | 23 | 110 | 57 | 32 | 11 | 18 | 9.7 | 9.9 | | 18 | 24 | 45 | 29 | 18 | 22 | 100 | 55 | 31 | 11 | 14 | 11 | 11 | | 19 | 21 | 40 | 28 | 21 | 21 | 94 | 52 | 30 | 11 | 12 | 9.8 | 13 | | 20 | 19 | 25 | 40 | 28 | 20 | 88 | 50 | 29 | 10 | 11 | 9.5 | 13 | | 21 | 17 | 22 | 48 | 28 | 20 | 80 | 48 | 29 | 9.6 | 16 | 9.0 | 12 | | 22 | 18 | 20 | 45 | 26 | 19 | 76 | 47 | 27 | 10 | 18 | 8.7 | 13 | | 23 | 20 | 26 | 44 | 25 | 19 | 94 | 60 | 26 | 10 | 14 | 14 | 16 | | 24 | 20 | 31 | 45 | 25 | 18 | 151 | 84 | 25 | 10 | 12 | 14 | 15 | | 25 | 19 | 35 | 50 | 25 | 18 | 277 | 78 | 23 | 9.7 | 12 | 12 | 13 | | 26
27
28
29
30
31 | 18
19
20
19
18
17 | 40
37
34
60
85 | 45
37
30
25
22
19 | 24
24
25
30
60
150 | 19
19
19
20
 | 349
190
139
168
188
149 | 68
105
165
120
88 | 22
21
20
20
18
18 | 9.3
9.4
11
12
12 | 11
10
9.8
9.1
8.4
8.1 | 10
9.9
10
10
10
9.8 | 12
11
11
10
11 | | TOTAL | 510 | 828 | 1366 | 749 | 1055 | 10366 | 3348 | 1123 | 368.0 | 376.3 | 306.2 | 312.6 | | MEAN | 16.5 | 27.6 | 44.1 | 24.2 | 36.4 | 334 | 112 | 36.2 | 12.3 | 12.1 | 9.88 | 10.4 | | MAX | 24 | 85 | 89 | 150 | 120 | 2900 | 333 | 72 | 17 | 29 | 14 | 16 | | MIN | 13 | 17 | 19 | 11 | 18 | 20 | 47 | 18 | 9.3 | 8.1 | 7.2 | 8.1 | | CFSM | .13 | .22 | .35 | .19 | .29 | 2.63 | .88 | .29 | .10 | .10 | .08 | .08 | | IN. | .15 | .24 | .40 | .22 | .31 | 3.04 | .98 | .33 | .11 | .11 | .09 | .09 | CAL YR 1987 TOTAL 14693.9 MEAN 40.3 MAX 476 MIN 9.6 CFSM .32 IN. 4.30 WTR YR 1988 TOTAL 20708.1 MEAN 56.6 MAX 2900 MIN 7.2 CFSM .45 IN. 6.07 ## 04085281 EAST TWIN RIVER AT MISHICOT, WI LOCATION.--Lat 44°14'16", long 87°38'11", in NW 1/4 NW 1/4 sec.4, T.20 N., R.24 E., Manitowoc County, Hydrologic Unit 04030101, on right bank 500 ft downstream from bridge on State Highway 147, at Mishicot, 0.8 mi upstream from Johnson Creek, and 9.8 mi upstream from mouth. DRAINAGE AREA. -- 110 mi². PERIOD OF RECORD .-- July 1972 to current year. REVISED RECORDS. -- WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 584.72 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Ice periods listed in rating tables below. Records good except those for ice-affected periods, which are poor. Occasional regulation caused by recreation dam 0.3 mi upstream. AVERAGE DISCHARGE. -- 16 years, 80.2 ft 3/s, 9.90 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,210 ft³/s, Mar. 31, 1979, gage height, 13.75 ft; minimum, 1.7 ft³/s, July 20, 1979, gage height, 3.69 ft. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|---------------------|--------|--------------------|-----------------------------------|---------------------| | Mar. 9 | 1445 | ice jam | *8.52 | Apr. 4 | 1900
neak great | *603
er than base o | 7.97 | Minimum discharge, 3.8 ft³/s, Aug. 5, 8, gage height, 3.89. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 20, 21, Dec. 15-19, Dec. 26 to Mar. 22.) | 00 | t. 1 to | Mar. 9 (1 | 430) | Mar | . 9 (1445) | to Sept. | 30 | |-----|---------|-----------|------------|-----|------------|----------|-------------| | . 2 | 10 | 4.5 | 30 | 3.9 | 4.1 | 4.5 | 41 | | . 3 | 16 | 5.0 | 8 2 | 4.0 | 7.5 | 5.0 | 99 | | . 4 | 22 | 5.5 | 146 | 4.1 | 12 | 6.0 | 236 | | | | | | 4.2 | 17 | 7.0 | 406 | | | | | | 4.3 | 23 | 8.0 | 61 0 | | | DISCHARGE | C, CUBIC | FEET PER | SECOND, | WATER | YEAR OCTOBER MEAN VALUES | 1987 ТО | SEPTEMBER | 1988 | | | | |--|--------------------------------|--------------------------------|---|-----------------------------------|--------------------------------|---|--|---------------------------------------|--|--|--|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEI | B MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
17
17
17
16 | 14
16
18
19 | 100
82
64
51
43 | 20
16
14
12
11 | 90
76
62
54 | 20
2 19
4 19 | 159
143
284
528
503 | 83
69
59
53
49 | 12
12
12
12
12 | 9.3
8.6
7.5
7.1
6.8 | 6.7
6.4
6.2
5.3
4.8 | 6.5
6.4
6.5
8.3
8.7 | | 6
7
8
9 | 14
13
14
20
13 | 18
17
17
22
24 | 37
35
38
81
115 | 10
9.0
8.4
8.0
7.6 | 42
40
36
32
29 | 0 45
5 90
2 250 | 403
358
267
198
151 | 44
40
37
38
40 | 11
10
9.4
9.7
9.9 | 5.6
5.4
5.1
4.7
6.4 | 4.7
4.5
4.8
5.0
4.9 | 8.3
7.6
6.6
6.6
6.1 | | 11
12
13
14
15 | 13
13
14
14
14 | 22
20
19
19
18 | 105
87
73
61
40 | 7.6
9.6
9.0
8.2
8.0 | 25
27
20
21
20 | 2 280
0 230
1 170 | 128
111
99
90
81 | 37
35
31
29
28 | 9.9
9.8
9.2
8.3
8.1 | 7.5
7.5
6.4
6.7
6.6 | 5.0
5.5
7.4
7.7
6.1 | 6.0
6.3
7.8
7.7
6.5 | | 16
17
18
19
20 | 14
20
23
21
17 | 19
38
54
49
35 | 37
35
34
40
72 | 9.6
9.0
9.0
9.6
11 | 19
19
20
19
18 | 9 100
9 90
9 84 | 75
69
63
57
54 | 26
25
24
23
21 | 6.8
7.0
7.7
8.1
7.9 | 8.8
11
11
10
10 | 5.5
5.6
7.6
8.8
8.5 | 12
11
8.7
11
14 | | 21
22
23
24
25 | 15
14
14
16
15 | 22
27
30
36
41 | 98
95
83
82
112 | 11
11
11
10
10 | 17
19
19
18
17 | 9 74
9 83
3 125 | 49
48
57
86
78 | 20
20
19
18
17 | 6.9
9.4
8.4
8.3
7.7 | 12
14
13
11
8.8 | 7.1
6.3
9.2
11
9.9 | 13
16
21
17
13 | | 26
27
28
29
30
31 | 14
16
18
17
15 | 52
52
46
73
97 | 70
56
43
35
30
23 | 10
10
11
12
20
30 | 18
17
18
18 | 7 221
8 176
8 178
- 194 | 75
104
150
139
109 | 16
16
15
15
13 | 6.9
7.1
8.2
10 | 9.9
9.1
8.5
8.3
7.6
6.7 | 7.7
7.2
7.5
7.7
7.6
6.9 | 11
11
9.4
9.1
9.1 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 491
15.8
23
13
.14 | 953
31.8
97
14
.29 | 1957
63.1
115
23
.57
.66 | 352.6
11.4
30
7.6
.10 | 872
30.1
90
17
.27 | 1 141
0 460
7 19
7 1.28 | 4716
157
528
48
1.43
1.59 | 973
31.4
83
13
.29
.33 | 275.7
9.19
12
6.8
.08
.09 | 260.9
8.42
14
4.7
.08 | 209.1
6.75
11
4.5
.06 | 292.2
9.74
21
6.0
.09 | CAL YR 1987 TOTAL 16620.2 MEAN 45.5 MAX 444 MIN 8.1 CFSM .41 IN. 5.62 WTR YR 1988 TOTAL 15724.5 MEAN 43.0 MAX 528 MIN 4.5 CFSM .39 IN. 5.32 # 04085427 MANITOWOC RIVER AT MANITOWOC, WI (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) LOCATION.--Lat $44^{\circ}06'26''$, long $87^{\circ}42'55''$, in NE 1/4 NW 1/4 sec.23, T.19 N., R.23 E., Manitowoc County, Hydrologic Unit 04030101, on right bank 300 ft upstream from bridge on County Trunk Highway JJ, just west of the Manitowoc city limits and 6.6 mi upstream from mouth. DRAINAGE AREA. -- 526 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1972 to current year. REVISED RECORDS. -- WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 610.12 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for estimated daily discharges, which are poor. AVERAGE DISCHARGE. -- 16 years, 349 ft³/s, 9.01 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,280 ft³/s, Mar. 31, 1979, gage height, 13.24 ft, from floodmarks; maximum gage height, 13.30 ft, Mar. 25, 1986, from floodmarks; minimum discharge, 6.8 ft³/s, July 8, 1988, gage height, 3.61 ft. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 800 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Mar. 12 | 2030 | (a) *1,100 | (a) *8.46 | Apr. 6 | 1500 | 1,010 | 7.05 | (a) Backwater from ice. Minimum discharge, 6.8 ft³/s, July 8, gage height, 3.61 ft. RATING
TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 20-23, and Dec. 5 to Mar. 25.) | 3.6 | 5.0 | 4.5 | 108 | |-----|------------|-----|-----| | 3.8 | 17 | 5.0 | 220 | | 4.0 | 3 3 | 6.0 | 540 | | 4.2 | 57 | 7.0 | 981 | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | AP R | MAY | JUN | J U L | AUG | SEP | |--|------------------------------------|---|--|---|---------------------------------|---|--|---|--------------------------------|--|--|--------------------------------| | 1
2
3
4
5 | 59
56
53
54
44 | 59
65
78
88
92 | 175
165
146
118
110 | 50
47
43
41
38 | 300
500
450
410
320 | 140
160
200
220
250 | 585
578
721
953
873 | 215
192
172
154
141 | 27
29
36
32
27 | 13
13
13
11 | 12
11
10
9.6
9.0 | 12
11
10
25
20 | | 6
7
8
9
10 | 39
43
45
39
32 | 89
77
68
66
65 | 100
92
84
100
200 | 36
34
32
32
30 | 260
220
180
160
150 | 310
420
580
880
940 | 960
960
901
860
820 | 134
122
111
110
117 | 25
25
24
22
19 | 9.7
9.0
7.9
7.8 | 8.5
7.9
8.1
10 | 20
29
27
24
24 | | 11
12
13
14
15 | 35
35
32
31
31 | 63
62
64
61
57 | 220
230
240
200
170 | 31
34
31
30
29 | 140
120
110
100
96 | 1000
1100
1000
960
960 | 788
750
714
676
643 | 118
105
102
96
84 | 19
18
19
20
16 | 12
11
10
9.6
9.3 | 12
13
19
17
15 | 22
22
20
18
16 | | 16
17
18
19
20 | 34
38
43
52
50 | 54
69
97
113
90 | 140
130
120
110
200 | 35
42
38
36
42 | 84
72
76
80
78 | 940
900
880
880
820 | 607
564
513
469
408 | 80
110
81
66
59 | 14
13
14
13
12 | 12
13
12
14
14 | 14
13
19
20
18 | 16
21
26
33
32 | | 21
22
23
24
25 | 44
46
47
44
4 5 | 66
74
82
96
107 | 190
180
180
210
160 | 48
43
39
37
35 | 74
70
74
72
70 | 780
760
740
740
720 | 342
283
234
236
237 | 52
52
49
44
40 | 11
13
13
11
11 | 16
19
18
22
24 | 18
17
22
17
15 | 26
44
70
68
66 | | 26
27
28
29
30
31 | 47
50
54
61
56
52 | 115
125
129
147
171 | 110
86
70
84
60
54 | 33
32
32
33
50
150 | 66
68
76
110 | 685
654
603
621
650
626 | 218
226
252
257
237 | 41
42
37
30
28 | 10
11
12
14
14 | 20
18
18
16
14 | 15
15
13
12
12 | 57
52
45
44
41 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1391
44.9
61
31
.09 | 2589
86.3
171
54
.16
.18 | 4434
143
240
54
. 27
. 31 | 1263
40.7
150
29
.08
.09 | 4586
158
500
66
.30 | 21119
681
1100
140
1.30
1.49 | 16865
562
960
218
1.07
1.19 | 2825
91.1
215
28
.17
.20 | 544
18.1
36
10
.03 | 421.3
13.6
24
7.8
.03
.03 | 425.1
13.7
22
7.9
.03
.03 | 941
31.4
70
10
.06 | CAL YR 1987 TOTAL 64867 MEAN 178 MAX 1400 MIN 19 CFSM .34 IN. 4.59 WTR YR 1988 TOTAL 57403.4 MEAN 157 MAX 1100 MIN 7.8 CFSM .30 IN. 4.06 # 04085427 MANITOWOC RIVER AT MANITOWOC, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) # WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1979 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND
ARD
UNITS)
(00400 | WAT
(DEG | RE E
ER I
C) (FI | SID-
TY S(
U) (1 | YGEN,
DIS-
OLVED
MG/L) | SARO-
METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | |----------------------------|---|---|---|--|---|---|---|--|---------------------------------|--|---| | OCT 1987
20 | 1330 | | 50 | 75 0 | 8.6 | n | 9.0 | 7.6 | 14.2 | 746 | 126 | | MAR 1988
17 | 0715 | 900 | | 450 | 7.9 | | | 4.8 | 13.8 | 760 | 95 | | JUN 22 | 1200 | | 13 | 640 | 8.7 | | | .6 | 9.6 | 736 | 132 | | AUG 31 | 1320 | | | | | | | .0 | | 747 | 131 | | 31 | 1320 | | 12 | 59 0 | 8.6 | 0 2 | 3.0 3 | | 11.0 | 747 | 131 | | | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVEM
(MG/L
AS CA | DI
D SOL
(MG
) AS | UM, SOE
S- DI
VED SOI
J/L (M
MG) AS | NA) PE | S
ODIUM F | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | OCT 1987
20 | 29 | 35 | 360 | 67 | 70 | 45 | 2 | .4 | 13 | 0.6 | 4.1 | | MAR 1988
17 | K13 | K60 | 210 | 62 | 48 | 23 | | 9.1 | 8 | 0.3 | 4.3 | | JUN
22 | 1800 | 1500 | 310 | 54 | 51 | 45 | | 9 | 12 | 0.5 | 3.3 | | AUG 31 | 170 | 71 | 290 | 69 | 45 | 44 | | .2 | 14 | 0.6 | 2.6 | | DATE | BICAH
BONAT
WATH
DIS 1
FIEL
MG/L
HCO3
(0045 | TE BONA TR WAT TO DIS LD FIE AS MG/L CO | TE LINI
TER WAT
IT TOT
LD FIE
AS MG/I | TTY DIS SULI IT DIS ELD SOI AS (MC | FATE R
S- D
LVED S(
G/L (1
SO4) A | IDE,
IS-
DLVED
MG/L
S CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | AT 180 | CONS
CONS
TUEN
DI
SOL
(MG | OF
TI-
TS,
S-
VED
/L) | | OCT 1987
20 | | 312 | 18 | 286 45 | , | 43 | 0.20 | 1.8 | 410 | 1 | 410 | | MAR 1988
17 | ı | 161 | | 132 50 | | 18 | 0.10 | 8.7 | 268 | | 256 | | JUN
22 | | 278 | 20 | 262 34 | | 33 | 0.40 | 17 | 378 | | 361 | | AUG
31 | | 265 | 7 | 229 39 | | 43 | 0.10 | 7.3 | 351 | | 339 | | DATE | SOLII
DIS
SOLV
(TOM | OS, SOLI
S- DI
VED SOL
VS (TO
R PE | NIT
DS, GE
S- NO2+
VED DI
NS SOI
R (MG
Y) AS | TRO-
IN, NIT
-NO3 GH
-SS- AMMO
JVED TOT
J/L (MO
N) AS | TRO- (CEN, AMI) DNIA I TAL SO G/L (I N) AS | ITRO-
GEN,
MONIA
DIS-
DLVED
MG/L
S N) | NITRO-
GEN,AM-
MONIA + | PHOS-PHOROUS TOTAL (MG/L AS P) (00665) | PHOS-
PHOROUS
DIS- | PHOR
PHOR
ORT
DIS
SOLV
(MG/
AS P | S-
OUS
HO,
-
ED
L | | OCT 1987
20
MAR 1988 | 0. | | | | | 0.030 | 1.6 | 0.100 | 0.030 | | | | 17
JUN | | 36 651 | | | | 0.190 | 0.70 | 0.100 | 0.070 | | 030 | | AUG | | | | | | 0.070 | 1.5 | 0.300 | 0.180 | | 120 | | 31 | 0. | 48 11 | . 4 <0. | 100 0. | 020 | 0.010 | 1.1 | 0.050 | 0.030 | <0. | 010 | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). # 04085427 MANITOWOC RIVER AT MANITOWOC, WI--CONTINUED # WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | ALUM-
INUM,
DIS-
SOLVEI
(UG/L
AS AL | (UG
AS | S-
VED S
/L
AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVEI
(UG/L
AS BE) | CADMIU
DIS-
DIS-
SOLVI
(UG/I
AS CI | DIS
D SOL
(UG
)) AS | M, COE
- DI
VED SOI
/L (U
CR) AS | SALT,
SS-
VED
IG/L
S CO) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | |----------------|---|--|---|--|---|---|--|---|---|---|--|--|---| | OCT 1987
20 | 1330 | | 50 | <10
| 1 | <1 | 34 | <0.5 | | 1 | 2 | <3 | 1 | | MAR 1988
17 | 0715 | 900 | | 21 | | <1 | 18 | <0.5 | | 1 | <1 | <3 | 2 | | JUN
22 | 1200 | | 13 | <10 | | 3 | 36 | <0.5 | | 1 | 1 | <3 | 2 | | AUG
31 | 1320 | | 12 | <10 | | 1 | 33 | <0.5 | | 2 | <1 | <3 | 1 | | DATE | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | LEAD,
DIS-
SOLVED
(UG/L
AS PB)
(01049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGANESE, DIS-SOLVEI (UG/L AS MN) (01056 | MERC
DI
SOL
(UG | URY
S-
VED
/L
HG) | MOLYB-
DENUM,
DIS-
SOLVED
(UG/L
AS MO)
(01060) | NICKEL,
DIS-
SOLVEI
(UG/L
AS NI)
(01065) | SELE-
NIUM
DIS-
SOLVI
(UG/I | STR
TI
DI
SOL
(UG | ON- VA
UM, DI
S- I
VED SO
/L (U
SR) AS | NA-
UM,
DIS-
DLVED
G/L
V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
(01090) | | OCT 1987
20 | 13 | < 5 | 4 | 19 |) < | 0.1 | <10 | 5 | i | 1 | 430 | <6 | 5 | | MAR 1988
17 | 160 | <5 | <4 | 19 | 9 < | 0.1 | <10 | 6 | , , | 1 | 84 | <6 | 5 | | JUN
22 | 16 | <5 | 8 | 25 | 5 < | 0.1 | <10 | 1 | | 1 | 800 | <6 | 24 | | AUG
31 | 7 | <5 | 7 | 12 | 2 < | 0.1 | <10 | 2 | : • | 1 | 730 | <6 | 5 | | | DA | те т | CHA
CU
I
PIME F
SE | IN UBIC CEET CER COND | DIS-
HARGE,
INST.
CUBIC
FEET
PER
SECOND | SPE-
CIFI
CON-
DUCT
ANCE
(US/0 | IC
- TEM
I- AT
E WA
CM) (DE | PER- M
URE S
TER F
G C) (| SUS-
PENDED
MG/L) (| SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
T/DAY)
80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | <u>.</u>
I | | | | OCT 19
05
20 | . 1 | .400
.330 | | 39
50 | | 705
750 | 13.5
9.0 |
87 | 12 |
7 4 | | | | | NOV
10 | | .450 | | 65 | 8 | 810 | 2.0 | | | | | | | | JAN 19
07
FEB | | .630 | | 32 | 8 | 880 | 0.0 | | | | | | | | 15
MAR | . 1 | .605 | | 96 | ı | 480 | 0.0 | | | | | | | | 17
JUN | . 0 | 715 90 | 0 | | ı | 450 | 0.0 | 13 | 32 | 83 | | | | | 15
22 | | .335
.200 | | 14
13 | | | 29.0
30.0 |
26 | 0.91 | 98 | | | | | AUG
09
31 | | .555
.320 | | 10
12 | | | 27.5
23.0 |
13 | 0.42 |
95 | | | | | SEP
12 | . 1 | .530 | | 21 | į | 580 | 23.0 | | | | | | # 04086000 SHEBOYGAN RIVER AT SHEBOYGAN, WI LOCATION.--Lat $43^{\circ}44^{\circ}25^{\circ}$, long $87^{\circ}45^{\circ}35^{\circ}$, in SE 1/4 NE 1/4 sec.29, T.15 N., R.23 E., Sheboygan County, Hydrologic Unit 04030101, on left bank 400 ft upstream from bridge on State Highway 141, near west city limits of Sheboygan, and 4.2 mi upstream from mouth. DRAINAGE AREA. -- 418 mi². PERIOD OF RECORD.--June 1916 to September 1924 (published as "near Sheboygan"), October 1950 to current year. Monthly discharge only for some periods, published in WSP 1307, 1727. REVISED RECORDS.--WSP 1307: 1917(M), 1919(M), 1921(M), 1923(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 584.00 ft above National Geodetic Vertical Datum of 1929. June 1916 to June 1924, nonrecording gage at site 0.7 mi downstream at different datum. November 1950 to June 1951, nonrecording gage at site 0.3 mi downstream at datum 3.15 ft lower. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are poor. Diurnal fluctuation caused by numerous powerplants above station. AVERAGE DISCHARGE.--46 years (water years 1917-24, 1951-88), 258 ft³/s, 8.38 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,680 ft³/s, Mar. 22, 1975, gage height, 11.64 ft; minimum observed, about 1 ft³/s, Aug. 27, 1922, gage height, 1.48 ft datum then in use, caused by shutdown of powerplants. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|---------------------|--------------|-----------------------------------|---------------------| | Apr. 6 | 1945 | *1,530 | *5.75 | No other pea | k greater than b | ase discharge. | Minimum discharge, 31 ft³/s, July 9, 10, gage height, 1.61 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Mar. 26 to Apr. 2; stage-discharge relation affected by ice Nov. 21-23, Dec. 4-6, 14-23, and Dec. 26 to Mar. 23.) | 1.6 | 30 | 3.0 | 270 | |-----|-----|-----|-------| | 1.8 | 50 | 4.0 | 570 | | 2.0 | 80 | 5.0 | 992 | | 2.5 | 165 | 6.0 | 1,540 | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|--|---|---|--|--|--|----------------------------------|---------------------------------| | 1 | 135 | 170 | 480 | 180 | 1200 | 170 | 602 | 281 | 66 | 45 | 38 | 50 | | 2 | 127 | 230 | 376 | 160 | 1100 | 190 | 575 | 257 | 64 | 43 | 37 | 46 | | 3 | 131 | 237 | 328 | 140 | 940 | 200 | 925 | 239 | 61 | 37 | 38 | 58 | | 4 | 115 | 214 | 260 | 130 | 840 | 220 | 959 | 224 | 53 | 35 | 36 | 94 | | 5 | 110 | 194 | 230 | 120 | 700 | 240 | 909 | 210 | 50 | 34 | 55 | 103 | | 6 | 107 | 174 | 210 | 110 | 560 | 270 | 1220 | 197 | 48 | 35 | 41 | 95 | | 7 | 105 | 161 | 256 | 100 | 430 | 330 | 1340 | 185 | 48 | 35 | 39 | 78 | | 8 | 101 | 166 | 422 | 96 | 360 | 400 | 1040 | 173 | 43 | 33 | 39 | 62 | | 9 | 97 | 175 | 950 | 94 | 320 | 500 | 834 | 175 | 41 | 31 | 40 | 56 | | 10 | 95 | 175 | 931 | 90 | 280 | 560 | 738 | 185 | 43 | 47 | 39 | 52 | | 11 | 94 | 165 | 802 | 82 | 240 | 600 | 667 | 184 | 44 | 45 | 49 | 48 | | 12 | 90 | 159 | 669 | 86 | 210 | 600 | 604 | 165 | 43 | 45 | 54 | 49 | | 13 | 90 | 159 | 560 | 84 | 180 | 580 | 536 | 124 | 43 | 43 | 63 | 47 | | 14 | 88 | 156 | 470 | 82 | 160 | 520 | 481 | 112 | 44 | 41 | 82 | 47 | | 15 | 88 | 149 | 350 | 80 | 150 | 480 | 424 | 143 | 42 | 43 | 65 | 45 | | 16 | 92 | 148 | 270 | 94 | 140 | 440 | 372 | 140 | 40 | 71 | 49 | 44 | | 17 | 108 | 196 | 260 | 90 | 130 | 400 | 303 | 132 | 41 | 82 | 43 | 44 | | 18 | 116 | 243 | 240 | 86 | 140 | 360 | 275 | 123 | 41 | 82 | 159 | 64 | | 19 | 113 | 234 | 300 | 84 | 150 | 340 | 246 | 116 | 40 | 68 | 183 | 84 | | 20 | 105 | 215 | 500 | 110 | 140 | 330 | 204 | 111 | 40 | 60 | 150 | 102 | | 21 | 102 | 160 | 560 | 100 | 130 | 320 | 191 | 105 | 39 | 59 | 106 | 98 | | 22 | 101 | 150 | 400 | 96 | 120 | 310 | 187 | 104 | 51 | 57 | 77 | 223 | | 23 | 101 | 170 | 360 | 92 | 140 | 340 | 220 | 110 | 47 | 58 | 101 | 693 | | 24 | 109 | 209 | 419 | 86 | 130 | 362 | 281 | 105 | 48 | 58 | 103 | 514 | | 25 | 107 | 276 | 623 | 82 | 120 | 395 | 293 | 86 | 42 | 56 | 89 | 321 | | 26
27
28
29
30
31 | 112
120
173
181
164
125 | 406
353
330
600
612 | 450
360
320
270
230
200 | 80
78
80
92
150
800 | 120
120
140
160 | 493
510
480
543
619
644 | 277
314
363
346
310 | 84
83
78
69
58
66 | 40
37
38
44
46 | 58
52
50
45
42
39 | 79
65
56
52
45
48 | 207
147
122
103
95 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3502
113
181
88
. 27
. 31 | 6986
233
612
148
.56
.62 | 13056
421
950
200
1.01
1.16 | 3834
124
800
78
.30
.34 | 9550
329
1200
120
.79
.85 | 12746
411
644
170
.98
1.13 | 16036
535
1340
187
1.28
1.43 | 4424
143
281
58
.34
.39 | 1367
45.6
66
37
.11
.12 | 1529
49.3
82
31
.12
.14 | 2120
68.4
183
36
.16 | 3791
126
693
44
.30 | CAL YR 1987 TOTAL 84468 MEAN 231 MAX 1420 MIN 58 CFSM .55 IN. 7.52 WTR YR 1988 TOTAL 78941 MEAN 216 MAX 1340 MIN 31 CFSM .52 IN. 7.03 # 432324088154200 BIG CEDAR LAKE NEAR WEST BEND, WI #### LAKE-STAGE RECORDS LOCATION.--Lat $43^{\circ}23^{\circ}24^{\circ}$, long $88^{\circ}15^{\circ}42^{\circ}$, in SE 1/4 sec. 30, T.11 N., R.19 E., Washington County, Hydrologic Unit 04040003, 4.6 mi southwest of West Bend. PERIOD OF RECORD. -- October 1984 to current year. GAGE. -- Staff gage read by Louis Ottmer, Jr. Elevation of gage is 1031 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 8.42 ft, Sept. 12, 1986; minimum observed, 7.32 ft, Aug. 29, 1988. EXTREMES FOR CURRENT YEAR. -- Maximum gage height observed, 7.72 ft, Sept. 23; minimum observed, 7.32 ft, Aug. 29. # GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | |-------------------|----------------------|--------------------|----------------------|---------------------|----------------------|------------------------------|------------------------------|---------------------------------|------------------------------| | May 9
23
25 | 7.66
7.58
7.60 | June 1
10
15 | 7.56
7.48
7.44 | June 20
25
29 | 7.40
7.44
7.46 | July 5
19
28
Aug. 5 | 7.38
7.48
7.48
7.41 | Aug. 15
29
Sept. 23
29 | 7.36
7.32
7.72
7.70 | ## WATER-QUALITY RECORDS LOCATION.--Lat 43°24'01", long 88°15'22", in SW 1/4 sec. 20, T.11 N., R.19 E., Washington County, Hydrologic Unit 04040003, at north end of lake, and 4.1 mi southwest of West Bend. PERIOD OF RECORD. -- June 1985 to current year. REMARKS. -- Secchi disc readings made by Louis Ottmer, Jr. ## SECCHI DISC
TRANSPARENCY (IN METERS) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SECCHI
DEPTH | |-------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|----------------|-----------------| | May 9
25 | 3.2
4.0 | June 10
15 | 2.9
3.1 | June 25
29 | 3.1
3.1 | July 19
28 | 2.7 | Aug. 15
29 | 3.1
3.7 | | June 1 | 2.7 | 20 | 3.1 | July 5 | 2.5 | Aug. 5 | 2.2 | Sept. 11
23 | 3.4
3.2 | ## 04086600 MILWAUKEE RIVER NEAR CEDARBURG, WI LOCATION.--Lat 43°16'49", long 87°56'30", in NW 1/4 NW 1/4 sec.6, T.9 N., R.22 E., Ozaukee County, Hydrologic Unit 04040003, on right bank 60 ft downstream from Pioneer Road bridge, 2.6 mi southeast of Cedarburg, 1.0 mi west of I-43, and 26.25 mi upstream from mouth. DRAINAGE AREA. -- 607 mi². PERIOD OF RECORD. -- November 1981 to current year. GAGE.--Water-stage recorder. Datum of gage is 653.558 ft above National Geodetic Vertical Datum of 1929 (Southeastern Wisconsin Regional Planning Commission bench mark). REMARKS.--Estimated daily discharges: Ice period listed in rating tables below. Records good except those for ice-affected period, which is poor. AVERAGE DISCHARGE. -- 6 years, 534 ft³/s, 11.94 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,640 ft³/s, Sept. 11, 1986, gage height, 11.97 ft; maximum gage height, 12.85 ft, Mar. 1, 1985 (backwater from ice); minimum daily, 42 ft³/s, July 9, 1988. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 2,500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|-----------------|-----------------------------------|---------------------| | Jan. 31 | 1600 | (a) *2,600 | (a) *12.27 | No other peak g | reater than bas | e discharge. | (a) Backwater from ice. Minimum daily, 42 ft³/s, July 9. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used May 4 to June 28; stage-discharge relation affected by ice Dec. 29 to Mar. 15.) | 5.2 | 30 | 7.0 | 923 | |-----|-----|------|-------| | 5.3 | 50 | 8.0 | 1,520 | | 5.5 | 105 | 10.0 | 2,960 | | 6.0 | 350 | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|-----------------------------------|---|---|---|---|---|---|---|----------------------------------|----------------------------------|--| | 1 | 270 | 263 | 721 | 290 | 2600 | 290 | 881 | 490 | 100 | 77 | 54 | 59 | | 2 | 256 | 352 | 660 | 260 | 2300 | 320 | 960 | 431 | 106 | 71 | 51 | 54 | | 3 | 219 | 374 | 574 | 230 | 2000 | 350 | 1110 | 386 | 113 | 67 | 51 | 61 | | 4 | 210 | 374 | 459 | 220 | 1700 | 380 | 1350 | 344 | 127 | 60 | 55 | 98 | | 5 | 190 | 380 | 427 | 200 | 1300 | 360 | 1380 | 316 | 130 | 55 | 60 | 101 | | 6 | 182 | 351 | 395 | 190 | 960 | 420 | 1580 | 288 | 124 | 51 | 60 | 123 | | 7 | 172 | 303 | 440 | 180 | 700 | 480 | 1690 | 263 | 115 | 50 | 65 | 99 | | 8 | 162 | 291 | 669 | 170 | 540 | 580 | 1500 | 254 | 105 | 46 | 60 | 86 | | 9 | 169 | 287 | 1010 | 160 | 450 | 700 | 1270 | 258 | 97 | 42 | 61 | 78 | | 10 | 146 | 296 | 1200 | 150 | 370 | 800 | 1060 | 272 | 93 | 44 | 62 | 70 | | 11 | 156 | 283 | 1170 | 150 | 320 | 900 | 911 | 283 | 91 | 58 | 70 | 67 | | 12 | 157 | 275 | 1050 | 160 | 280 | 1000 | 803 | 267 | 86 | 79 | 77 | 66 | | 13 | 157 | 269 | 899 | 150 | 250 | 880 | 731 | 244 | 81 | 65 | 75 | 71 | | 14 | 153 | 260 | 780 | 150 | 240 | 780 | 650 | 225 | 79 | 58 | 72 | 97 | | 15 | 138 | 250 | 631 | 150 | 230 | 720 | 582 | 212 | 79 | 54 | 72 | 70 | | 16 | 150 | 237 | 456 | 200 | 230 | 702 | 525 | 207 | 72 ⁻ | 64 | 71 | 65 | | 17 | 192 | 276 | 485 | 350 | 230 | 643 | 474 | 204 | 75 | 80 | 59 | 64 | | 18 | 207 | 361 | 436 | 600 | 240 | 503 | 431 | 176 | 76 | 119 | 61 | 66 | | 19 | 200 | 374 | 635 | 920 | 270 | 507 | 397 | 151 | 74 | 87 | 62 | 80 | | 20 | 197 | 358 | 878 | 1000 | 310 | 508 | 371 | 138 | 75 | 84 | 87 | 81 | | 21 | 203 | 319 | 1060 | 700 | 270 | 474 | 362 | 129 | 71 | 75 | 86 | 97 | | 22 | 201 | 293 | 966 | 500 | 230 | 435 | 348 | 122 | 90 | 76 | 81 | 318 | | 23 | 191 | 277 | 863 | 370 | 290 | 418 | 476 | 137 | 113 | 104 | 100 | 587 | | 24 | 233 | 298 | 806 | 300 | 280 | 496 | 622 | 142 | 97 | 83 | 97 | 604 | | 25 | 181 | 387 | 868 | 230 | 260 | 645 | 578 | 132 | 78 | 85 | 90 | 500 | | 26
27
28
29
30
31 | 201
274
272
259
249
237 | 491
481
559
774
786 | 837
816
692
600
470
350 | 190
170
150
220
450
1300 | 250
250
250
260
 | 703
682
738
729
841
925 | 542
618
695
641
563 | 129
124
119
119
109
104 | 68
60
62
69
79 | 85
78
71
67
67
59 | 78
73
70
68
65
63 | 489
503
478
438
388 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 6184
199
274
138
.33
.38 | 10879
363
786
237
.60 | 22303
719
1200
350
1.19
1.37 | 10460
337
1300
150
.56 | 17860
616
2600
230
1.01
1.09 | 18909
610
1000
290
1.00
1.16 | 24101
803
1690
348
1.32
1.48 | 6775
219
490
104
.36
.42 | 2685
89.5
130
60
.15
.16 | 2161
69.7
119
42
.11 | 2156
69.5
100
51
.11 | 5958
199
604
54
. 33
. 37 | CAL YR 1987 TOTAL 139329 MEAN 382 MAX 1580 MIN 83 CFSM .63 IN. 8.54 WTR YR .1988 TOTAL 130431 MEAN 356 MAX 2600 MIN 42 CFSM .59 IN. 7.99 # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) LOCATION.--Lat 43°06'00", long 87°54'32", in NE 1/4 sec.5, T.7 N., R.22 E., Milwaukee County, Hydrologic Unit 04040003, on left bank near northeast limits of Milwaukee in Estabrook Park, 2,000 ft downstream from Port Washington Road bridge and 6.6 mi upstream from mouth. DRAINAGE AREA. -- 696 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--April 1914 to current year. Published as "near Milwaukee" prior to 1936. REVISED RECORDS.--WSP 564: 1918(M). WSP 924: 1940. WSP 1207: 1936(M). WSP 1337: 1915-17(M), 1918, 1919-21(M), 1922, 1923(M), 1924, 1925-33(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 607.23 ft above National Geodetic Vertical Datum of 1929 (levels by U. S. Army Corps of Engineers). Prior to Apr. 6, 1929, nonrecording gage near present site at different datum. Apr. 6, 1929, to Jan. 8, 1934, nonrecording gage at bridge 0.5 mi upstream at different datum. REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are poor. Occasional regulation caused by recreation dam approximately 1,200 ft upstream. AVERAGE DISCHARGE.--74 years, 426 ft³/s, 8.31 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,100 ft³/s, Mar. 20, 1918, Aug. 6, 1924, gage height, 9.00 ft datum then in use, from floodmark for 1918, from graph based on gage reading for 1924, no flow Sept. 8, 1943. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Jan. 19 | 2130 | *3,560 | *5.14 | Feb. 1 | 0700 | 3,260 | 4.96 | Minimum discharge, 8.0 ft³/s, Sept. 5, gage height, 1.45 ft, result of regulation. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 21-23, Dec. 30 to Jan. 18, Jan. 22-31, and Feb. 5 to Mar. 7.) | 1.6 | 35 | 2.5 | 412 | |-----|-----|-----|-------| | 1.7 | 54 | 3.0 | 756 | | 1.8 | 81 | 4.0 | 1,830 | | 2.0 | 156 | 5.0 | 3,320 | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | |------------|-------|------|-----|---------|---------|------|---------|------|----|-----------|------| | | | | | M | ean vai | LUES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---|-----------------------------------|---|---|---|--|---|--|---------------------------------|---|--|---------------------------------| | 1 | 331 | 374 | 864 | 320 | 3130 | 330 | 957 | 577 | 124 | 101 | 70 | 67 | | 2 | 318 | 629 | 770 | 300 | 2810 | 370 | 1100 | 519 | 148 | 95 | 71 | 63 | | 3 | 292 | 434 | 738 | 280 | 2540 | 390 | 1280 | 469 | 123 | 85 | 75 | 64 | | 4 | 267 | 440 | 591 | 260 | 2060 | 410 | 1430 | 434 | 121 | 81 | 188 | 621 | | 5 | 263 | 442 | 489 | 240 | 1300 | 400 | 1520 | 403 | 120 | 72 | 115 | 140 | | 6 | 253 | 430 | 495 | 220 | 1100 | 450 | 2150 | 379 | 118 | 72 | 70 | 122 | | 7 | 255 | 416 | 694 | 210 | 900 | 500 | 2040 | 356 | 113 | 70 | 64 | 123 | | 8 | 230 | 380 | 886 | 200 | 640 | 619 | 1750 | 345 | 108 | 67 | 110 | 103 | | 9 | 243 | 359 | 1290 | 190 | 500 |
809 | 1460 | 363 | 100 | 63 | 133 | 91 | | 10 | 232 | 361 | 1430 | 180 | 420 | 983 | 1210 | 378 | 96 | 60 | 80 | 84 | | 11 | 219 | 354 | 1440 | 180 | 370 | 1050 | 1010 | 369 | 96 | 63 | 74 | 73 | | 12 | 230 | 346 | 1280 | 180 | 330 | 1100 | 870 | 387 | 94 | 81 | 79 | 73 | | 13 | 231 | 340 | 1090 | 180 | 290 | 1060 | 772 | 347 | 95 | 100 | 94 | 69 | | 14 | 232 | 334 | 918 | 170 | 270 | 915 | 709 | 317 | 88 | 86 | 93 | 88 | | 15 | 230 | 324 | 793 | 170 | 260 | 771 | 628 | 294 | 86 | 81 | 117 | 95 | | 16 | 225 | 339 | 563 | 200 | 260 | 691 | 570 | 281 | 84 | 156 | 87 | 77 | | 17 | 297 | 376 | 564 | 300 | 270 | 662 | 521 | 271 | 77 | 113 | 82 | 111 | | 18 | 276 | 403 | 513 | 700 | 280 | 596 | 484 | 260 | 74 | 126 | 180 | 124 | | 19 | 278 | 441 | 638 | 1270 | 300 | 467 | 448 | 249 | 73 | 145 | 91 | 227 | | 20 | 266 | 438 | 1490 | 1510 | 380 | 563 | 426 | 235 | 75 | 118 | 70 | 138 | | 21 | 271 | 400 | 1280 | 827 | 310 | 502 | 411 | 222 | 77 | 114 | 95 | 114 | | 22 | 283 | 350 | 1290 | 600 | 270 | 484 | 414 | 211 | 94 | 108 | 93 | 764 | | 23 | 266 | 330 | 1050 | 430 | 340 | 445 | 617 | 200 | 109 | 117 | 296 | 560 | | 24 | 297 | 370 | 1110 | 320 | 320 | 494 | 644 | 189 | 141 | 160 | 115 | 559 | | 25 | 279 | 624 | 1140 | 270 | 300 | 604 | 649 | 174 | 118 | 124 | 112 | 503 | | 26
27
28
29
30
31 | 286
340
353
340
327
319 | 575
595
892
991
994 | 1040
869
839
684
540
400 | 230
200
170
300
700
2000 | 280
270
280
300 | 740
658
813
799
904
980 | 629
763
784
743
654 | 168
105
45
48
126
124 | 100
87
119
112
88 | 115
114
106
96
87
77 | 97
86
78
74
74
69 | 430
430
421
391
356 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 8529
275
353
219
.40
.46 | 14081
469
994
324
.67 | 27778
896
1490
400
1.29
1.48 | 13307
429
2000
170
.62
.71 | 21080
727
3130
260
1.04
1.13 | 20559
663
1100
330
.95
1.10 | 27643
921
2150
411
1.32
1.48 | 8845
285
577
45
. 41
. 47 | 3058
102
148
73
.15 | 3053
98.5
160
60
.14
.16 | 3132
101
296
64
.15
.17 | 7081
236
764
63
.34 | CAL YR 1987 TOTAL 173321 MEAN 475 MAX 2160 MIN 108 CFSM .68 IN. 9.26 WTR YR 1988 TOTAL 158146 MEAN 432 MAX 3130 MIN 45 CFSM .62 IN. 8.45 # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) # WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964-65, 1967-69, 1971, 1973 to current year. National Stream-Quality Accounting Network data collection begin in January 1973. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | WATER | QUALITI | MILIT, WALL | an inan | OI ODIM | 1,07 | TO DELL | | ,,,, | | | |------------------|---|--|--|---|--|------------------------------------|--|--|---|---|---| | DATE | CH
I
C
TIME | NST. CIUBIC COFEET DUPER AND COND (US | JCT- (ST
NCE /
S/CM) UNI | TAND- A
ARD W
ITS) (I | EMPER-
ATURE
JATER
DEG C)
00010) | TUI
BII
IT
(FTU
(000) | D- D
Y SC
) (M | GEN,
DIS-
DLVED
IG/L) | METRIC
PRES-
SURE
(MM
OF
HG) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | | OCT 1987 | | | | | | | | | | | | | 20
MAR 1988 | 0830 2 | 68 | 750 | 8.40 | 11.0 | 6 | . 1 | 10.6 | 748 | 98 | K290 | | 16 | 0945 8 | 14 | 440 | 8.20 | 0.5 | 2 | . 2 | 15.6 | 757 | 109 | K17 | | JUN
23
SEP | 1015 1 | 05 | 830 | 8.60 | 24.0 | 8 | .3 | 6.9 | 757 | 83 | 360 | | 01 | 1100 | 69 | 700 | 8.70 | 20.0 | 5 | .0 | 9.4 | 750 | 105 | 75 | | DATE | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | NESS | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | DIS
SOLV
(MG/
AS M | M, S
-
ED :
L
IG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIU
PERCEN
(00932 | Γ | - SI
- DI
N SOL
O (MG
AS | UM,
S-
VED
/L
K) | | OCT 1987 | | | | | | | | _ | | | _ | | 20
MAR 1988 | 65 | 350 | 63 | 74 | 41 | | 27 | 1 | 4 0 | .6 3 | . 3 | | 16 | 270 | 260 | 41 | 57 | 28 | | 17 | 1 | 2 0 | .5 2 | . 4 | | JUN
23 | 120 | 320 | 66 | 58 | 41 | | 45 | 2 | 4 1 | 3 | . 4 | | SEP | | | | | | | | | | | | | 01 | 33 | 270 | 71 | 43 | 39 | | 48 | 2 | 7 1 | 9 | .7 | | DATE | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS-
SOLV
(MG/
AS C | ED
L
L | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA
DIS-
SOLVEI
(MG/L
AS
SIO2)
(00955 | AT 18
D DEG.
DIS
SOLV
(MG/ | UÉ SUM 0 CONS C TUEN - DI ED SOL L) (MG | OF
TI-
TS,
S-
VED
/L) | | OCT 1987 | | | | | | | | | | | | | 20 | 324 | 8 | 280 | 39 | 47 | | 0.20 | 0.9 | 5 4 | 10 | 410 | | MAR 1988
16 | 246 | | 202 | 27 | 29 | | 0.20 | 8.2 | 3 | 07 | 303 | | JUN
23
SEP | 266 | 25 | 260 | 53 | 71 | | 0.50 | 13 | 4 | 51 | 437 | | 01 | 218 | 11 | 197 | 60 | 76 | | 0.30 | 6.1 | 4 | 05 | 403 | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | AMMON
DIS
SOLV
(MG/
AS N | [, ()
[IA N
E- ()
ED
L | NITRO-
GEN, AM-
MONIA +
DRGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665 | SOLV
(MG/
AS P | US ORT - DIS ED SOLV L (MG/) AS P | OUS
HO,
-
ED
L
) | | OCT 1987
20 | 0.56 | 297 | 0.550 | 0.030 | 0.0 | 40 | 0.80 | 0.06 | 0.0 | 30 0. | 010 | | MAR 1988
16 | 0.42 | 675 | 0.860 | 0.090 | | | 0.80 | 0.050 | | | | | JUN
23 | 0.42 | 128 | <0.100 | 0.030 | | | 1.1 | 0.030 | | | 080 | | SEP
01 | 0.55 | 75.5 | <0.100 | 0.010 | 0.0 | 30 | 1.2 | 0.07 | 0.0 | 20 <0. | 010 | | V1 | 0.33 | , , , , | .0.100 | 0.010 | 0.0 | 20 | 1.4 | 0.07 | 0.0 | 20 10. | 0.10 | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). # 04087000 MILWAUKEE RIVER AT MILWAUKEE, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | | | | | | | | | | | | | | | |-----------|---|----------------------|--|---|---|---|--|---|-----------------------|--|-----------------------|--
-------------------------------|---|---|--|--|----------------------------------| | DATE | 3 | TIME | DIS
CHARC
INS
CUBI
FEI
PEI
SECC
(0006 | GE, ALU F. INU IC DI ET SOI R (UC DND AS | M, ARSI
S- Di
VED SOI
J/L (UG
AL) AS | IS- I
LVED SC
G/L (
AS) A | ARIUM,
DIS-
DLVED
(UG/L
AS BA)
01005) | LIU | -
VED
/L
BE) | CADMI
DIS
SOLV
(UG)
AS C | S-
ÆD
/L
CD) | CHRO
MIUN
DIS-
SOLV
(UG/
AS (| /ED
/L
(R) | COBAL
DIS-
SOLVE
(UG/
AS C | D
L
O) | COPPER
DIS-
SOLVEI
(UG/L
AS CU | DI
SOI
(UC
AS | ON,
IS-
LVED
G/L
FE) | | OCT 1987 | | 0830 | 268 | | <10 | 1 | 34 | < | 0.5 | | <1 | | 2 | | <3 | : | L | 20 | | MAR 1988 | 3 | 0945 | 814 | | <10 | <1 | 25 | < | 0.5 | | <1 | | <1 | | <3 | | L | 61 | | JUN
23 | | 1015 | 105 | | 30 | 3 | 39 | < | 0.5 | | <1 | | <1 | | <3 | : | l | 16 | | SEP
01 | | 1100 | 69 | | <10 | 1 | 36 | < | 0.5 | | 3 | | <1 | | <3 | <: | L | 4 | | | DATE | I
S(
()
AS | EAD,
DIS-
DLVED
JG/L
S PB)
LO49) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERCUR
DIS-
SOLVE
(UG/I
AS HG | CY DECEMBER OF THE PROPERTY | OLYB-
ENUM,
DIS-
DLVED
JG/L
S MO)
L060) | DI
SO
(U
AS | KEL,
S-
LVED
G/L
NI)
065) | SOI
(UC | IM,
[S-
LVED
G/L
SE) | T:
D:
SO:
(UC
AS | RON-
IUM,
IS-
LVED
G/L
SR)
D80) | VANA
DIUI
DIS
SOLV
(UG,
AS V | M, 2
S-
VED S
/L (V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
01090) | | | 2 | 1987
20 | | 7 | 6 | 4 | 0. | 1 | <10 | | 2 | | <1 | | 330 | | <6 | 13 | | | 1 | R 1988
L6 | | < 5 | <4 | 15 | <0. | 1 | <10 | | <1 | | <1 | | 280 | | <6 | 11 | | | | 23 | | <5 | 12 | 8 | <0. | 1 | <10 | | 1 | | <1 | | 1600 | | <6 | 11 | | | SEI
(| 1 | | <5 | 12 | 2 | <0. | 1 | <10 | | <1 | | <1 | : | 1300 | | <6 | 6 | | | | | | | | DIS-
CHAI
INS | | SPE-
CIFIC | | | SED] | SEI | DI-
MENT
DIS | Ι, | ED.
SUS
SIEV | | | | | | |] | DIS- | | | SE | DI- S | ED. | |----------------|------|---|--|---|---|--|--| | DATE | TIME | CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | OCT 1987 | | | | | | | | | 20
NOV | 0830 | 268 | 750 | 11.0 | | | | | 09
DEC | 0950 | 362 | 760 | 5.0 | | | | | 17
MAR 1988 | 1430 | 621 | 620 | 0.0 | | | | | 16
MAY | 0945 | 814 | 440 | 0.5 | 10 | 22 | 73 | | 13
JUN | 1100 | 335 | 650 | 19.0 | | | | | 22 | 1550 | 118 | 710 | 28.0 | | | | | 23
AUG | 1015 | 105 | 830 | 24.0 | 17 | 4.8 | 47 | | 04
SEP | 1005 | 71 | 1150 | 27.0 | | | | | 01 | 1100 | 69 | 700 | 20.0 | 17 | 3.2 | 0% | | 15 | 1045 | 95 | 655 | 20.5 | | | | ### 04087030 MENOMONEE RIVER AT MENOMONEE FALLS, WI LOCATION.--Lat 43°10'22", long 88°06'14", in SE 1/4 NE 1/4 sec.10, T.8 N., R.20 E., Waukesha County, Hydrologic Unit 04040003, on right bank, 150 ft upstream from Pilgrim Road (County Trunk Highway YY) bridge in Menomonee Falls, at mile 21.1. DRAINAGE AREA. -- 34.7 mi². PERIOD OF RECORD. -- November 1974 to September 1977, July 1979 to current year. REVISED RECORDS. -- WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 753.50 ft above National Geodetic Vertical Datum of 1929 (University of Wisconsin bench mark). REMARKS.--Estimated discharges: Ice periods listed in rating tables below. Records good except those for ice-affected periods, which are poor. Occasional regulation caused by dam in Menomonee Falls, about 1.0 mi upstream. AVERAGE DISCHARGE.--11 years (1976-77, 1980-88) 31.0 ft³/s, 12.13 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 $\rm ft^3/s$, Sept. 11, 1986, gage height, 6.49 ft; maximum gage height, 6.57 ft, July 13, 1981; minimum discharge, 0.52 $\rm ft^3/s$, Aug. 18, 1988, gage height, 2.47 ft. EXTREMES FOR CURRENT YEAR. -- Peak discharge greater than base discharge of 380 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|------|------------|-----------------------------------|---------------------| | Jan. 30 | 1920 | (a) *570 | (a) *6.27 | No | other peak | greater than base | discharge. | (a) Ice jam. Minimum, 0.52 ft³/s Aug. 18; gage height, 2.47 ft. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Feb. 3, 4; stage-discharge relation affected by ice Dec. 5, 16-20, Dec. 31 to Jan. 30, and Feb. 5 to Mar. 1.) | 0ct. 1 | to Jan. 30 | Jan. | 30 (1920) | to Sept. | 30 | |--------|------------|------|-----------|----------|-----| | 2.9 | 9.8 | 2.4 | 0.3 | 3.2 | 28 | | 3.1 | 19 | 2.5 | . 7 | 3.4 | 45 | | 3.3 | 34 | 2.6 | 2.0 | 3.7 | 81 | | 3.5 | 54 | 2.8 | 6.4 | 4.0 | 131 | | 3.7 | 80 | 2.9 | 9.6 | 4.5 | 264 | | 4.0 | 131 | 3.0 | 14 | 5.0 | 456 | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | J AN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|---------------------------------------|--------------------------------|---|---|---|--|--|--|-----------------------------------|------------------------------------|------------------------------------|-----------------------------------| | 1
2
3
4
5 | 15
14
13
12
12 | 30
29
25
23
19 | 54
42
36
31
26 | 25
22
20
18
16 | 317
223
108
80
60 | 36
28
25
23
19 | 45
57
96
86
67 | 25
22
20
19
17 | 4.1
4.7
4.4
4.2
4.0 | 1.5
1.6
1.8
1.6 | 1.0
.94
.80
2.3
1.4 | 1.1
1.1
2.5
9.5
3.3 | | 6
7
8
9
10 | 11
11
11
11
10 | 16
17
16
16
15 | 24
40
85
131
130 | 15
14
13
12
11 | 45
35
29
25
23 | 21
27
37
45
36 | 80
73
60
50
40 | 16
15
13
15
21 | 4.1
3.9
3.7
3.3
3.7 | 1.4
1.3
1.3
1.3 | 1.2
.96
1.3
1.2 | 2.5
2.1
1.7
1.8
1.7 | | 11
12
13
14
15 | 10
10
11
11
10 | 14
14
14
13
13 | 113
89
58
44
33 | 12
13
12
11
15 | 21
19
18
18
17 | 36
38
35
28
28 | 35
31
28
26
24 | 18
16
15
13
12 | 3.7
4.9
3.9
2.9
2.8 | .96
.95
.97
.89 | .94
.86
1.2
.70
.76 | 1.6
1.6
1.4
1.3 | | 16
17
18
19
20 | 13
19
17
16
15 | 16
24
22
19
17 | 28
23
21
24
74 | 25
44
78
150
250 | 17
20
22
19
18 | 22
21
21
21
20 | 22
20
18
16
17 | 11
10
9.6
9.1
8.6 | 2.7
3.6
3.8
3.3
2.7 | 2.4
2.1
2.0
1.5
1.6 | .68
.63
3.0
1.7
1.6 | 1.1
2.0
3.8
7.2
5.5 | | 21
22
23
24
25 | 13
13
13
15
14 | 15
14
15
17
35 | 99
80
64
66
82 | 170
90
60
35
24 | 17
19
23
21
19 | 19
17
22
26
32 | 17
19
49
43
34 | 8.2
7.5
7.0
6.4
6.4 | 2.6
4.6
3.2
2.5
4.2 | 2.9
2.3
1.8
3.1
2.0 | 1.4
1.3
6.5
2.2
1.7 | 3.8
39
23
11
7.1 | | 26
27
28
29
30
31 | 16
17
16
15
14 | 36
30
54
87
69 | 67
48
40
35
32
27 | 20
18
17
250
380
416 | 22
27
34
40 | 34
28
35
51
54
53 | 31
39
41
35
29 | 6.3
5.8
5.5
5.1
4.7
4.2 | 1.9
1.3
1.9
1.6
1.7 | 1.5
1.4
1.1
1.0
1.1 | 1.6
1.5
1.5
1.3
1.2 | 5.4
4.9
4.7
4.4
4.0 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 412
13.3
19
10
.38
.44 | 744
24.8
87
13
.71 | 1746
56.3
131
21
1.62
1.87 | 2256
72.8
416
11
2.10
2.42 | 1356
46.8
317
17
1.35
1.45 | 938
30.3
54
17
.87
1.01 | 1228
40.9
96
16
1.18
1.32 | 372.4
12.0
25
4.2
.35
.40 | 99.9
3.33
4.9
1.3
.10 | 48.06
1.55
3.1
.89
.04 | 45.47
1.47
6.5
.63
.04 | 161.2
5.37
39
1.1
.15 | ### 04087088 UNDERWOOD CREEK AT WAUWATOSA, WI LOCATION.--Lat 43°03'17", long 88°02'46", in SW 1/4 NW 1/4 sec.20, T.7 N., R.21 E., Milwaukee County, Hydrologic Unit 04040003, at U.S. Highway 45, on right bank, just downstream of the Chicago, Milwaukee, St. Paul and Pacific Railroad bridge, on Milwaukee County Park Commission property, at Wauwatosa, and 0.8 mi upstream from mouth. DRAINAGE AREA. -- 18.2 mi². PERIOD OF RECORD. -- December 1974 to November 1979, July 1980 to current year. REVISED
RECORDS.--WDR WI-77-1: Drainage area. WRD WI-85-1: 1984. GAGE.--Water-stage recorder and steel plate weir. Elevation of gage is 690 ft, from topographic map. REMARKS.--Estimated daily discharges: Ice periods listed in rating tables below. Records good, except those for discharges less than 6 $\rm ft^3/s$ and greater than 600 $\rm ft^3/s$ and the periods of ice effect, which are poor. AVERAGE DISCHARGE.--12 years (1976-79, 1981-88), 13.7 ft³/s, 10.22 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,100 ft³/s, July 13, 1981, gage height, 5.55 ft; maximum gage height, 6.58 ft, Feb. 29, 1984, backwater from ice; no flow on all or part of many days during 1977 winter period. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,480 ft³/s, Jan. 19, gage height, 6.32 ft; minimum daily discharge, 3.7 ft³/s, Aug. 6 and 7. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used May 21-25 and Sept. 16; stage-discharge relation affected by ice Nov. 21, Dec. 4, 5, 15-18, Jan. 1-16, 22-28, and Feb. 2-26.) | Oct. | 1 to Sep | ot. 16 (15 | 30) | Sept. | 16 (1535 |) to Sept. | 30 | |------|------------|------------|------------|------------|----------|------------|-----------| | 2.0 | 3.7
6.5 | 2.7 | 57
105 | 2.7 | 3.7 | 3.4
3.7 | 64
142 | | 2.2 | 10
24 | 3.5
4.0 | 211
353 | 2.9
3.1 | 12
28 | 4.0 | 268 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|---|--|--|--|---|--|--|--|--|--| | 1
2
3
4
5 | 8.6
8.2
7.7
7.7
7.8 | 8.9
7.5
6.8
6.2
5.7 | 12
9.7
11
9.4
8.4 | 8.2
7.6
7.0
6.8
6.6 | 37
16
13
10
9.0 | 12
11
9.1
8.1
8.3 | 16
70
61
36
26 | 16
16
15
15 | 5.4
5.8
4.8
4.3
4.5 | 3.9
3.9
4.0
4.1 | 4.7
4.9
6.3
26
6.2 | 4.7
4.7
7.7
138
12 | | 6
7
8
9
10 | 7.3
7.5
7.6
7.5
7.1 | 5.6
11
10
6.8
5.5 | 7.4
48
44
59
29 | 6.4
6.2
6.0
5.8
5.8 | 8.2
7.4
7.0
6.6
6.4 | 8.7
10
14
14
11 | 145
57
32
24
19 | 14
12
13
17
12 | 4.8
4.9
4.7
4.8
4.7 | 4.5
4.6
4.7
4.5
4.3 | 3.7
3.7
31
13
4.5 | 5.7
5.1
4.4
4.3
4.2 | | 11
12
13
14
15 | 7.1
7.4
7.2
6.9
6.8 | 5.4
5.7
5.5
5.5
4.9 | 28
19
13
11 | 5.6
5.6
5.6
5.6
6.0 | 6.2
6.0
6.0
5.8
5.8 | 11
14
12
9.4
8.6 | 17
15
15
15
12 | 10
15
8.9
7.8
8.3 | 4.7
4.8
5.0
5.3
5.2 | 4.4
4.4
4.7
4.7 | 4.1
4.1
7.6
4.1 | 4.1
4.6
4.6
4.2
4.1 | | 16
17
18
19
20 | 6.9
10
6.2
6.7
6.0 | 13
15
6.7
5.4
5.0 | 9.2
8.4
8.0
32
106 | 10
126
141
261
177 | 5.8
6.6
9.0
8.4
7.2 | 8.6
8.5
8.5
8.2 | 12
12
11
9.9 | 7.4
6.3
5.9
5.6
5.1 | 5.2
4.9
6.1
4.7
4.6 | 14
4.4
4.2
4.1
4.2 | 4.1
4.2
17
4.5
4.1 | 4.9
13
4.4
37
13 | | 21
22
23
24
25 | 5.9
7.4
6.2
7.0
6.0 | 5.0
4.8
7.2
8.3 | 45
28
20
40
39 | 36
16
11
9.4
8.2 | 6.0
7.0
7.2
7.0
6.0 | 8.2
8.2
8.7
9.3 | 10
17
40
14
13 | 5.2
5.9
5.9
5.4
5.4 | 4.5
4.5
4.4
4.5
4.5 | 4.1
4.1
4.1
9.1
4.8 | 3.9
4.2
46
5.2
4.3 | 4.9
158
34
9.9
6.5 | | 26
27
28
29
30
31 | 13
8.9
6.5
6.1
6.0
5.9 | 12
8.1
45
27
16 | 22
15
14
12
10
8.9 | 7.8
7.6
8.4
18
157
123 | 8.0
11
14
16 | 11
9.0
31
27
32
20 | 26
36
22
17
16 | 5.4
5.5
5.6
5.7
5.4
5.7 | 4.1
4.2
12
7.3
4.2 | 4.5
4.6
4.8
4.9
4.6
4.5 | 4.1
4.1
4.0
4.1
4.4
4.4 | 6.0
5.3
4.4
4.3
4.1 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 227.1
7.33
13
5.9
.40
.46 | 320.5
10.7
45
4.8
.59
.66 | 736.4
23.8
106
7.4
1.31
1.51 | 1212.2
39.1
261
5.6
2.15
2.48 | 269.6
9.30
37
5.8
.51
.55 | 385.0
12.4
32
8.1
.68
.79 | 825.9
27.5
145
9.9
1.51
1.69 | 285.4
9.21
17
5.1
.51 | 153.4
5.11
12
4.1
.28
.31 | 150.1
4.84
14
3.9
.27 | 261.5
8.44
46
3.7
.46
.53 | 522.1
17.4
158
4.1
.96
1.07 | CAL YR 1987 TOTAL 5829.4 MEAN 16.0 MAX 178 MIN 3.5 CFSM .88 IN. 11.92 WTR YR 1988 TOTAL 5349.2 MEAN 14.6 MAX 261 MIN 3.7 CFSM .80 IN. 10.93 ## 04087120 MENOMONEE RIVER AT WAUWATOSA, WI LOCATION.--Lat 43°02'44", long 87°59'59", in NE 1/4 NW 1/4 sec.27, T.7 N., R.21 E., Milwaukee County, Hydrologic Unit 04040003, on left bank near upstream side of 70th Street bridge in Wauwatosa, 800 ft downstream from Honey Creek, and at mile 6.2. DRAINAGE AREA. -- 123 mi². PERIOD OF RECORD .-- October 1961 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 630.86 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 1, 1974, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: May 28 to July 5 and ice periods listed in rating table below. Records good except those for estimated daily discharges, which are poor. Low flow affected by three sewage treatment plants upstream. CR-21X with telephone connection at station. AVERAGE DISCHARGE. -- 27 years, 98.1 ft³/s, 10.83 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,500 ft³/s, Apr. 21, 1973, gage height, 13.92 ft from rating curve extended above 6,000 ft³/s on basis of slope-area measurement of peak flow; minimum daily, 2.8 ft³/s, Jan. 18, 1964. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,000 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HE
Inside | IGHT (FT)
Outside | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEI
Inside | IGHT (FT)
Outside | |--------------------|-----------------|-----------------------------------|-------------------|----------------------|---------|------|-----------------------------------|--------------------|----------------------| | Jan. 19
Jan. 31 | 2210
Unknown | *3,110
2,300 | *6.96 | 8.08
6.50 | Sept. 4 | 1255 | 2,380 | 5.91 | 6.60 | Minimum daily discharge, 9.4 ft³/s, July 10. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 15-18, Jan. 1-17, Jan. 24 to Feb. 29, and Mar. 3-6.) | 0.1 | 8.8 | 1.5 | 166 | |-----|-----|-----|-------| | 0.3 | 15 | 2.0 | 260 | | 0.5 | 24 | 2.5 | 402 | | 0.7 | 38 | 3.0 | 630 | | 1.0 | 80 | 4.0 | 1,140 | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|---|--|---|--|--|---------------------------------------|--|---|----------------------------------| | 1 | 58 | 104 | 157 | 70 | 450 | 94 | 146 | 85 | 18 | 13 | 12 | 12 | | 2 | 48 | 86 | 128 | 60 | 220 | 86 | 360 | 72 | 20 | 12 | 12 | 11 | | 3 | 39 | 67 | 127 | 52 | 150 | 50 | 416 | 64 | 17 | 11 | 16 | 25 | | 4 | 36 | 58 | 102 | 48 | 110 | 43 | 296 | 57 | 16 | 10 | 94 | 628 | | 5 | 35 | 46 | 79 | 44 | 90 | 40 | 223 | 52 | 16 | 10 | 49 | 83 | | 6 | 34 | 38 | 74 | 42 | 70 | 45 | 885 | 47 | 17 | 10 | 15 | 24 | | 7 | 36 | 61 | 294 | 41 | 56 | 65 | 458 | 42 | 18 | 11 | 12 | 18 | | 8 | 33 | 78 | 310 | 40 | 50 | 105 | 263 | 41 | 17 | 13 | 117 | 16 | | 9 | 30 | 49 | 560 | 39 | 46 | 120 | 192 | 60 | 16 | 11 | 85 | 14 | | 10 | 28 | 37 | 337 | 38 | 44 | 96 | 150 | 70 | 16 | 9.4 | 18 | 13 | | 11 | 27 | 34 | 295 | 40 | 43 | 88 | 128 | 51 | 15 | 10 | 14 | 12 | | 12 | 27 | 34 | 233 | 42 | 42 | 103 | 111 | 77 | 15 | 13 | 13 | 12 | | 13 | 28 | 34 | 178 | 39 | 41 | 96 | 101 | 46 | 15 | 12 | 27 | 12 | | 14 | 28 | 33 | 142 | 37 | 41 | 72 | 98 | 36 | 16 | 12 | 20 | 12 | | 15 | 28 | 30 | 120 | 39 | 40 | 55 | 78 | 35 | 15 | 13 | 54 | 12 | | 16 | 32 | 70 | 110 | 43 | 40 | 53 | 71 | 32 | 15 | 69 | 15 | 11 | | 17 | 99 | 127 | 96 | 250 | 42 | 48 | 64 | 30 | 14 | 36 | 14 | 45 | | 18 | 44 | 65 | 90 | 193 | 54 | 47 | 59 | 29 | 16 | 14 | 100 | 36 | | 19 | 38 | 51 | 207 | 684 | 50 | 47 | 51 | 28 | 14 | 13 | 34 | 170 | | 20 | 36 | 42 | 791 | 1130 | 45 | 46 | 54 | 28 | 14 | 12 | 14 | 66 | | 21
22
23
24
25 | 32
45
34
49
35 | 35
32
57
48
282 | 430
275
217
283
322 | 324
232
152
82
60 | 44
45
40
35
34 | 42
41
45
60
99 | 53
69
272
145
108 | 27
24
24
23
22 | 14
14
13
13 | 13
14
12
42
25 | 12
12
220
22
15 | 22
614
259
82
41 | | 26
27
28
29
30
31 |
64
67
41
35
33
30 | 139
104
363
324
200 | 234
179
154
137
124
112 | 54
50
48
100
300
1000 | 56
66
72
90 | 87
73
163
189
224
178 | 131
231
174
128
102 | 21
22
23
23
20
18 | 12
12
50
20
15 | 14
13
13
14
12 | 13
12
12
11
12
11 | 27
22
19
18
17 | | TOTAL MEAN MAX MIN CFSM IN. | 1229
39.6
99
27
.32
.37 | 2728
90.9
363
30
.74
.83 | 6897
222
791
74
1.81
2.09 | 5373
173
1130
37
1.41
1.63 | 2206
76.1
450
34
62
.67 | 2600
83.9
224
40
.68
.79 | 5617
187
885
51
1.52
1.70 | 1229
39.6
85
18
.32
.37 | 495
16.5
50
12
.13
.15 | 497.4
16.0
69
9.4
.13
.15 | 1087
35.1
220
11
.29
.33 | 2353
78.4
628
11
.64 | CAL YR 1987 TOTAL 39137 MEAN 107 MAX 1060 MIN 19 CFSM .87 IN. 11.84 WTR YR 1988 TOTAL 32311.4 MEAN 88.3 MAX 1130 MIN 9.4 CFSM .72 IN. 9.77 ## 04087159 KINNICKINNIC RIVER AT SOUTH 11TH STREET AT MILWAUKEE, WI LOCATION.--Lat 42°59'51", long 87°55'35", in SW 1/4 NW 1/4 sec.8, T.6 N., R.22 E., Milwaukee County, Hydrologic Unit 04040003, on left bank 150 ft upstream from footbridge on South 11th Street, 3.2 mi upstream from mouth, at Milwaukee. DRAINAGE AREA. -- 20.2 mi². PERIOD OF RECORD.--October 1982 to current year. Low-flow records equivalent to records for Kinnickinnic River at Milwaukee, WI (04087160) September 1976 to January 1983 (discontinued). Discontinued gage was located 0.3 mi downstream from present gage. GAGE .-- Water-stage recorder and steel plate weir. Elevation of gage is 590 ft from river-profile map. REMARKS.--Estimated daily discharge: Feb. 22 to Mar. 2 and ice periods listed in rating table below. Records good except those for estimated daily discharges and those for discharges greater than 500 ft^3/s , which are fair. AVERAGE DISCHARGE. -- 6 years, 26.3 ft³/s, 17.68 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,600 ft³/s, Aug. 6, 1986, from rating curve extended above 600 ft³/s on basis of step-backwater analysis at peak gage height, gage height, 14.41 ft from inside gage, 16.01 ft, from floodmarks; minimum discharge, 1.3 ft³/s, Jan. 26 and 27, 1986, gage height, 5.80 ft, result of freezeup. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,560 ${\rm ft}^3/{\rm s}$, Jan. 19, gage height, 11.25 ft; minimum discharge, 3.3 ${\rm ft}^3/{\rm s}$, Feb. 5, gage height, 5.95 ft, result of freezeup. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Jan. 1-17, 23, 24, 26-28, and Feb. 4, 6-21.) | 6.0 | 4.2 | 7.0 | 83 | |-----|-----|-----|-----| | 6.2 | 9.4 | 7.5 | 179 | | 6.4 | 19 | 8.0 | 315 | | 6.6 | 33 | 9.0 | 736 | | 6.8 | 55 | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|--|------------------------------------|--|-----------------------------------|--|---|---|---| | 1
2
3
4
5 | 8.1
8.4
6.4
6.5
7.8 | 21
9.5
7.5
7.5
6.8 | 11
8.8
48
12
8.1 | 11
9.2
8.8
8.0
7.6 | 21
15
12
11
8.9 | 16
13
8.7
8.5
7.9 | 12
128
49
27
21 | 11
11
11
10
11 | 14
20
11
9.0
8.3 | 9.2
8.4
8.1
8.1
9.5 | 12
18
20
96
81 | 8.3
7.8
20
144
16 | | 6
7
8
9
10 | 7.1
8.6
6.9
6.8
6.1 | 6.7
13
14
8.7
7.4 | 8.1
96
53
66
20 | 7.2
7.0
6.8
6.6
6.6 | 8.6
9.2
8.4
8.0
7.4 | 9.3
12
21
12
9.5 | 322
34
21
16
14 | 10
9.5
11
27
12 | 10
11
12
11
11 | 10
11
11
9.2
8.6 | 7.2
6.4
91
97
10 | 9.5
8.6
8.8
8.4
7.3 | | 11
12
13
14
15 | 5.6
6.5
7.1
7.2
7.4 | 6.7
6.9
6.7
5.9 | 36
15
10
9.6
75 | 6.4
6.4
6.2
6.2
6.2 | 7.2
6.8
6.6
6.6
6.6 | 9.3
11
7.9
7.8
7.6 | 13
13
14
16
11 | 10
19
9.2
7.4
8.6 | 11
11
11
11
11 | 8.9
10
11
11 | 10
9.9
12
9.2
37 | 7.1
9.4
8.3
8.0
7.8 | | 16
17
18
19
20 | 9.2
23
6.2
8.3
7.0 | 27
30
8.0
7.5
6.7 | 14
11
9.1
66
206 | 7.0
45
65
533
157 | 6.6
6.8
9.6
7.4
6.4 | 7.5
7.3
7.2
7.0
7.0 | 9.9
9.2
9.4
9.4 | 7.6
7.5
7.4
7.5
7.8 | 10
9.9
8.5
8.2 | 117
13
11
11.
9.7 | 11
11
57
11
7.3 | 7.9
22
9.4
68
20 | | 21
22
23
24
25 | 6.7
13
7.0
15
6.6 | 5.4
5.3
13
13
95 | 38
28
19
64
44 | 18
12
11
10
9.2 | 5.8
10
15
6.8
5.8 | 6.8
7.5
8.8
8.9 | 9.8
31
104
13 | 7.3
6.5
7.2
8.5
9.3 | 11
12
11
11
9.3 | 12
9.2
6.8
37
19 | 6.6
7.7
100
9.2
8.5 | 8.9
316
52
11
9.3 | | 26
27
28
29
30
31 | 24
13
7.9
6.8
6.5
5.8 | 11
7.0
133
21
14 | 19
14
14
13
12 | 15
9.4
10
39
207
96 | 16
22
25
30 | 7.3
6.1
66
33
47
16 | 38
50
19
14
12 | 9.7
9.0
9.7
8.4
8.1 | 8.0
8.7
37
22
9.4 | 9.0
8.5
9.3
10
8.0
9.6 | 7.9
7.1
6.5
7.3
7.6
8.3 | 9.5
9.7
9.2
8.9
8.8 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 272.5
8.79
24
5.6
.44
.50 | 530.7
17.7
133
5.3
.88
.98 | 1058.7
34.2
206
8.1
1.69
1.95 | 1353.8
43.7
533
6.2
2.16
2.49 | 316.5
10.9
30
5.8
.54
.58 | 419.9
13.5
66
6.1
.67 | 1062.7
35.4
322
9.2
1.75
1.96 | 310.2
10.0
27
6.5
.50 | 358.3
11.9
37
8.0
.59
.66 | 445.1
14.4
117
6.8
.71
.82 | 790.7
25.5
100
6.4
1.26
1.46 | 849.9
28.3
316
7.1
1.40
1.57 | CAL YR 1987 TOTAL 8708.9 MEAN 23.9 MAX 580 MIN 4.4 CFSM 1.18 IN. 16.04 WTR YR 1988 TOTAL 7769.0 MEAN 21.2 MAX 533 MIN 5.3 CFSM 1.05 IN. 14.31 ### 04087204 OAK CREEK AT SOUTH MILWAUKEE, WI LOCATION.--Lat 42°55'30", long 87°52'12", in NW 1/4 sec.2, T.5 N., R.22 E., Milwaukee County, Hydrologic Unit 04040002, on left bank 25 ft downstream from 15th Avenue bridge in South Milwaukee and 2.8 mi upstream from mouth. DRAINAGE AREA. -- 25.0 mi². PERIOD OF RECORD .-- October 1963 to current year. REVISED RECORDS. -- WDR WI-80-1: 1979 (average discharge). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 631.40 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. Low flows may occasionally be affected by construction and activity at gravel pit upstream. AVERAGE DISCHARGE. -- 25 years, 22.4 ft³/s, 12.17 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,140 ft³/s, Aug. 6, 1986, gage height, 9.88 ft; no flow Jan. 8-13, 15-18, 27-31, Feb. 6-8, 1977. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 350 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | |--------------------|--------------|-----------------------------------|------------------|--------|------|-----------------------------------|------------------| | Jan. 20
Jan. 30 | 0215
2130 | *568
366 | *7.62
6.54 | Apr. 6 | 1130 | 440 | 6.98 | Minimum discharge, 0.51 ft³/s, July 14, 15, Aug. 8, gage height, 2.13 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 29 to Jan. 16, Jan. 24-29 and Feb. 6-17.) | 2.14 | 0.58 | 3.0 | 37 | |------|------|-----|-----| | 2.2 | .99 | 4.0 | 101 | | 2.3 | 2.5 | 5.0 | 181 | | 2.4 | 4.9 | 6.0 | 290 | | 2.5 | 8.7 | 7.0 | 444 | | 2.6 | 14 | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|---|--|------------------------------------|--|---|--|-----------------------------------|---|------------------------------------|------------------------------------| | 1
2
3
4
5 | 4.7
4.1
3.8
3.5
3.5 | 8.0
6.8
5.4
4.3
3.4 | 22
17
25
28
17 | 18
16
14
13
11 | 121
47
32
23
18 | 27
24
18
14
13 | 24
76
128
62
40 | 16
14
13
13 | 2.5
3.0
2.6
2.4
2.2 | 2.3
1.6
1.4
1.2 | 1.5
.98
.75
.93
4.5 | .86
.65
9.5
33
25 | | 6
7
8
9
10 | 3.4
3.6
3.7
3.7
3.5 | 3.1
3.7
4.4
4.7
3.9 | 15
78
123
136
60 | 10
9.6
9.4
9.0
8.8 | 14
11
10
9.4
9.0 |
15
19
28
32
21 | 334
148
56
36
27 | 12
12
13
17 | 2.2
2.1
2.0
1.9
2.0 | 1.0
1.0
.82
.75 | 6.0
1.8
6.8
18
7.3 | 6.0
2.6
1.8
1.5 | | 11
12
13
14
15 | 3.4
3.4
3.4
3.5 | 3.5
3.6
3.3
3.5
3.5 | 48
41
27
22
25 | 8.6
8.4
8.2
8.0
7.6 | 8.8
8.6
8.2
8.2 | 20
21
20
15
13 | 23
20
18
18
15 | 13
19
14
12
12 | 1.9
1.9
1.8
1.7 | .86
.75
.67
.58 | 2.4
1.5
1.1
.85
5.8 | 1.2
1.1
1.0
.77
1.1 | | 16
17
18
19
20 | 3.3
4.2
3.7
3.1
2.9 | 5.2
15
9.3
5.7
4.3 | 19
19
18
29
244 | 8.4
49
99
154
429 | 8.4
8.4
9.8
9.8
9.0 | 11
11
11
11
10 | 14
13
11
11 | 12
11
11
11
9.8 | 1.5
1.6
1.5
1.4 | 25
28
6.4
2.7
1.9 | 4.4
1.9
6.1
8.6
3.1 | 1.1
5.2
3.6
5.5 | | 21
22
23
24
25 | 2.8
3.0
2.9
4.4
4.2 | 3.7
3.7
5.6
6.5
48 | 149
72
50
78
119 | 146
56
33
23
20 | 7.8
10
12
9.7
7.3 | 9.5
9.4
10
12
13 | 10
12
111
36
23 | 8.7
7.5
5.8
5.3
4.4 | 1.3
1.5
1.3
1.3 | 2.4
2.5
1.8
3.9
2.3 | 1.5
1.1
25
9.8
3.1 | 4.7
93
97
18
7.6 | | 26
27
28
29
30
31 | 5.4
9.2
5.3
3.4
3.1
3.5 | 26
14
52
72
29 | 59
35
27
24
23
20 | 18
16
13
14
211
331 | 14
20
20
28 | 13
11
27
52
55
35 | 22
54
41
25
19 | 3.8
3.6
3.2
2.9
2.8
2.5 | 1.0
1.0
3.8
8.4
4.6 | 1.4
1.1
.95
.77
4.0
2.9 | 1.7
1.3
1.0
.85
.80 | 4.9
3.4
2.8
2.5
2.3 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 119.0
3.84
9.2
2.8
.15 | 365.1
12.2
72
3.1
.49
.54 | 1669
53.8
244
15
2.15
2.48 | 1780.0
57.4
429
7.6
2.30
2.65 | 510.6
17.6
121
7.3
.70 | 600.9
19.4
55
9.4
.78
.89 | 1437
47.9
334
10
1.92
2.14 | 314.3
10.1
19
2.5
.41 | 64.6
2.15
8.4
1.0
.09 | 103.51
3.34
28
.58
.13
.15 | 131.36
4.24
25
.75
.17 | 349.98
11.7
97
.65
.47 | CAL YR 1987 TOTAL 7480.1 MEAN 20.5 MAX 299 MIN 1.8 CFSM .82 IN. 11.13 WTR YR 1988 TOTAL 7445.35 MEAN 20.3 MAX 429 MIN .58 CFSM .81 IN. 11.08 ### 04087220 ROOT RIVER NEAR FRANKLIN, WI LOCATION.--Lat 42°52'25", long 87°59'45", in SE 1/4 sec.22, T.5 N., R.21 E., Milwaukee County, Hydrologic Unit 04040002, on right bank 400 ft upstream from State Highway 100, 2.1 mi upstream from Root River Canal, 2.4 mi southeast of Franklin, 5.5 mi southeast of Hales Corners, and about 24 mi upstream from mouth. DRAINAGE AREA. -- 49.2 mi². PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORD.--WDR WI-81-1: Drainage area. WDR WI-83-1: 1981. GAGE.--Water-stage recorder. Datum of gage is 674.5 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records fair. Flow affected by urbanization in the drainage basin. AVERAGE DISCHARGE.--25 years, 44.6 ft³/s, 12.31 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,700 $\rm ft^3/s$, Apr. 21, 1973, gage height, 9.31 ft; minimum, 0.38 $\rm ft^3/s$, Aug. 10, 1971, gage height, 1.45 ft. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of Mar. 30, 1960, reached a stage of 9.57 ft, discharge, $5,130 \text{ ft}^3/\text{s}$, from rating curve extended above 2,000 ft³/s on basis of contracted-opening measurement of peak flow. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|--------|---------|-----------------------------------|---------------------| | Jan. 20 | | (a) * 530 | (a) *8.15 | No oth | er peak | greater than base | discharge. | (a) Backwater from ice. Minimum daily discharge, 1.6 ft3/s, Aug. 2. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Oct. 10 to Dec. 1, Dec. 7-13, 20-27, Mar. 8-10, 12, 13, Apr. 11-13, 25, 29, June 24-28, July 1-16, July 19 to Aug. 4, Aug. 7, 8, 12-14, 17, 18, 21, 22, Aug. 26 to Sept. 3, and Sept. 11-16; stage discharge relation affected by ice Dec. 15-18 and Dec. 28 to Mar. 5.) | 1 , | 1 0 | 1 0 | 0 5 | 5.0 | 169 | |-----|-----|-----|-----|-----|-----| | 1.4 | 1.2 | 1.9 | 8.5 | 5.0 | | | 1.5 | 1.8 | 2.0 | 12 | 6.0 | 270 | | 1.6 | 2.5 | 2.5 | 47 | 7.0 | 444 | | 1.7 | 3.5 | 3.0 | 69 | 8.0 | 740 | | 1 2 | 5.5 | 4.0 | 112 | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|---|---|--|--|---|--|-----------------------------------|--|--|------------------------------------| | 1
2
3
4
5 | 13
13
11
8.5 | 11
18
11
10
8.5 | 55
44
42
47
32 | 39
35
31
28
26 | 280
130
90
72
62 | 68
58
40
29
25 | 59
73
226
126
79 | 24
23
21
19 | 5.1
4.7
4.5
4.9
3.8 | 3.2
2.3
2.2
1.8
2.1 | 1.8
1.6
2.0
1.7
28 | 2.2
1.9
3.2
19 | | 6
7
8
9
10 | 10
12
13
13 | 5.6
6.4
8.5
14
8.9 | 22
61
158
181
118 | 24
22
20
19
19 | 52
45
39
35
32 | 23
29
43
53
40 | 339
371
116
77
59 | 18
18
18
19
25 | 3.7
3.5
3.5
4.3
3.4 | 2.1
2.1
1.9
2.4
1.9 | 7.5
2.4
2.2
56
16 | 14
5.1
4.2
5.3
4.0 | | 11
12
13
14
15 | 17
18
17
15
11 | 6.3
5.8
5.8
5.8
5.1 | 78
75
57
48
54 | 18
18
17
17 | 30
28
26
25
24 | 34
38
39
29
27 | 50
43
38
36
31 | 19
22
20
16
14 | 3.2
3.1
3.0
2.8
2.9 | 1.8
2.3
1.8
1.8
2.0 | 4.2
3.0
2.5
3.2
6.8 | 2.6
2.3
2.3
2.3
2.3 | | 16
17
18
19
20 | 18
29
28
20
17 | 6.0
37
23
9.0
7.5 | 50
44
42
40
246 | 19
30
120
140
470 | 23
23
24
25
25 | 21
21
19
19
18 | 25
23
21
19
18 | 15
14
13
11 | 3.0
3.1
2.7
2.4
2.3 | 3.7
25
4.4
2.5
2.8 | 10
3.0
3.0
16
4.1 | 3.0
3.7
5.5
16
34 | | 21
22
23
24
25 | 14
17
23
22
25 | 5.3
4.4
5.6
7.0
52 | 281
119
83
80
139 | 380
240
130
110
86 | 21
24
30
25
17 | 18
18
18
20
27 | 18
17
108
63
40 | 10
9.2
9.3
8.8
7.7 | 2.7
2.7
2.3
2.7
2.2 | 2.3
2.2
2.2
2.4
2.9 | 2.4
2.3
28
16
4.4 | 11
56
207
48
16 | | 26
27
28
29
30
31 | 26
37
21
10
10 | 66
39
52
117
68 | 98
65
52
50
46
44 | 70
60
56
56
180
460 | 21
50
52
70 | 29
22
32
86
90
86 | 31
64
60
41
30 | 8.7
7.5
6.6
5.6
5.0
5.1 | 2.0
2.2
2.3
11
6.6 | 3.3
2.3
1.9
2.0
2.1
2.1 | 2.5
2.4
2.2
2.3
2.4
2.9 | 12
12
7.1
4.6
3.9 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 523.3
16.9
37
7.8
.34
.40 | 629.5
21.0
117
4.4
.43
.48 | 2551
82.3
281
22
1.67
1.93 | 2957
95.4
470
17
1.94
2.24 | 1400
48.3
280
17
.98
1.06 | 1119
36.1
90
18
.73
.85 | 2301
76.7
371
17
1.56
1.74 | 442.5
14.3
25
5.0
.29
.33 | 106.6
3.55
11
2.0
.07 | 95.8
3.09
25
1.8
.06 | 242.8
7.83
56
1.6
.16 | 582.5
19.4
207
1.9
.39 | CAL YR 1987 TOTAL 13116.5 MEAN 35.9 MAX 536 MIN 3.6 CFSM .73 IN. 9.92 WTR YR 1988 TOTAL 12951.0 MEAN 35.4 MAX 470 MIN 1.6 CFSM .72 IN. 9.79 ## 04087233 ROOT RIVER CANAL NEAR FRANKLIN, WI LOCATION.--Lat 42°48'55", long 87°59'40", in SE 1/4 sec.10, T.4 N., R.21 E., Racine County, Hydrologic Unit 04040002, on right bank 10 ft downstream from highway bridge 3.5 mi upstream from mouth, 5.5 mi southeast of intersection U.S. 45 and State Highway 100 in Franklin, and 8.7 mi southeast of Hales Corners. DRAINAGE AREA. -- 57.0 mi². PERIOD OF RECORD. -- October 1963 to current year. REVISED RECORD. -- WDR WI-80-1: Drainage area. GAGE. -- Water-stage recorder. Elevation of gage is 670 ft, from topographic map. REMARKS .-- Estimated daily discharge: Ice periods listed in rating table below. Records fair. AVERAGE DISCHARGE. -- 25 years, 47.8 ft³/s, 11.39 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,440 $\rm ft^3/s$ Mar. 4, 1974, gage height, 9.88 ft; minimum daily, 0.40 $\rm ft^3/s$ Dec. 19, 1963, result of freezeup. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------------------|--------------|-----------------------------------|-----------------------|--------|------|-----------------------------------
---------------------| | Jan. 20
Jan. 31 | 2130
1745 | (a) 620
(a) 740 | (b) *9.84
(b) 9.71 | Apr. 6 | 2015 | *788 | 9.17 | - (a) Estimated mean daily. - (b) Backwater from ice. Minimum daily discharge, 1.6 ft³/s Aug. 2-4, 29. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 16-19 and Dec. 30 to Feb. 27.) | 1.8 | 1.5 | 4.0 | 109 | |-----|-----|------|-------| | 1.9 | 2.8 | 5.0 | 169 | | 2.0 | 4.8 | 6.0 | 244 | | 2.1 | 7.4 | 7.0 | 337 | | 2.3 | 14 | 8.0 | 485 | | 3.0 | 50 | 9.0 | 730 | | | | 10.0 | 1,140 | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|---|--|--|--|------------------------------------|----------------------------------|----------------------------------|--| | 1
2
3
4
5 | 14
14
12
11 | 7.9
8.7
9.3
9.2
8.1 | 61
46
39
34
26 | 54
50
44
36
31 | 560
250
150
96
74 | 106
90
60
42
36 | 87
99
232
172
125 | 35
31
27
25
23 | 4.8
4.8
4.7
4.4
4.0 | 3.0
2.8
2.8
2.7
2.7 | 1.8
1.6
1.6
1.6 | 2.1
2.4
3.5
7.2 | | 6 | 10 | 7.2 | 23 | 28 | 64 | 37 | 577 | 21 | 3.6 | 2.7 | 1.8 | 6.4 | | 7 | 10 | 7.2 | 95 | 26 | 56 | 46 | 608 | 20 | 3.4 | 2.8 | 1.7 | 3.4 | | 8 | 9.3 | 7.6 | 327 | 24 | 48 | 64 | 260 | 19 | 3.4 | 2.3 | 1.9 | 2.6 | | 9 | 9.0 | 7.5 | 403 | 23 | 43 | 78 | 155 | 21 | 3.6 | 2.2 | 11 | 2.1 | | 10 | 8.5 | 6.9 | 268 | 22 | 38 | 55 | 119 | 26 | 3.6 | 2.4 | 6.7 | 2.0 | | 11 | 7.9 | 6.6 | 166 | 21 | 34 | 49 | 95 | 22 | 3.4 | 2.4 | 3.5 | 2.0 | | 12 | 7.8 | 6.7 | 140 | 20 | 30 | 52 | 75 | 20 | 3.3 | 2.4 | 2.4 | 2.0 | | 13 | 7.9 | 6.4 | 100 | 20 | 28 | 46 | 61 | 18 | 3.2 | 2.5 | 2.0 | 2.1 | | 14 | 7.5 | 6.0 | 76 | 19 | 26 | 35 | 52 | 16 | 3.1 | 2.5 | 1.8 | 2.1 | | 15 | 7.3 | 5.6 | 54 | 19 | 24 | 30 | 44 | 16 | 3.1 | 2.8 | 1.8 | 2.3 | | 16 | 7.4 | 5.8 | 64 | 20 | 23 | 26 | 38 | 15 | 3.0 | 4.6 | 1.8 | 2.5 | | 17 | 8.1 | 12 | 50 | 30 | 24 | 25 | 35 | 14 | 3.1 | 13 | 1.7 | 2.8 | | 18 | 7.9 | 10 | 46 | 150 | 25 | 25 | 31 | 13 | 3.0 | 4.4 | 2.0 | 3.0 | | 19 | 7.4 | 7.9 | 42 | 160 | 25 | 24 | 28 | 12 | 3.2 | 2.8 | 4.6 | 3.2 | | 20 | 7.4 | 7.1 | 286 | 620 | 22 | 22 | 26 | 11 | 3.3 | 2.3 | 3.0 | 3.6 | | 21 | 7.6 | 6.0 | 339 | 580 | 20 | 20 | 23 | 10 | 3.3 | 3.4 | 1.9 | 3.7 | | 22 | 7.5 | 5.9 | 210 | 290 | 22 | 19 | 21 | 9.7 | 3.4 | 8.3 | 1.7 | 8.7 | | 23 | 7.8 | 6.5 | 149 | 160 | 30 | 22 | 90 | 9.3 | 2.9 | 3.8 | 2.1 | 57 | | 24 | 8.2 | 6.2 | 148 | 120 | 25 | 24 | 64 | 9.0 | 2.9 | 2.7 | 2.4 | 27 | | 25 | 8.6 | 23 | 279 | 96 | 20 | 30 | 45 | 8.2 | 2.7 | 2.3 | 1.8 | 11 | | 26
27
28
29
30
31 | 8.2
12
9.5
8.3
7.8
7.2 | 28
19
38
120
79 | 201
125
97
84
70
60 | 84
74
50
43
260
740 | 40
90
100
129 | 30
26
40
114
141
121 | 38
62
65
50
41 | 7.8
7.1
6.6
5.9
5.4
5.0 | 2.8
2.4
2.8
3.8
4.5 | 2.5
1.9
1.7
1.7
1.9 | 1.7
1.8
1.7
1.6
1.8 | 7.4
5.6
4.7
4.5
4.2 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 278.1
8.97
14
7.2
.16
.18 | 485.3
16.2
120
5.6
.28
.32 | 4108
133
403
23
2.32
2.68 | 3914
126
740
19
2.22
2.55 | 2116
73.0
560
20
1.28
1.38 | 1535
49.5
141
19
.87
1.00 | 3418
114
608
21
2.00
2.23 | 489.0
15.8
35
5.0
.28
.32 | 103.5
3.45
4.8
2.4
.06 | 99.0
3.19
13
1.7
.06 | 76.5
2.47
11
1.6
.04 | 205.1
6.84
57
2.0
.12
.13 | CAL YR 1987 TOTAL 18024.8 MEAN 49.4 MAX 837 MIN 2.6 CFSM .87 IN. 11.76 WTR YR 1988 TOTAL 16827.5 MEAN 46.0 MAX 740 MIN 1.6 CFSM .81 IN. 10.98 ### 04087240 ROOT RIVER AT RACINE, WI LOCATION.--Lat $42^{\circ}45'05"$, long $87^{\circ}49'25"$, in NE 1/4 sec.6, T.3 N., R.23 E., Racine County, Hydrologic Unit 04040002, on left bank 30 ft downstream from State Highway 38 bridge in Racine, 350 ft downstream from Horlick Dam, and 5.2 mi upstream from mouth. DRAINAGE AREA.--190 mi², of which 1.24 mi² is probably noncontributing. PERIOD OF RECORD. -- August 1963 to current year. REVISED RECORD. -- WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder. Elevation of gage is 610 ft, from topographic map. Prior to Feb. 5, 1964, nonrecording gage on bridge 30 ft upstream. REMARKS.--Estimated daily discharge: Ice-affected periods listed in rating table below. Records good except for periods of ice affect, which are fair. AVERAGE DISCHARGE.--25 years, 154 ft³/s, 11.07 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,500 $\rm ft^3/s$, Mar. 5, 1974, gage height, 8.54 ft; minimum, 0.90 $\rm ft^3/s$ Jan. 17, 1977; minimum daily, no flow, July 9-15, 1988. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft³/s, and maximum (*): | DATE | TIME | DISCHARGE (ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|--------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Dec. 22 | 1300 | 967 | 4.57 | Feb. 1 | 1330 | *2,090 | *5.96 | | Jan. 22 | 1815 | 1.420 | 5.14 | | 0245 | 1,430 | 5.15 | Minimum daily, no flow, July 9-15. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Apr. 18-22 and May 2-15; stage-discharge relation affected by ice Dec. 16-18, Jan. 1-11, 27, and Feb. 4-22.) | 1.99 | 0 | 2.4 | 18 | 3.5 | 290 | |------|------|-----|-----|-----|-------| | 2.0 | . 22 | 2.5 | 26 | 4.0 | 560 | | 2.1 | 2.5 | 2.6 | 37 | 5.0 | 1,310 | | 2.2 | 6.0 | 2.8 | 65 | 6.0 | 2.130 | | 2.3 | 11 | 3.0 | 116 | | • | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|----------------------------------|---|---|--|------------------------------------|---|--|-------------------------------------|-----------------------------------|---|--------------------------------------|--| | 1
2
3
4
5 | 59
46
40
38
36 | 27
27
31
34
32 | 214
163
133
123
108 | 110
100
84
70
62 | 1980
1540
1080
540
360 | 289
295
240
179
141 | 341
304
523
657
595 | 115
97
8 5
79
72 | 17
16
18
18
17 | 5.3
7.9
6.7
5.1
4.0 | 11
7.9
6.5
4.6
2.6 | 2.3
2.1
3.7
65
49 | | 6
7
8
9
10 | 34
33
30
29
28 | 30
29
28
26
27 | 85
153
465
684
781 | 56
52
49
49
48 | 300
230
180
120
110 | 138
160
212
272
241 | 1030
1260
1370
854
486 | 69
65
63
65
70 | 15
14
14
13
12 | 2.2
1.6
.55
.00 | 2.5
9.4
13
18
34 | 85
35
22
18
14 | | 11
12
13
14
15 | 26
24
24
24
23 | 30
28
26
25
24 | 704
495
352
241
202 | 48
50
51
49
46 | 100
92
84
78
70 | 202
192
192
163
128 | 324
250
201
165
142 | 77
74
71
68
63 | 11
8.8
6.9
4.8
4.7 | .00
.00
.00
.00 | 37
24
17
13
8.9 | 12
11
8.4
6.4
4.7 | | 16
17
18
19
20 | 23
23
21
25
26 | 23
23
37
48
36 | 150
140
120
162
441 | 46
65
153
360
974 | 66
62
60
62
66 | 115
104
103
101
97 | 122
106
87
76
70 | 58
54
53
50
45 | 4.6
3.9
3.5
3.9
4.3 | 1.8
1.4
9.1
16
13 | 8.4
8.3
9.6
10 | 3.7
3.7
3.2
4.4
6.7 | | 21
22
23
24
25 | 24
23
23
23
24 | 29
27
25
25
41 | 727
924
754
541
620 | 1080
1300
1160
780
502 | 58
60
68
77
69 | 90
84
89
94
107 | 63
61
126
302
196 | 44
41
35
33
27 | 4.0
2.9
2.0
2.0
2.5 | 11
8.2
6.1
6.8
7.4 | 14
12
11
10
17 | 14
54
231
237
103 | | 26
27
28
29
30
31 | 26
30
36
39
32
28 | 116
124
95
219
312 | 671
579
374
270
233
209 | 347
300
217
181
458
1320 | 65
113
196
228 | 119
113
112
227
378
401 | 137
151
227
201
146 | 24
23
23
21
19 | 1.9
1.5
1.6
2.0
1.7 | 6.5
5.1
4.3
3.4
12 | 15
12
8.1
6.5
4.5
3.4 | 43
31
25
23
19 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 920
29.7
59
21
.16 | 1604
53.5
312
23
.28
.31 | 11818
381
924
85
2.01
2.31 | 10167
328
1320
46
1.73
1.99 | 8114
280
1980
58
1.47 | 5378
173
401
84
.91
1.05 | 10573
352
1370
61
1.85
2.07 | 1700
54.8
115
17
.29 | 232.5
7.75
18
1.5
.04 | 160.45
5.18
16
.00
.03
.03 | 370.2
11.9
37
2.5
.06 |
1140.3
38.0
237
2.1
.20
.22 | CAL YR 1987 TOTAL 53080 MEAN 145 MAX 1310 MIN 11 CFSM .77 IN. 10.39 WTR YR 1988 TOTAL 52177.45 MEAN 143 MAX 1980 MIN .00 CFSM .75 IN. 10.22 ## 04087257 PIKE RIVER NEAR RACINE, WI LOCATION.--Lat 42°38'49", long 87°51'38", in SE 1/4 NE 1/4 sec.11, T.2 N., R.22 E., Kenosha County, Hydrologic Unit 04040002, on right bank just downstream from unnamed tributary, 1.7 mi downstream from Pike Creek, 6.8 mi southwest of Racine Post Office and 9.0 mi upstream from mouth. DRAINAGE AREA. -- 38.5 mi². PERIOD OF RECORD. -- October 1971 to current year. REVISED RECORDS.--WDR WI-76-1: 1975. WDR WI-80-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 620.09 ft above mean sea level (Southeastern Wisconsin Regional Planning Commission). REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good except those for periods of ice effect, which are fair. Low flows considerably affected by effluent discharge in upper portion of basin, and by occasional regulation of small recreation dam 1.1 mi upstream. AVERAGE DISCHARGE.--17 years, 36.8 ft³/s, 12.98 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,480 $\rm ft^3/s$, Mar. 4, 1976, gage height, 8.15 ft; minimum daily, 0.35 $\rm ft^3/s$, Sept. 28, 1976. EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 600 ft^3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Jan. 20 | 0115 | 817 | 6.58 | Apr. 6 | 0930 | *915 | *6.94 | Minimum daily, 3.3 ft³/s, July 3. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 31 to Jan. 19, Jan. 24-29, Feb. 5-27.) | 1.6 | 1.8 | 2.5 | 44 | |-----|-----|-----|-----| | 1.7 | 3.8 | 3.0 | 93 | | 1.8 | 6.4 | 4.0 | 242 | | 2.0 | 14 | 5.0 | 440 | | 2.2 | 24 | 6.0 | 684 | | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | то | SEPTEMBER | 1988 | |-------------|------------|-------|------|-----|---------|-------|------|---------|------|----|-----------|------| | MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|---|---|--|----------------------------------|---|--|--|--|--|--| | 1
2
3
4
5 | 15
16
11
11
12 | 8.9
9.8
11
12
11 | 43
35
37
34
27 | 34
30
26
22
20 | 205
112
77
60
45 | 50
44
31
25
22 | 51
97
167
101
74 | 18
18
18
18
17 | 9.0
8.7
9.0
8.9
8.2 | 8.0
5.9
3.3
3.5
3.8 | 5.7
5.0
6.3
28 | 5.7
6.0
21
64
29 | | 6
7
8
9
10 | 11
11
7.9
8.5 | 11
9.6
8.8
8.9
6.6 | 24
163
239
220
131 | 19
18
18
17
17 | 30
25
22
20
19 | 23
26
33
39
30 | 598
287
161
106
77 | 17
17
15
13
22 | 7.9
10
10
10
9.7 | 4.5
5.2
5.6
5.8
5.6 | 6.0
5.2
8.6
37
14 | 13
11
9.6
6.5
5.3 | | 11
12
13
14
15 | 10
9.4
10
11
9.7 | 12
8.2
8.6
7.5
6.9 | 99
84
59
48
42 | 16
16
16
15
15 | 18
18
17
17 | 27
28
26
23
21 | 60
47
40
36
31 | 18
17
14
12
15 | 8.4
7.7
7.7
7.2
7.0 | 5.1
5.3
5.3
5.5
5.8 | 10
8.9
7.7
7.8
9.3 | 5.3
5.3
5.5
5.5
5.8 | | 16
17
18
19
20 | 9.7
9.8
10
9.8
10 | 8.1
12
9.9
9.0
9.0 | 39
36
34
38
245 | 15
60
120
160
566 | 17
19
20
18
17 | 19
19
19
18
18 | 27
25
24
23
22 | 17
17
17
16
16 | 9.6
9.0
8.2
6.0 | 9.0
11
8.0
7.9
7.3 | 8.7
8.4
15
24
11 | 13
9.2
5.9
8.9
9.6 | | 21
22
23
24
25 | 10
9.8
10
17
16 | 7.7
7.0
8.0
8.2
48 | 207
138
96
123
234 | 228
141
91
60
45 | 16
17
26
20
17 | 17
17
19
19
25 | 21
19
26
20
19 | 15
14
13
13 | 6.3
6.8
7.0
7.2
7.3 | 20
7.5
6.0
6.1
7.0 | 8.2
7.9
13
10
7.7 | 8.0
33
64
17
9.9 | | 26
27
28
29
30
31 | 10
16
14
11
10
9.3 | 29
18
43
74
48 | 139
83
64
53
48
38 | 40
35
33
32
324
399 | 35
45
41
55
 | 23
21
35
63
95
67 | 19
32
25
22
20 | 13
12
11
11
10
9.5 | 7.0
6.4
6.3
15
12 | 9.3
8.8
8.6
15
7.7
7.4 | 5.4
5.0
5.0
5.0
5.2
5.5 | 7.8
7.8
7.4
7.3
7.4 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 347.9
11.2
17
7.9
.29
.34 | 479.7
16.0
74
6.6
.42
.46 | 2900
93.5
245
24
2.43
2.80 | 2648
85.4
566
15
2.22
2.56 | 1065
36.7
205
16
.95
1.03 | 942
30.4
95
17
.79 | 2277
75.9
598
19
1.97
2.20 | 466.5
15.0
22
9.5
.39
.45 | 249.5
8.32
15
6.0
.22
.24 | 224.8
7.25
20
3.3
.19
.22 | 315.5
10.2
37
5.0
.26
.30 | 414.7
13.8
64
5.3
.36
.40 | CAL YR 1987 TOTAL 12734.6 MEAN 34.9 MAX 479 MIN 6.1 CFSM .91 IN. 12.30 WTR YR 1988 TOTAL 12330.6 MEAN 33.7 MAX 598 MIN 3.3 CFSM .88 IN. 11.91 **UPPER MISSISSIPPI RIVER BASIN RECORDS** # 05332500 NAMEKAGON RIVER NEAR TREGO, WI LOCATION.--Lat 45°56'53", long 91°53'17", in SW 1/4 sec.17, T.40 N., R.12 W., Washburn County, Hydrologic Unit 07030002, at powerplant of Northern States Power Co., 4.0 mi downstream from Potato Creek, and 4.4 mi northwest of Trego. DRAINAGE AREA. -- 488 mi², revised. PERIOD OF RECORD. -- October 1927 to September 1970. October 1987 to September 1988. GAGE.--Headwater and tailwater read hourly. April 1914 to September 1927, nonrecording gage at railroad bridge in Trego, 5 mi upstream at different datum. REMARKS.--Estimated daily discharges: June 19 and Sept. 19. Diurnal fluctuation caused by Trego powerplant. COOPERATION. -- Records of daily discharge furnished by Northern States Power Co. AVERAGE DISCHARGE. -- 44 years, 469 ft³/s, 13.05 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 5,200 $\rm ft^3/s$, Sept. 2, 1941; minimum daily, 113 $\rm ft^3/s$, Aug. 17, Sept. 7, 1930. EXTREMES FOR CURRENT YEAR. Maximum daily discharge, 1,200 ft^3/s , Sept. 22; minimum daily, 214 ft^3/s , Aug. 2, 3. | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|--|--|---------------------------------|--|---------------------------------|--|--|--|--|----------------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 285
320
285
285
285 | 327
327
327
256
271 | 508
469
378
378
378 | 385
385
385
316
251 | 320
320
320
320
320 | 302
323
323
323
323 | 573
573
573
612
617 | 396
396
437
396
382 | 285
285
300
315
315 | 275
275
275
275
275 | 231
214
214
234
407 | 264
264
264
264
264 | | 6
7
8
9
10 | 307
307
320
320
320 | 266
266
266
262
251 | 378
378
374
426
468 | 235
235
235
270
270 | 320
320
320
285
320 | 323
323
323
382
382 | 617
617
927
617
617 | 378
378
378
378
433 | 315
320
285
320
285 | 275
275
275
275
275 | 275
275
275
275
275
275 | 264
249
249
249
249 | | 11
12
13
14
15 | 320
320
378
378
353 | 251
297
320
320
320 | 468
396
396
396
396 | 270
305
305
288
305 | 320
320
320
320
320 | 433
382
382
382
382 | 617
617
588
588
561 | 556
556
512
437
437 | 285
285
285
285
265 | 275
241
241
254
275 | 275
275
275
397
320 | 249
249
231
275
241 | | 16
17
18
19
20 | 378
378
378
378
378
561 | 320
378
320
440
472 | 378
288
378
326
326 | 305
305
320
320
320 | 320
320
276
278
305 | 382
472
396
382
382 | 481
481
481
481
481 | 437
396
396
396
396 | 265
249
285
285
285 | 254
254
254
254
254 | 320
277
285
285
285 | 241
241
241
280
340 | | 21
22
23
24
25 | 558
498
455
455
498 | 472
472
385
382
382 | 326
326
385
382
382 | 320
320
320
320
320 | 305
305
330
320
320 | 382
380
382
380
382 | 476
476
476
476
435 |
396
342
288
378
320 | 285
285
285
285
285
285 | 241
254
275
275
275 | 285
285
264
264
277 | 689
1200
881
881
881 | | 26
27
28
29
30
31 | 417
341
318
318
318
327 | 382
378
320
320
320 | 382
382
382
251
382
385 | 320
320
320
320
320
320 | 310
310
310
310 | 612
462
382
612
518
512 | 472
472
396
396
396 | 320
320
320
320
320
320 | 285
285
254
254
275 | 275
241
231
231
231
231 | 264
264
264
264
264
264 | 689
689
487
487
 | | TOTAL
MEAN
MAX
MIN | 11359
366
561
285 | 10070
336
472
251 | 11848
382
508
251 | 9530
307
385
235 | 9084
313
330
276 | 12306
397
612
302 | 16190
540
927
396 | 12115
391
556
288 | 8577
286
320
249 | 8066
260
275
231 | 8628
278
407
214 | 12539
418
1200
231 | CAL YR 1987 TOTAL 140079 MEAN 384 MAX 945 MIN 251 WTR YR 1988 TOTAL 130312 MEAN 356 MAX 1200 MIN 214 ## 05333000 McKENZIE LAKE NEAR SPOONER, WI #### LAKE-STAGE RECORDS LOCATION.--Lat 45°55'58", long 92°02'17", in SE 1/4 sec.24, T.40 N., R.14 W., Burnett County, Hydrologic Unit 07030002, at outlet of McKenzie Lake, 10.2 mi northwest of Spooner. DRAINAGE AREA. -- 32.3 mi². PERIOD OF RECORD.--August 1936 to September 1976, April 1985 to current year. Data 1936 to 1976 unpublished in district files. GAGE.--Staff gage read by Fred Kruger through December 1987, Eugene Muellner thereafter. Elevation of gage is 990 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD (EXCLUDING 1985 WATER YEAR).--Maximum gage height observed, 1.36 ft May 30, 1937; minimum observed, -0.52 ft Sept. 16, 1950. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 0.26 ft, Mar. 26; minimum observed, -0.33 ft, Aug. 3. REVISED RECORDS.--The gage datum for water year 1985 is given incorrectly at 990 ft from topographic map; gage datum is unknown. ## GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE | GAGE | GAGE | GAGE | GAGE | |---------|--------|--------------|---------------|---------------|---------------| | | HEIGHT | DATE HEIGHT | DATE HEIGHT | DATE HEIGHT | DATE HEIGHT | | Nov. 14 | 0.14 | July 7 -0.28 | July 27 -0.26 | Aug. 20 -0.14 | Sept. 8 -0.28 | | Mar. 26 | 0.26 | 12 -0.23 | Aug. 3 -0.33 | 26 -0.18 | 10 -0.30 | | Apr. 28 | 0.16 | 21 -0.28 | 10 -0.17 | 30 -0.22 | 17 -0.31 | ## WATER-QUALITY RECORDS LOCATION.--Lat $45^{\circ}55^{\circ}06^{\circ}$, long $92^{\circ}01^{\circ}54^{\circ}$, in SW 1/4 sec.30, T.40 N., R.13 W., Burnett County, Hydrologic Unit 07030002, near center of lake, and 9.8 mi northwest of Spooner. PERIOD OF RECORD. -- April 1985 to current year. REMARKS. -- Secchi disc readings made by Fred Kruger through December 1987, Eugene Muellner thereafter. ## SECCHI DISC TRANSPARENCY (IN METERS) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SECCHI
DEPTH | |--------------------|-----------------|--------------|-----------------|-------------------------|-------------------|---------------------|-------------------|---------------------------|-------------------| | Nov. 14
Apr. 28 | 3.7
2.9 | July 7
12 | 2.4 | July 21
27
Aug. 3 | 2.2
2.1
2.0 | Aug. 10
20
26 | 1.8
1.2
1.3 | Aug. 30
Sept. 10
17 | 1.5
1.5
1.9 | ### 05333500 ST. CROIX RIVER NEAR DANBURY, WI LOCATION.--Lat 46°04'28", long 92°14'50", in SW 1/4 sec.33, T.42 N., R.15 W., Burnett County, Hydrologic Unit 07030001, St. Croix National Scenic Waterway, on left bank at downstream side of bridge on State Highway 35, 3.5 mi downstream from Namekagon River, 10 mi northeast of Danbury, and at mile 129.2. DRAINAGE AREA.--1,580 mi². PERIOD OF RECORD.--March 1914 to September 1981, October 1984 to current year. Prior to October 1933, published as "at Swiss". REVISED RECORDS.--WSP 1438: 1915(M), 1919-20, 1923-24(M), 1927(M), 1931(M), 1934, 1935-37(M). WSP 1628: 1918. WDR WI-85-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 882.21 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 23, 1937, nonrecording gage 40 ft downstream at same datum. Apr. 23, 1937, to Jan. 5, 1939, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. AVERAGE DISCHARGE.--71 years (water years 1915-81, 1985-88), 1,309 ft³/s, 11.25 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,200 $\rm ft^3/s$, May 6, 1950, gage height, 8.22 ft; minimum observed, 393 $\rm ft^3/s$, Aug. 6, 13, 1934, gage height, -0.20 ft, site then in use. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 3,000 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Dec. 25 | 2100 | ice jam | *4.08 | Apr. 8 | 0300 | *2,630 | 2.77 | Minimum discharge, 459 ft³/s, July 27, 28, gage height, 0.15 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 2-6, and Dec. 13 to Mar. 29.) | 0.1 | 460 | 2.0 | 1,900 | |-----|-------|-----|-------| | 0.4 | 620 | 3.0 | 2,880 | | 1.0 | 1 020 | | • | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---|--------------------------------------|--|--|------------------------------|--|--------------------------------------|--|---------------------------------|--|--|------------------------------------| | 1 | 770 | 898 | 1280 | 980 | 980 | 1000 | 1840 | 986 | 901 | 582 | 495 | 592 | | 2 | 768 | 864 | 1200 | 960 | 980 | 1000 | 1920 | 980 | 738 | 592 | 486 | 659 | | 3 | 800 | 874 | 1100 | 980 | 980 | 1000 | 2150 | 988 | 748 | 572 | 478 | 616 | | 4 | 805 | 862 | 1000 | 1000 | 960 | 1000 | 2270 | 955 | 740 | 565 | 574 | 656 | | 5 | 804 | 869 | 980 | 980 | 960 | 1000 | 2380 | 879 | 726 | 620 | 661 | 609 | | 6
7
8
9
10 | 853
843
865
838
849 | 841
820
777
832
825 | 980
996
978
1090
1240 | 960
940
940
920
920 | 960
960
940
940 | 1000
1000
1100
1100
1100 | 2450
2450
2580
2500
2380 | 841
875
935
1250
1700 | 712
702
671
693
658 | 601
558
568
573
516 | 636
607
653
727
662 | 602
578
562
585
539 | | 11 | 818 | 814 | 1190 | 920 | 940 | 1100 | 2290 | 1680 | 640 | 492 | 672 | 536 | | 12 | 802 | 844 | 1170 | 900 | 920 | 1100 | 2080 | 1570 | 629 | 484 | 628 | 527 | | 13 | 829 | 899 | 1100 | 900 | 920 | 1200 | 1960 | 1580 | 623 | 510 | 702 | 523 | | 14 | 837 | 899 | 1100 | 880 | 920 | 1100 | 1830 | 1490 | 607 | 522 | 729 | 534 | | 15 | 853 | 869 | 1100 | 900 | 920 | 1100 | 1760 | 1400 | 594 | 528 | 725 | 492 | | 16 | 854 | 1000 | 1000 | 920 | 940 | 1100 | 1520 | 1240 | 593 | 550 | 764 | 512 | | 17 | 918 | 1140 | 920 | 920 | 940 | 1200 | 1430 | 1250 | 588 | 510 | 691 | 601 | | 18 | 933 | 1300 | 960 | 920 | 960 | 1200 | 1480 | 1250 | 590 | 498 | 667 | 580 | | 19 | 913 | 1230 | 980 | 940 | 960 | 1100 | 1470 | 1160 | 613 | 497 | 663 | 640 | | 20 | 1080 | 1200 | 1000 | 940 | 960 | 1100 | 1280 | 1090 | 623 | 504 | 640 | 1450 | | 21 | 1130 | 1140 | 940 | 920 | 960 | 1100 | 1250 | 1030 | 652 | 496 | 626 | 2170 | | 22 | 1080 | 1080 | 900 | 920 | 960 | 1200 | 1200 | 992 | 610 | 493 | 635 | 2250 | | 23 | 1040 | 1080 | 920 | 920 | 960 | 1200 | 1130 | 944 | 659 | 509 | 710 | 2010 | | 24 | 1050 | 1080 | 980 | 920 | 980 | 1300 | 1130 | 902 | 598 | 508 | 709 | 1590 | | 25 | 1070 | 1070 | 980 | 920 | 980 | 1400 | 1170 | 832 | 658 | 495 | 660 | 1410 | | 26
27
28
29
30
31 | 1040
898
880
913
902
872 | 1040
1040
1020
1160
1240 | 960
940
920
920
940
980 | 920
920
940
940
960
980 | 980
980
980
980
 | 1700
1500
1400
1600
1700
1740 | 1140
1070
1080
984
980 | 829
829
888
921
858
907 | 616
577
602
661
600 | 478
464
487
477
485
485 | 613
602
590
591
647
582 | 1340
1160
902
951
1080 | | TOTAL | 27907 | 29607 | 31744 | 28980 | 27740 | 37440 | 51154 | 34031 | 19622 | 16219 | 19825 | 27256 | | MEAN | 900 | 987 | 1024 | 935 | 957 | 1208 | 1705 | 1098 | 654 | 523 | 640 | 909 | | MAX | 1130 | 1300 | 1280 | 1000 | 980 | 1740 | 2580 | 1700 | 901 | 620 | 764 | 2250 | | MIN | 768 | 777 | 900 | 880 | 920 | 1000 | 980 | 829 | 577 | 464 | 478 | 492 | | CFSM | .57 | .62 | .64 | .59 | .60 | .76 | 1.07 | .69 | . 41 | .33 | .40 | .57 | | IN. | .65 | .69 | .74 | .68 | .65 | .88 | 1.20 | .80 | . 46 | .38 | .46 | .64 | CAL YR 1987 TOTAL 377994 MEAN 1036 MAX 1760 MIN 658 CFSM .65 IN. 8.85 WTR YR 1988 TOTAL 351525 MEAN 960 MAX 2580 MIN 464 CFSM .60 IN. 8.23 ## 05340500 ST. CROIX RIVER AT ST. CROIX FALLS, WI LOCATION.--Lat 45°24'25", long 92°38'49", in SW 1/4 NW 1/4 sec.30, T.34 N., R.18 W., Polk County, Hydrologic Unit 07030005, St. Croix National Scenic Riverway, on left bank, 1,500 ft downstream from powerplant of Northern States Power Co., in St. Croix Falls, and at mile 52.2. DRAINAGE AREA. -- 6.240 mi². PERIOD OF RECORD.--January 1902 to current year. Prior to January 1910, monthly discharge only,
published in WSP 1308. Prior to October 1939, published as "near St. Croix Falls." REVISED RECORDS.--WSP 1115: 1929. WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 689.94 ft above National Geodetic Vertical Datum of 1929. Prior to July 1905, gage heights and discharge measurements were used by Loweth and Wolff, consulting engineers of St. Paul, Minn., to determine the flow. July 1905 to February 1940, records were computed from power generation at the St. Croix Falls Powerplant. February 1940 to Sept. 30, 1979, water-stage recorder at site 300 ft downstream at same datum. REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuation caused by St. Croix Falls Powerplant 1,500 ft upstream. Data-collection platform at station. AVERAGE DISCHARGE. -- 86 years, 4,317 ft³/s, 9.39 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 54,900 $\rm ft^3/s$, May 8, 1950, gage height, 25.19 ft; minimum daily, 75 $\rm ft^3/s$, July 17, 1910. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 11,600 $\rm ft^3/s$, Apr. 7, gage height, 6.39 ft; minimum daily, 1,100 $\rm ft^3/s$, July 29. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 2.3 | 1,100 | 4.0 | 4,950 | |-----|-------|-----|--------| | 2.5 | 1,400 | 6.0 | 10,700 | | 3.0 | 2,350 | 7.0 | 13,200 | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|---|--|---|--|---|--|--|---| | 1 | 2170 | 2350 | 3380 | 2150 | 2080 | 2200 | 7480 | 2580 | 2690 | 1450 | 1310 | 1620 | | 2 | 1780 | 1950 | 3270 | 2400 | 1990 | 2090 | 7220 | 3030 | 2370 | 1380 | 1260 | 1590 | | 3 | 1980 | 2540 | 3010 | 1550 | 2130 | 2040 | 7830 | 2720 | 2190 | 1340 | 1350 | 1610 | | 4 | 1800 | 2500 | 2570 | 1970 | 2000 | 2190 | 8710 | 2640 | 1900 | 1400 | 1530 | 1670 | | 5 | 2040 | 2370 | 2290 | 2060 | 2040 | 2180 | 9640 | 2730 | 2150 | 1410 | 1570 | 1570 | | 6 | 1840 | 2590 | 2120 | 1990 | 1990 | 2100 | 10400 | 3110 | 2290 | 1350 | 1600 | 1510 | | 7 | 2160 | 2200 | 2800 | 2170 | 1840 | 2300 | 10900 | 2340 | 1900 | 1400 | 1570 | 1590 | | 8 | 2070 | 2330 | 3220 | 1990 | 1810 | 2660 | 10800 | 2410 | 1880 | 1360 | 1670 | 1570 | | 9 | 1780 | 2410 | 2890 | 1880 | 1890 | 2790 | 10900 | 3720 | 1780 | 1340 | 1510 | 1440 | | 10 | 1780 | 2270 | 3650 | 1580 | 2060 | 3430 | 10700 | 4990 | 1690 | 1450 | 1550 | 1480 | | 11 | 1880 | 2270 | 3820 | 1820 | 1870 | 3840 | 10100 | 7470 | 1680 | 1450 | 1630 | 1480 | | 12 | 2010 | 2260 | 3660 | 1790 | 2090 | 3790 | 9300 | 8740 | 1690 | 1430 | 1790 | 1480 | | 13 | 1910 | 2250 | 3050 | 1650 | 1630 | 3800 | 8520 | 8440 | 1560 | 1350 | 2070 | 1350 | | 14 | 1910 | 2320 | 2460 | 2310 | 1760 | 3740 | 7610 | 7850 | 1550 | 1500 | 2060 | 1450 | | 15 | 1780 | 2290 | 2270 | 2070 | 1810 | 3780 | 7220 | 7400 | 1530 | 1400 | 2400 | 1330 | | 16 | 2470 | 2450 | 2360 | 2210 | 2150 | 3740 | 6410 | 6650 | 1530 | 1420 | 2270 | 1450 | | 17 | 2040 | 3210 | 1920 | 1920 | 1890 | 3720 | 5870 | 6010 | 1520 | 1420 | 2220 | 1600 | | 18 | 2050 | 3110 | 1710 | 2060 | 1690 | 3780 | 5030 | 4710 | 1350 | 1420 | 2240 | 1760 | | 19 | 2060 | 3320 | 2260 | 2320 | 2000 | 3580 | 4470 | 5090 | 1370 | 1250 | 1920 | 1840 | | 20 | 2210 | 3340 | 1650 | 1870 | 2190 | 3340 | 4800 | 3940 | 1530 | 1280 | 1770 | 3020 | | 21 | 2320 | 3160 | 2030 | 1900 | 1820 | 3290 | 4530 | 4340 | 1520 | 1390 | 1820 | 2620 | | 22 | 2630 | 2900 | 2400 | 2240 | 1960 | 3240 | 3750 | 3580 | 1520 | 1390 | 1740 | 4310 | | 23 | 2500 | 3180 | 2420 | 1950 | 2040 | 3430 | 3670 | 3280 | 1520 | 1340 | 1850 | 4210 | | 24 | 2410 | 2780 | 2430 | 2200 | 1860 | 3480 | 3410 | 3330 | 1470 | 1330 | 1790 | 3730 | | 25 | 2350 | 2940 | 2490 | 1980 | 2180 | 4580 | 3510 | 2970 | 1620 | 1220 | 1870 | 4050 | | 26
27
28
29
30
31 | 2470
2560
2400
2240
2660
2370 | 2940
2550
2650
2860
3050 | 2400
2390
2400
2250
2690
2450 | 2070
1950
1970
2240
2100
1940 | 2110
1910
1870
1790 | 6230
7180
8010
7640
7930
7900 | 3430
3290
3230
3010
3080 | 2510
2710
2690
2570
2330
2650 | 1370
1450
1480
1500
1450 | 1220
1250
1230
1100
1160
1250 | 1800
1800
1690
1680
1490
1490 | 3420
3090
3020
2990
2360 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 66630
2149
2660
1780
.34
.40 | 79340
2645
3340
1950
. 42
. 47 | 80710
2604
3820
1650
.42
.48 | 62300
2010
2400
1550
.32
.37 | 56450
1947
2190
1630
.31
.34 | 124000
4000
8010
2040
.64
.74 | 198820
6627
10900
3010
1.06
1.19 | 129530
4178
8740
2330
.67 | 51050
1702
2690
1350
.27
.30 | 41680
1345
1500
1100
.22
.25 | 54310
1752
2400
1260
.28
.32 | 66210
2207
4310
1330
.35
.39 | CAL YR 1987 TOTAL 1020130 MEAN 2795 MAX 6310 MIN 1510 CFSM .45 IN. 6.08 WTR YR 1988 TOTAL 1011030 MEAN 2762 MAX 10900 MIN 1100 CFSM .44 IN. 6.03 # 05341365 RICE CREEK AT MILLTOWN, WI DRAINAGE AREA. -- 2.89 mi². PERIOD OF RECORD.--December 1987 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |----------------|------|---|--|---|--| | DEC 1987
04 | 1330 | E0.05 | 476 | 0.5 | 0.170 | | MAY 1988
09 | 1100 | 0.56 | 385 | 11.0 | 0.610 | E Estimated. # 05341370 RICE CREEK AT 155th STREET NEAR MILLTOWN, WI $\begin{array}{l} \hbox{LOCATION.--Lat 45°29'38", long 92°28'43", in SE 1/4 NW 1/4 sec.28, T.35 N., R.17 W., Polk County, Hydrologic Unit 07030005, at culvert under 155th Street, about 2.5 mi southeast of Milltown. } \end{array}$ DRAINAGE AREA.--3.98 mi². PERIOD OF RECORD.--December 1987 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER -
ATURE
WATER
(DEG C)
(00010) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |---|--|---|--|--|---| | DEC 1987
04
18
22
29
JAN 1988 | 1300
1308
1100
1315 | 2.0
2.5
E2.3
E2.8 | 322
348
350 | 2.5
1.5
1.5 | 0.010
<0.010
0.010
0.020 | | 06
13
19
27
FEB | 1155
1510
1520
1540 | E2.6
E2.8
E2.5
E2.6 |

 |

 | 0.020
0.030
0.020
0.020 | | 03
10
16
17
24 | 1430
1240
1350
1400
1116
1152 | E2.4
E2.4
E2.8
E2.8
E3.7
E2.6 | 400
400
 | 0.0 | 0.020
0.020
0.020
0.020
0.020
0.020 | | MAR
02
09
11
11
23
23
30 | 1215
1027
1221
1335
1338
1242
1520
1550
1221 | E3.0
E3.5
E3.5
3.4
3.4
E3.3
2.8
E8.0 | 318
318
318
 | 4.5
4.5

6.0 | 0.020
0.020
0.030
0.030
0.030
0.020
0.030
0.030
0.030 | | APR 06 14 20 20 28 | 1625
1054
1159
1627
1100 | E6.6
E3.7
E2.0
2.0
E2.3 |

161
 | 13.0 | 0.030
0.050
0.020
0.020
0.020 | | MAY
04
11
18
25
31 | 1125
1130
1505
1610
1640
1223 | E2.1
6.8
E5.1
E2.4
E1.9
E1.6 | 175

 | 15.0 | 0.030
0.080
0.040
0.040
0.060
0.070 | | JUN
07
08
15
23
29
JUL | 1105
1210
1308
1125
1130 | 1.4
E1.4
E1.2
E0.98
E0.80 | 266

 | 25.5 | 0.080
0.080
0.070
0.070
0.090 | | 06
13
20
27
29 | 1125
1143
1050
1559
1320 | E0.50
E0.36
E0.29
E0.26
0.25 |

258 | 29.0 | 0.070
0.060
0.050
0.060
0.070 | | 03
04
10
12
17
25
31 | 1110
1100
1435
1450
1334
1053
0810 | E0.35
E2.2
E1.0
E1.2
E1.7
E1.6
E1.4 | | | 0.060
0.060
0.070
0.100
0.100
0.090
0.070 | | SEP
08
14
20
20
28 | 1226
1106
1015
1058
1125 | E1.2
E1.1
5.2
5.2
E1.9 | 232

 | 13.5 | 0.070
0.030
0.070
0.060
0.030 | E Estimated. # 05341374 OTTER CREEK NEAR MILLTOWN, WI LOCATION.--Lat 45°29'52", long 92°28'15", in SE 1/4 SE 1/4 sec.21, T.35 N., R.17 W., Polk County, Hydrologic Unit 07030005, at culvert under 200th Avenue, about 2.8 mi southeast of Milltown. DRAINAGE AREA. -- 4.55 mi². PERIOD OF RECORD. -- December 1987 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 |
DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |----------------------|--------------|---|--|---|--| | DEC 1987
04 | 1350 | 0.11 | 366 | 1.0 | 0.060 | | MAR 1988
11
23 | 1455
1452 | 0.40
0.24 | 156
262 | 1.0
0.5 | 0.210
0.090 | | MAY
09 | 1220 | 0.53 | 240 | 13.5 | 0.180 | ## 05341375 RICE CREEK NEAR BALSAM LAKE, WI LOCATION.--Lat 45°29'27", long 92°28'07", in SE 1/4 NE 1/4 sec.28, T.35 N., R.17 W., Polk County, Hydrologic Unit 07030005, on left bank 150 ft upstream from State Highway 46, 0.6 mi downstream from Otter Creek, and 0.3 mi upstream from mouth. DRAINAGE AREA. -- 12.5 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD.--December 1987 to September 1988. GAGE.--Water-stage recorder. Elevation of gage is 1,150 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 1-7. Records good except those for estimated daily discharges, which are fair. EXTREMES FOR CURRENT YEAR.--December 1987 to September 1988: Maximum discharge, 21 ${\rm ft}^3/{\rm s}$, Sept. 19, gage height, 2.01 ft; minimum discharge, 1.3 ${\rm ft}^3/{\rm s}$, July 11, gage height, 1.10 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 1.1 | 1.3 | 1.6 | 8.2 | |-----|-----|-----|-----| | 1.3 | 3.7 | 1.8 | 14 | | 1.5 | 6.4 | 2.0 | 23 | | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | |-------------|------------|-------|------|-----|---------|-------|------|---------|------|----|-----------|------| | MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-------|-------|-------|-------|-------|-------|------|------|------|--------------| | 1 | | | 3.8 | 4.2 | 3.9 | 4.3 | 9.1 | 4.4 | 3.5 | 2.6 | 1.8 | 3.0 | | 2 | | | 3.9 | 4.3 | 3.9 | 4.3 | 8.9 | 4.3 | 3.5 | 2.5 | 1.7 | 2.9 | | 3 | | | 4.0 | 4.5 | 3.9 | 4.1 | 12 | 4.1 | 3.4 | 2.4 | 2.0 | 2.8 | | 4 | | | 4.1 | 4.1 | 3.9 | 4.0 | 10 | 4.1 | 3.4 | 2.1 | 3.6 | 3.0 | | 5 | | | 4.0 | 4.0 | 3.9 | 4.0 | 9.1 | 3.9 | 3.3 | 1.9 | 3.2 | 2.7 | | 6 | | | 4.1 | 4.0 | 3.9 | 4.1 | 8.0 | 4.0 | 3.2 | 1.9 | 3.2 | 2.6 | | 7 | | | 4.0 | 3.8 | 3.9 | 4.2 | 7.3 | 4.0 | 3.2 | 1.8 | 2.7 | 2.4 | | 8 | | | 3.9 | 4.0 | 3.9 | 5.1 | 6.7 | 6.9 | 3.1 | 1.9 | 2.7 | 2.4 | | 9 | | | 5.2 | 3.9 | 3.9 | 5.0 | 6.6 | 10 | 3.1 | 1.9 | 2.5 | 2.4 | | 10 | | | 5.5 | 3.9 | 4.0 | 4.8 | 6.4 | 7.9 | 3.1 | 1.8 | 2.2 | 2.4 | | 11 | | | 5.3 | 4.0 | 4.0 | 5.3 | 6.3 | 6.9 | 3.1 | 1.8 | 2.2 | 2.3 | | 12 | | | 5.0 | 4.2 | 3.9 | 5.5 | 6.2 | 6.4 | 3.0 | 1.8 | 2.7 | 2.4 | | 13 | | | 4.5 | 4.3 | 3.8 | 5.4 | 6.0 | 6.0 | 2.8 | 2.0 | 3.2 | 2.3 | | 14 | | | 4.2 | 4.1 | 3.9 | 5.1 | 5.6 | 5.4 | 2.9 | 1.9 | 3.5 | 2.2 | | 15 | | | 4.2 | 4.2 | 4.2 | 4.9 | 5.3 | 5.4 | 2.8 | 1.8 | 3.4 | 2.0 | | 16 | | | 4.1 | 4.2 | 4.3 | 4.8 | 4.9 | 5.2 | 2.7 | 2.2 | 3.2 | 3.1 | | 17 | | | 3.8 | 4.1 | 4.6 | 4.7 | 4.7 | 4.7 | 2.6 | 1.8 | 2.9 | 3.0 | | 18 | | | 4.1 | 3.9 | 4.8 | 4.5 | 4.4 | 4.6 | 2.5 | 1.8 | 2.7 | 2.9 | | 19 | | | 3.9 | 4.0 | 4.8 | 4.4 | 4.2 | 4.4 | 2.8 | 1.8 | 2.7 | 6.1 | | 20 | | | 3.9 | 4.5 | 4.4 | 4.0 | 4.0 | 4.5 | 2.7 | 1.9 | 2.8 | 7.4 | | 21 | | | 3.8 | 4.3 | 4.2 | 4.1 | 3.9 | 4.2 | 2.6 | 2.1 | 3.0 | 5.2 | | 22 | | | 3.6 | 4.3 | 4.3 | 4.3 | 3.9 | 4.1 | 2.6 | 2.2 | 3.1 | 4.5 | | 23 | | | 3.5 | 4.1 | 4.0 | 4.6 | 4.4 | 4.1 | 2.6 | 2.2 | 3.2 | 4.1 | | 24 | | | 3.6 | 4.3 | 4.1 | 7.0 | 4.4 | 3.9 | 2.6 | 2.2 | 3.1 | 3.5 | | 25 | | | 3.6 | 4.3 | 4.0 | 8.5 | 4.5 | 3.7 | 2.5 | 2.4 | 2.8 | 3.1 | | 26 | | | 4.0 | 4.2 | 4.0 | 8.3 | 4.3 | 3.8 | 2.4 | 2.2 | 2.6 | 3.0 | | 27 | | | 4.1 | 4.2 | 4.0 | 8.6 | 4.5 | 3.7 | 2.4 | 1.9 | 2.7 | 3.0 | | 28 | | | 4.2 | 4.1 | 4.0 | 11 | 4.3 | 3.7 | 2.7 | 1.9 | 2.7 | 3.2 | | 29 | | | 4.2 | 4.2 | 4.2 | 12 | 4.1 | 3.6 | 2.5 | 1.9 | 2.6 | 3.5 | | 30 | | | 4.3 | 4.1 | | 11 | 4.2 | 3.5 | 2.6 | 1.7 | 2.6 | 3.3 | | 31 | | | 4.4 | 4.2 | | 11 | | 3.5 | | 1.8 | 2.6 | | | TOTAL | | | 128.8 | 128.5 | 118.6 | 182.9 | 178.2 | 148.9 | 86.2 | 62.1 | 85.9 | 96.7 | | MEAN | | | 4.15 | 4.15 | 4.09 | 5.90 | 5.94 | 4.80 | 2.87 | 2.00 | 2.77 | 3.2 2 | | MAX | | | 5.5 | 4.5 | 4.8 | 12 | 12 | 10 | 3.5 | 2.6 | 3.6 | 7.4 | | MIN | | | 3.5 | 3.8 | 3.8 | 4.0 | 3.9 | 3.5 | 2.4 | 1.7 | 1.7 | 2.0 | | CFSM | | | .33 | . 33 | .33 | . 47 | . 48 | .38 | .23 | .16 | .22 | . 26 | | IN. | | | .38 | .38 | . 35 | .54 | . 53 | . 44 | . 26 | .18 | .26 | . 29 | #### WATER-QUALITY RECORDS 05341375 RICE CREEK NEAR BALSAM LAKE, WI--CONTINUED PERIOD OF RECORD. -- December 1987 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | - | - | | | | | |--|--|---|--|---|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | | DEC 1987
04
18
22
29
JAN 1988 | 1415
1145
1040
1247 | E4.1
4.5
3.6
4.2 | 254
298
296 | 3.0
2.5
2.5 | 0.020
0.010
0.010
0.030 | | 06
13
19
27
FEB | 1130
1440
1510
1515 | 4.2
4.4
3.9
4.2 | |

 | 0.030
0.030
0.030
0.020 | | 03
10
16
17
24 | 1415
1220
1145
1150
1107
1141 | 3.9
4.1
4.4
4.5
4.5 | 325
325
 | 2.5
2.5
 | 0.020
0.020
0.020
0.020
0.020
0.020 | | MAR 02 09 11 11 23 23 30 | 1208
1216
1220
1225
1236
1509
1625
1214 | 4.3
4.6
5.1
5.2
4.8
5.0
5.2 | 268
268

249 | 6.0
6.0

7.0 | 0.030
0.040
0.040
0.050
0.030
0.100
0.100 | | APR
06
14
20
20
28
MAY | 1614
1047
1152
1425
1054 | 8.2
5.7
4.0
4.0 |

195 | 11.0 | 0.030
0.030
0.030
0.050
0.020 | | 04
09
11
18
25
31
JUN | 1118
1300
1500
1605
1633
1216 | 4.1
11
6.9
4.7
3.7
3.6 | 194

 | | 0.040
0.170
0.040
0.040
0.050
0.060 | | 07
08
15
23
29
JUL | 1025
1202
1303
1110
1124 | 3.2
3.1
2.8
2.6
2.5 | 244

 |
 | 0.050
0.080
0.030
0.070
0.070 | | 06
13
20
27
29 | 1117
1135
1042
1551
1155 | 1.9
2.0
1.5
1.9
2.1 | 232 | | 0.090 | | AUG 03 04 10 12 17 25 31 | 1101
1053
1427
1440
1326
1046
0803 | 1.8
2.8
2.2
2.7
2.8
2.8
2.5 | | | 0.090
0.280
0.070
0.100
0.090
0.090 | | SEP 08 14 20 20 28 | 1221
1059
1020
1052
1117 | 2.4
2.1
6.8
6.9
2.8 | - | | 0.150 | | | | | | | | E Estimated. #### 05341383 HARDER CREEK AT HALF MOON LAKE OUTLET NEAR BALSAM LAKE, WI LOCATION.--Lat 45°29'25", long 92°25'13", in SE 1/4 NW 1/4 sec.25, T.35 N., R.17 W., Polk County, Hydrologic Unit 07030005, at outlet of Half Moon Lake, about 3 mi northeast of the village of Balsam Lake. DRAINAGE AREA. -- 10.7 mi². PERIOD OF RECORD. -- December 1987 to current year. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |----------------|------|---|--|---|--| | MAY 1988
09 | 1300 | 9.2 | 158 | 14.5 | 0.020 | | JUN
07 | 1315 | 0.31 | 160 | 28.0 | 0.010 | #### 05341384 HARDER CREEK NEAR BALSAM LAKE, WI LOCATION.--Lat 45°28'53", long 92°25'22", in NW 1/4 NW 1/4 sec.36, T.35 N., R.17 W., Polk County, Hydrologic Unit 07030005, at bridge on 190th Avenue, about 2.5 mi northeast of the village of Balsam Lake. DRAINAGE AREA. -- 10.9 mi². PERIOD OF RECORD. -- December 1987 to current year. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | DIS- | | | | |------|---------|---|---|--| | | CHARGE, | SPE- | | | | | | | | PHOS- | | | | | | PHOROUS | | | | | | TOTAL | | TIME | | | | (MG/L | | | | | | AS P) | | | (00001) | (00095) | (00010) | (00665) | | | | | | | | 1200 | 0.83 | 174 | 0.0 | <0.010 | | | | | | | | 1648 | E8.0 | 176 | | 0.010 | | 1545 | E14 | 148 | 0.0 | 0.020 | | 1410 | 8.1 | 170 | 1.0 | 0.020 | | | | | | | | | | 148 | 13.0 | 0.030 | | 1515 | E10 | | | 0.020 | | | 1545 | CHARGE, INST. CUBIC FEET TIME PER SECOND (00061) 1200 0.83 1648 E8.0 1545 E14 1410 8.1 1412 10 | CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- PER ANCE SECOND (US/CM)
(00061) (00095) 1200 0.83 174 1648 E8.0 176 1545 E14 148 1410 8.1 170 1412 10 148 | CHARGE, SPE- INST. CIFIC CUBIC CON- FEET DUCT- ATURE PER ANCE WATER SECOND (US/CM) (DEG C) (00061) (00095) (00010) 1200 0.83 174 0.0 1648 E8.0 176 1545 E14 148 0.0 1410 8.1 170 1.0 1412 10 148 13.0 | #### 05341385 HARDER CREEK AT MOUTH NEAR BALSAM LAKE, WI LOCATION.--Lat $45^{\circ}28'38''$, long $92^{\circ}25'21''$, in SW 1/4 NW 1/4 sec.36, T.35 N., R.17 W., Polk County, Hydrologic Unit 07030005, about 2.3 mi northeast of the village of Balsam Lake. DRAINAGE AREA. -- 11.1 mi². PERIOD OF RECORD. -- December 1987 to current year. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |----------------|------|---|--|---|--| | MAY 1988
09 | 1200 | E11 | 144 | 13.0 | 0.030 | E Estimated. #### 05341402 BALSAM BRANCH AT BALSAM LAKE, WI LOCATION.--Lat 45°26'49", long 92°27'01", in SE 1/4 NE 1/4 sec.10, T.34 N., R.17 W., Polk County, Hydrologic Unit 07030005, on right bank 120 ft upstream from State Highway 46 and 400 ft downstream from powerplant of Northwestern Wisconsin Electric Co., in Balsam Lake. DRAINAGE AREA.--52.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- December 1987 to September 1988. GAGE.--Water-stage recorder. Elevation of gage is 1,100 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Estimated daily discharges: Dec. 1-10 and Jan. 15-22. Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation caused by Balsam Lake Powerplant 400 ft upstream. EXTREMES FOR CURRENT YEAR.--December 1987 to September 1988: Maximum discharge, $32 \text{ ft}^3/\text{s}$, Mar. 24, 25, 26, gage height, 4.38 ft; maximum gage height, 4.39 ft, Apr. 3, 4, 5, 11, 12; minimum discharge, $0.46 \text{ ft}^3/\text{s}$, Sept. 15. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used July 30 to Sept. 30.) | 3.49 | 0.46 | 4.0 | 9.3 | |------|------|-----|-----| | 3.6 | 1.2 | 4.1 | 14 | | 3.7 | 2.2 | 4.3 | 28 | | 3.8 | 3.7 | 4.5 | 51 | | 3.9 | 6.0 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|----------|-----|--|--------------------------------------|--|--|-----------------------------------|--|---|--|------------------------------------|------------------------------------| | 1
2
3
4
5 |

 | | 3.3
3.4
3.4
3.4
3.5 | 8.1
8.2
8.2
15
25 | 8.9
8.9
8.9
8.9 | 9.3
9.3
9.3
6.6
1.1 | 31
31
31
31
31 | 5.9
5.7
5.7
5.7
5.6 | 5.7
5.8
5.9
5.7
5.7 | 6.0
6.0
5.9
5.7
5.7 | 2.1
2.0
2.3
2.2
2.2 | .82
.80
.78
.78 | | 6
7
8
9
10 | | | 3.5
3.6
3.6
3.6
3.7 | 25
25
26
27
27 | 16
9.8
9.7
9.7 | 1.1
2.8
7.5
6.9 | 30
30
29
28
27 | 5.6
5.8
6.1
6.5
6.6 | 5.7
5.8
6.0
5.9
5.8 | 5.7
5.8
5.7
5.7
5.7 | 2.1
2.1
2.0
1.9 | .71
.68
.70
.65 | | 11
12
13
14
15 | | | 3.8
3.9
3.9
3.9
4.0 | 27
27
27
27
27
25 | 10
10
10
10
10 | 7.0
7.4
7.5
7.5
7.7 | 28
28
28
27
26 | 6.5
6.4
6.3
6.3 | 5.7
5.7
5.7
5.7
5.7 | 5.7
5.7
5.8
5.5
5.5 | 1.8
1.7
1.7
1.6
1.6 | .54
.55
.51
.50
.49 | | 16
17
18
19
20 | | | 4.1
4.1
5.2
7.2
7.2 | 9.0
8.2
8.1
8.1 | 10
10
10
10
9.7 | 7.9
7.9
8.1
8.0
7.9 | 26
26
26
26
26 | 6.3
6.3
6.3
6.4 | 5.7
5.7
5.7
6.0
5.9 | 5.5
5.5
5.5
5.5
5.5 | 1.5
1.5
1.6
1.5 | .59
.65
1.0
1.4
1.7 | | 21
22
23
24
25 | | | 7.2
7.2
7.5
7.5
7.5 | 8.1
8.2
8.2
14 | 9.7
9.7
9.7
9.7
9.7 | 8.2
8.2
8.3
18
32 | 25
25
25
26
26 | 6.3
6.1
5.9
5.7
5.7 | 6.0
5.9
5.5
5.5 | 5.5
5.5
5.5
5.3
5.2 | 1.1
1.1
.94
.98
.89 | 1.9
2.0
2.0
2.2
2.4 | | 26
27
28
29
30
31 | | | 7.5
7.6
7.9
7.9
7.9
7.9 | 24
19
8.7
8.9
8.9
8.9 | 9.7
9.4
9.3
9.3 | 32
31
31
31
31
31 | 26
26
26
15
6.0 | 5.7
5.7
5.7
5.7
5.7
5.7 | 5.5
5.5
5.7
5.8
6.0 | 5.3
5.3
5.3
4.1
2.1
2.1 | .90
.85
.84
.79
.77 | 2.3
2.6
3.1
3.8
3.9 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | | | 165.9
5.35
7.9
3.3
.10 | 494.0
15.9
27
8.1
.30 | 294.7
10.2
18
8.9
.19
.21 | 399.2
12.9
32
1.1
.24
.28 | 792.0
26.4
31
6.0
.50 | 186.5
6.02
6.6
5.6
.11 | 172.4
5.75
6.0
5.5
.11
.12 | 164.8
5.32
6.0
2.1
.10 | 46.41
1.50
2.3
.75
.03 | 41.36
1.38
3.9
.49
.03 | #### 05341402 BALSAM BRANCH AT BALSAM LAKE, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD.--December 1987 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | PHOS-PHOROUS TOTAL (MG/L AS P) (00665) | |--|--|---|--|---|---| | DEC 1987 | 1/20 | 77.2 | 260 | 2.0 | 0 000 | | 04
18
18
22
29
JAN 1988 | 1430
1015
1016
1016
1232 | E3.3
4.1
4.1
7.2
7.9 | 260
222
222
240
 | 3.0
3.0
3.0
3.0 | 0.020
<0.010
<0.010
<0.010
0.020 | | 06
13
19
27
FEB | 1115
1420
1455
1450 | 25
27
E8.1
24 |

 |

 | 0.020
0.020
0.020
0.010 | | 03
10
16
17
24 | 1400
1205
0955
1000
1056
1130 | 8.9
10
10
10
10
9.7 | 238
238
 | 1.5 | 0.010
0.010
0.020
0.020
0.010
0.010 | | 02
09
11
16
23
23
30 | 1155
1204
1120
1224
1340
1500
1150 | 9.3
6.9
6.9
7.9
8.2
8.2 | 232
224
 | 4.0

3.5 | 0.010
0.020
0.010
0.010
0.020
0.010
0.010 | | 06
14
20
28
MAY | 1602
1035
1105
1140
1042 | 30
27
26
26
26 | 202
 | 8.5
 | 0.020
0.010
0.020
0.010
0.010 | | 04
09
11
18
25
31 | 1110
1400
1450
1550
1618
1204 | 5.7
6.6
6.6
6.3
5.7 | 224

 | 16.0

 | 0.020
0.020
0.020
0.010
0.010
0.010 | | 07
08
15
23
29
JUL | 0910
1147
1250
1042
1112 | 5.7
6.0
5.7
5.5
5.7 | 190

 | 24.0

 | 0.020
0.020
0.020
0.020
0.020 | | 06
13
29
AUG | 1100
1110
1010 | 5.7
6.0
5.2 |
184 | 26.0 | 0.020
0.030
<0.010 | | 17
25
31
SEP | 1313
1032
0750 | 1.5
0.91
0.77 | | | 0.030
0.030
0.030 | | 08
14
20
20
28 | 1210
1045
1040
1310
1100 | 0.71
0.50
1.8
1.8
2.8 | 204 | 16.5 | 0.030
0.020
0.020
0.020
0.020 | E Estimated. #### 05341500 APPLE RIVER NEAR SOMERSET, WI LOCATION.--Lat 45°09'27", long 92°42'59", in sec.21, T.31 N., R.19 W., St. Croix County, Hydrologic Unit 07030005, at powerplant of Northern States Power Co., 3.5 mi downstream from Somerset. DRAINAGE AREA. -- 579 mi². PERIOD OF RECORD.--January 1901 to September 1914 (monthly discharge only), October 1914 to September 1970, October 1986 to current year. REVISED RECORDS.--WSP 1388: 1929, 1933. WDR-87-1: Drainage area. GAGE. -- Headwater and tailwater gages read hourly. REMARKS.--Estimated daily discharges: None. Records of daily discharge computed on the basis of gate openings, head, and plant efficiency. Flow regulated by many powerplants upstream, but service ponds are small and monthly flows are only slightly affected. COOPERATION. -- Records of daily discharge furnished by Northern States Power Co. AVERAGE DISCHARGE.--71 years, 304 ft³/s, 7.13 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 2,510 ${\rm ft}^3/{\rm s}$, Apr. 13, 1965; minimum daily, 7 ${\rm ft}^3/{\rm s}$, Aug. 21, 1927, Sept. 30, 1929, July 19, 1932, Aug. 2, 3, 1933. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 536 ft³/s, Mar. 11; minimum daily, 52 ft³/s, July 30. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|---------------------------------|--|--|--------------------------|--
---------------------------------|--|---------------------------------|-----------------------------------|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 190 | 248 | 316 | 122 | 204 | 163 | 433 | 273 | 185 | 150 | 67 | 94 | | 2 | 190 | 210 | 326 | 218 | 163 | 190 | 425 | 235 | 177 | 163 | 84 | 97 | | 3 | 190 | 176 | 313 | 150 | 163 | 190 | 406 | 187 | 172 | 163 | 76 | 97 | | 4 | 219 | 136 | 258 | 204 | 201 | 150 | 385 | 227 | 174 | 153 | 105 | 97 | | 5 | 193 | 163 | 307 | 177 | 177 | 171 | 379 | 230 | 152 | 146 | 215 | 97 | | 6 | 245 | 245 | 333 | 218 | 150 | 183 | 340 | 175 | 146 | 124 | 196 | 237 | | 7 | 204 | 287 | 358 | 231 | 170 | 203 | 388 | 151 | 145 | 140 | 216 | 163 | | 8 | 204 | 226 | 272 | 204 | 102 | 258 | 438 | 207 | 142 | 106 | 244 | 184 | | 9 | 190 | 195 | 313 | 204 | 163 | 353 | 433 | 274 | 145 | 129 | 182 | 194 | | 10 | 210 | 176 | 326 | 204 | 150 | 490 | 408 | 258 | 121 | 132 | 190 | 142 | | 11 | 210 | 286 | 367 | 231 | 136 | 536 | 398 | 294 | 147 | 114 | 174 | 110 | | 12 | 213 | 245 | 331 | 177 | 136 | 501 | 416 | 371 | 135 | 118 | 135 | 187 | | 13 | 136 | 204 | 333 | 190 | 162 | 466 | 308 | 368 | 118 | 130 | 230 | 102 | | 14 | 204 | 219 | 425 | 150 | 164 | 451 | 190 | 360 | 156 | 120 | 172 | 87 | | 15 | 190 | 190 | 299 | 177 | 159 | 468 | 150 | 382 | 137 | 112 | 105 | 101 | | 16 | 218 | 203 | 286 | 181 | 150 | 354 | 265 | 417 | 108 | 133 | 136 | 113 | | 17 | 224 | 218 | 245 | 182 | 136 | 315 | 279 | 269 | 130 | 115 | 157 | 115 | | 18 | 219 | 231 | 177 | 181 | 163 | 272 | 331 | 258 | 127 | 127 | 145 | 120 | | 19 | 265 | 245 | 254 | 177 | 177 | 279 | 245 | 270 | 111 | 124 | 148 | 188 | | 20 | 230 | 245 | 302 | 204 | 136 | 264 | 194 | 204 | 167 | 129 | 138 | 286 | | 21 | 218 | 255 | 290 | 177 | 150 | 255 | 266 | 263 | 140 | 245 | 139 | 387 | | 22 | 326 | 219 | 258 | 190 | 203 | 252 | 246 | 248 | 138 | 212 | 135 | 535 | | 23 | 326 | 192 | 258 | 190 | 136 | 267 | 244 | 240 | 160 | 118 | 139 | 379 | | 24 | 326 | 245 | 283 | 163 | 122 | 224 | 275 | 260 | 119 | 108 | 138 | 420 | | 25 | 330 | 245 | 270 | 204 | 177 | 439 | 288 | 202 | 148 | 82 | 131 | 269 | | 26
27
28
29
30
31 | 326
286
313
286
272
255 | 263
244
230
290
316 | 231
221
231
313
272
231 | 163
190
150
163
198
234 | 136
136
147
180 | 361
423
351
404
437
442 | 114
192
210
176
215 | 177
155
147
156
178
231 | 130
146
151
139
165 | 111
99
71
71
52
89 | 140
135
125
124
117
110 | 268
412
320
319
307 | | TOTAL | 7408 | 6847 8 | 3999 | 5804 | 4549 | 10112 | 9037 | 7667 | 4331 | 3886 | 4548 | 6427 | | MEAN | 239 | 228 | 290 | 187 | 157 | 326 | 301 | 247 | 144 | 125 | 147 | 214 | | MAX | 330 | 316 | 425 | 234 | 204 | 536 | 438 | 417 | 185 | 245 | 244 | 535 | | MIN | 136 | 136 | 177 | 122 | 102 | 150 | 114 | 147 | 108 | 52 | 67 | 87 | CAL YR 1987 TOTAL 109927 MEAN 301 MAX 690 MIN 136 WTR YR 1988 TOTAL 79615 MEAN 218 MAX 536 MIN 52 #### MISSISSIPPI RIVER MAIN STEM #### 05344500 MISSISSIPPI RIVER AT PRESCOTT, WI LOCATION.--Lat 44°44'45", long 92°48'00", in sec.9, T.26 N., R.20 W., Pierce County, Hydrologic Unit 07040001, on left bank at Prescott, 200 ft downstream from St. Croix River, 300 ft south of Chicago, Burlington & Quincy Railroad bridge, 800 ft south of bridge on U.S. Highway 10, and at mile 811.4 upstream from Ohio River. DRAINAGE AREA. -- 44,800 mi², approximately. PERIOD OF RECORD .-- June 1928 to current year. REVISED RECORDS.--WSP 1508: 1941. WRD MN-74: 1973. GAGE.--Water-stage recorder. Datum of gage is 649.50 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 2, 1932, nonrecording gage at railroad bridge 300 ft upstream at following datums: June 3, 1928, to Sept. 30, 1929, 19.27 ft higher; Oct. 1, 1929, to Sept. 30, 1930, 17.68 ft higher; Oct. 1, 1930, to Aug. 1, 1932, 19.28 ft higher. Aug. 2, 1932, to Oct. 30, 1938, water-stage recorder at present site at datum 19.28 ft higher; Nov. 1, 1938, to Sept. 7, 1971, water-stage recorder at present site at datum 50.00 ft lower. REMARKS.--Records good. Some regulation by reservoirs, navigation dams, and powerplants at low and medium stages. Flood flow not materially affected by artificial storage. AVERAGE DISCHARGE.--60 years, 17,240 ft³/s, 5.23 in/yr; median of yearly mean discharges, 16,500 ft³/s, 5.00 in/yr. EXTREMES FOR PERIOD OF RECORD.—Maximum daily discharge, 228,000 $\rm ft^3/s$, Apr. 18, 1965, gage height, 43.11 ft; minimum daily, 1,380 $\rm ft^3/s$, July 13, 1940; minimum gage height, 15.08 ft, Aug. 29, 1934, present datum. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 28,200 ft³/s, Apr. 9, 12; maximum gage height, 27.54 ft, Apr. 9; minimum daily discharge, 2,700 ft³/s, July 31; minimum gage height, 24.49 ft, May 24. | | | DISC | CHARGE, II | N CUBIC FE | | ECOND, WATE | | OCTOBER 1 | 987 TO SEI | TEMBER 19 | 988 | | |--|--|--|---|--|--|--|---|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 8290 | 8440 | 8550 | 7730 | 6330 | 6640 | 25000 | 12300 | 9120 | 3770 | 2810 | 6430 | | 2 | 8260 | 8000 | 10000 | 6990 | 6810 | 7040 | 23300 | 12600 | 8770 | 3800 | 2900 | 6050 | | 3 | 7900 | 7150 | 9850 | 6260 | 6010 | 7130 | 22500 | 13300 | 7750 | 3610 | 2920 | 5690 | | 4 | 8060 | 8160 | 9420 | 5440 | 6030 | 6970 | 22900 | 13600 | 8040 | 3740 | 3190 | 5850 | | 5 | 7640 | 7920 | 8870 | 7100 | 6060 | 7180 | 24000 | 14000 | 7330 | 3450 | 3650 | 5500 | | 6 | 7320 | 8240 | 7400 | 7290 | 6730 | 7290 | 24900 | 12700 | 7140 | 3530 | 4020 | 5510 | | 7 | 7120 | 8330 | 7000 | 5830 | 6310 | 7400 | 26100 | 13100 | 6910 | 3400 | 3620 | 5370 | | 8 | 7810 | 7590 | 8110 | 6820 | 6120 | 8250 | 26800 | 11900 | 6140 | 3440 | 3810 | 4950 | | 9 | 6840 | 7890 | 8430 | 6330 | 6000 | 8990 | 28200 | 11800 | 5970 | 3320 | 3940 | 4690 | | 10 | 6940 | 8270 | 8740 | 6820 | 6530 | 9850 | 27800 | 13100 | 5850 | 3280 | 3810 | 4840 | | 11 | 7240 | 7600 | 9370 | 6660 | 6740 | 11600 | 27700 | 15200 | 5810 | 3390 | 3820 | 4740 | | 12 | 6930 | 8430 | 9760 | 6500 | 6560 | 13400 | 28200 | 18100 | 5460 | 3390 | 3760 | 4460 | | 13 | 7120 | 7700 | 10200 | 6510 | 5950 | 15000 | 26700 | 19200 | 5460 | 3470 | 3790 | 4280 | | 14 | 7340 | 7720 | 9690 | 6200 | 6210 | 15600 | 25600 | 18900 | 4730 | 3340 | 4130 | 4270 | | 15 | 6780 | 7690 | 8880 | 6840 | 5660 | 15500 | 23900 | 18400 | 4730 | 3490 | 4510 | 4780 | | 16 | 7200 | 8230 | 8140 | 6150 | 6190 | 14500 | 22800 | 18000 | 4730 | 3280 | 4900 | 4050 | | 17 | 7720 | 7390 | 8250 | 6070 | 6320 | 14200 | 22400 | 17300 | 4490 | 3200 | 5810 | 4590 | | 18 | 7350 | 8850 | 6870 | 7120 | 5980 | 15500 | 22000 | 15800 | 4630 | 3340 | 5780 | 4480 | | 19 | 7770 | 8910 | 6020 | 6490 | 6250 | 15800 | 18700 | 14200 | 4290 | 3520 | 4820 | 4940 | | 20 | 7470 | 9460 | 6900 | 6600 | 6900 | 15800 | 17700 | 14600 | 4240 | 3200 | 5010 | 5530 | | 21 | 7380 | 9140 | 7040 | 6220 | 7080 | 14800 | 18600 | 12800 | 4440 | 3260 | 4740 | 6320 | | 22 | 7450 | 9240 | 7150 | 6000 | 6260 | 13700 | 17800 | 13300 | 4540 | 3600 | 6340 | 6420 | | 23 | 8020 | 8570 | 7590 | 6510 | 6210 | 13200 | 17000 | 12700 | 4500 | 3470 | 6320 | 8220 | | 24 | 7880 | 9010 | 7560 | 6140 | 7000 | 13700 | 16300 | 11000 | 4070 | 3240 | 7330 | 8250 | | 25 | 7940 | 8350 | 8010 | 6210 | 5920 | 14400 | 15500 | 11700 | 4120 | 3180 | 7550 | 7090 | | 26
27
28
29
30
31 | 7630
7930
8090
8070
7660
8960 | 8490
8420
8270
8420
8500 | 7920
7930
6820
6610
7140
8100 | 5520
5860
5100
5740
6320
6240 | 6300
6300
6630
6270 | 16000
18800
20800
22200
22900
23700 | 15300
14400
13900
13300
12600 | 10500
10400
9920
9770
9390
9370 | 4320
4050
4130
3930
4370 | 3010
2920
2960
2960
2730
2700 | 7950
7030
7350
6670
6130
6090 | 7450
7270
8240
8700
8320 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 236110
7616
8960
6780
.17
.20 | 248380
8279
9460
7150
.18
.21 | 252320
8139
10200
6020
.18
.21 | 197610
6375
7730
5100
.14
.16 | 183660
6333
7080
5660
.14
.15 | 417840
13480
23700
6640
.30 | 641900
21400
28200
12600
.48
.53 | 418950
13510
19200
9370
.30
.35 | 164060
5469
9120
3930
.12
.14 | 102990
3322
3800
2700
.07
.09 | 154500
4984
7950
2810
.11
.13 | 177280
5909
8700
4050
.13
.15 | CAL YR 1987 TOTAL 4491740 MEAN 12310 MAX 29400 MIN 6020 CFSM .27 IN. 3.73 WTR YR 1988 TOTAL 3195600 MEAN 8731 MAX 28200 MIN 2700 CFSM .19 IN. 2.65 **CHIPPEWA RIVER BASIN** 138 #### CHIPPEWA RIVER BASIN #### 05356000 CHIPPEWA RIVER AT BISHOPS BRIDGE, NEAR WINTER, WI LOCATION.--Lat $45^{\circ}50'57''$, long $91^{\circ}04'44''$, in SW 1/4 NE 1/4 sec.23, T.39 N., R.6 W., Sawyer County, Hydrologic Unit 07050001, on right bank 15 ft upstream from highway bridge on County Trunk Highway G, 3.2 mi downstream from Lake Chippewa Dam, and 3.7 mi northwest of Winter. DRAINAGE AREA. -- 790 mi². PERIOD OF RECORD.--February 1912 to current year. December to April 1913, monthly discharge only, published in
WSP 1308. REVISED RECORDS.--WSP 1438: 1913(M), 1915-18(M), 1919, 1920-23(M), 1924, 1925(M), 1927(M), 1928, 1929-30(M), 1939(M). WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,256.78 ft above National Geodetic Vertical Datum of 1929 (levels by Wilhelm Engineering Co.). See WSP 1708 or 1728 for history of changes prior to July 23, 1930. REMARKS.--No estimated daily discharges. Records good. Flow regulated by Moose Lake and Lake Chippewa. AVERAGE DISCHARGE. -- 76 years, 721 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,520 $\rm ft^3/s$, Sept. 4, 5, 1941, gage height, 11.05 $\rm ft$; minimum, 14 $\rm ft^3/s$, Apr. 17-20, 1925, gage height, 3.25 $\rm ft$. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,940 $\rm ft^3/s$, Apr. 16, gage height, 6.56 ft; minimum discharge, 48 $\rm ft^3/s$, Feb. 20, gage height 3.60 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 3.7 | 66 | 5.0 | 660 | |------|-----|-----|-------| | 4.0 | 134 | 6.0 | 1,430 | | 4.3 | 248 | 7.0 | 2,400 | | 1. 6 | 300 | | • | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | MEAN VALUES | | | | | | | | | | | | |----------------------------------|--|---------------------------------|--|--|------------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 140 | 643 | 372 | 679 | 214 | 159 | 391 | 230 | 226 | 246 | 243 | 316 | | 2 | 141 | 642 | 419 | 698 | 335 | 158 | 390 | 230 | 237 | 236 | 240 | 247 | | 3 | 142 | 764 | 351 | 736 | 492 | 159 | 399 | 230 | 236 | 235 | 239 | 247 | | 4 | 141 | 818 | 351 | 643 | 471 | 157 | 538 | 231 | 235 | 234 | 254 | 245 | | 5 | 141 | 762 | 712 | 603 | 215 | 158 | 735 | 233 | 234 | 234 | 242 | 245 | | 6 | 142 | 696 | 1180 | 501 | 188 | 158 | 1020 | 234 | 234 | 236 | 240 | 245 | | 7 | 149 | 650 | 1180 | 604 | 191 | 158 | 1090 | 237 | 234 | 254 | 240 | 342 | | 8 | 145 | 648 | 990 | 584 | 204 | 160 | 1180 | 241 | 281 | 239 | 249 | 316 | | 9 | 155 | 560 | 1150 | 583 | 170 | 159 | 1230 | 245 | 235 | 239 | 238 | 241 | | 10 | 152 | 473 | 663 | 583 | 293 | 159 | 1220 | 241 | 238 | 237 | 238 | 241 | | 11 | 153 | 301 | 983 | 601 | 409 | 273 | 1640 | 238 | 238 | 237 | 240 | 241 | | 12 | 153 | 172 | 981 | 639 | 393 | 425 | 1910 | 239 | 237 | 238 | 243 | 241 | | 13 | 154 | 171 | 979 | 603 | 386 | 171 | 1900 | 236 | 238 | 241 | 394 | 242 | | 14 | 152 | 172 | 928 | 585 | 383 | 161 | 1900 | 238 | 238 | 237 | 242 | 241 | | 15 | 159 | 172 | 937 | 588 | 232 | 161 | 1900 | 235 | 237 | 281 | 240 | 242 | | 16 | 164 | 175 | 924 | 563 | 158 | 160 | 1910 | 233 | 207 | 289 | 238 | 659 | | 17 | 159 | 258 | 920 | 560 | 158 | 161 | 1890 | 233 | 236 | 247 | 335 | 278 | | 18 | 156 | 318 | 841 | 563 | 158 | 267 | 1470 | 233 | 234 | 242 | 313 | 274 | | 19 | 155 | 762 | 837 | 542 | 80 | 356 | 915 | 237 | 238 | 242 | 240 | 277 | | 20 | 155 | 563 | 841 | 529 | 122 | 356 | 710 | 230 | 231 | 243 | 239 | 286 | | 21 | 338 | 225 | 833 | 529 | 214 | 356 | 710 | 231 | 231 | 243 | 238 | 377 | | 22 | 353 | 225 | 815 | 529 | 159 | 426 | 429 | 229 | 228 | 241 | 243 | 274 | | 23 | 153 | 278 | 811 | 528 | 215 | 353 | 235 | 227 | 230 | 241 | 244 | 343 | | 24 | 152 | 341 | 744 | 529 | 159 | 361 | 234 | 227 | 230 | 241 | 349 | 271 | | 25 | 152 | 613 | 808 | 528 | 159 | 383 | 231 | 230 | 229 | 244 | 308 | 270 | | 26
27
28
29
30
31 | 153
151
353
426
641
641 | 155
152
154
163
270 | 793
720
724
730
740
722 | 528
528
528
418
518
245 | 158
158
158
158
 | 381
370
374
383
387
389 | 230
229
230
229
229 | 261
333
336
336
311
285 | 230
230
232
230
313 | 455
247
246
247
243
244 | 243
243
243
243
242
345 | 271
269
368
343
271 | | TOTAL | 6521 | 12296 | 24979 | 17395 | 6790 | 8239 | 27324 | 7710 | 7107 | 7779 | 8088 | 8723 | | MEAN | 210 | 410 | 806 | 561 | 234 | 266 | 911 | 249 | 237 | 251 | 261 | 291 | | MAX | 641 | 818 | 1180 | 736 | 492 | 426 | 1910 | 336 | 313 | 455 | 394 | 659 | | MIN | 140 | 152 | 351 | 245 | 80 | 157 | 229 | 227 | 207 | 234 | 238 | 241 | CAL YR 1987 TOTAL 107170 MEAN 294 MAX 1180 MIN 100 WTR YR 1988 TOTAL 142951 MEAN 391 MAX 1910 MIN 80 #### 454724091303600 BIG SISSABAGAMA LAKE NEAR STONE LAKE, WI DRAINAGE AREA.--9.47 \min^2 . #### LAKE-STAGE RECORDS PERIOD OF RECORD. -- April 1986 to current year. GAGE.--Staff gage read on south side of lake by Harold Kissinger. Elevation of gage is 1,320 ft, from topographic map. EXTREMES FOR CURRENT YEAR.--Maximum gage-height observed, 5.76 ft, May 12; minimum observed, 4.78 ft, Sept. 15, 16. | | | | GAGE HEI | GHT, FEET | | EAR OCTOR | BER 1987 I | O SEPTEMI | BER 1988 | | | | |------|------|------|----------|-----------|-----|-----------|------------|-----------|----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5.02 | 5.06 | | | | | | 5.66 | 5.56 | 5.28 | 5.00 | 4.92 | | 2 | 5.04 | 5.08 | | | | | | 5.66 | 5.62 | 5.26 | 5.00 | 4.92 | | 3 | 5.02 | 5.08 | | | | | | 5.66 | 5.62 | 5.26 | 5.02 | 4.92 | | 4 | 5.00 | 5.08 | | | | | | 5.64 | 5.60 | 5.24 | 5.10 | 4.90 | | 5 | 5.00 | 5.08 | | | | | | 5.64 | 5.60 | 5.24 | 5.10 | 4.90 | | 6 | 5.02 | 5.08 | | | | | | 5.64 | 5.58 | 5.22 | 5.08 | 4.90 | | 7 | 5.02 | 5.10 | | | | | | 5.64 | 5.58 | 5.20 | 5.06 | 4.88 | | 8 | 5.00 | 5.10 | | | | | | 5.62 | 5.56 | 5.18 | 5.10 | 4.86 | | 9 | 5.00 | 5.10 | | | | | | 5.72 | 5.54 | 5.16 | 5.10 | 4.84 | | 10 | 4.98 | 5.08 | | | | | | 5.74 | 5.52 | 5.14 | 5.08 | 4.84 | | 11 | 4.96 | 5.08 | | | | | | 5.74 | 5.50 | 5.12 | 5.08 | 4.84 | | 12 | 4.94 | 5.08 | | | | | | 5.76 | 5.48 | 5.10 | 5.10 | 4.82 | | 13 | 4.94 | | | | | | | 5.74 | 5.46 | 5.08 | 5.12 | 4.80 | | 14 | 4.94 | | | | | | | 5.72 | | 5.08 | 5.14 | 4.80 | | 15 | 4.98 | | | | | | 5.60 | 5.70 | | 5.06 | 5.12 | 4.78 | | 16 | 5.02 | | | | | | 5.60 | 5.70 | 5.42 | 5.24 | 5.10 | 4.78 | | 17 | 5.04 | | | | | | 5.62 | 5.68 | | 5.24 | 5.12 | 4.84 | | 18 | 5.06 | | | | | | 5.62 | 5.68 | 5.40 | 5.22 | 5.08 | 4.86 | | 19 | 5.06 | | | | | | 5.62 | 5.68 | 5.40 | 5.20 | 5.06 | 4.84 | | 20 | 5.06 | | | | | | 5.62 | 5.68 | | 5.20 | 5.04 | 5.12 | | 21 | 5.08 | | | | | | 5.63 | 5.68 | | 5.20 | 5.04 | 5.14 | | 22 | 5.08 | | | | | | 5.64 | 5.66 | | 5.18 | 5.02 | 5.10 | | 23 | 5.08 | | | | | | 5.66 | 5.64 | | 5.18 | 5.04 | 5.10 | | 24 | 5.10 | | | | | | 5.66 | 5.64 | | 5.16 | 5.04 | 5.08 | | 25 | 5.08 | | | | | | 5.66 | 5.64 | 5.30 | 5.14 | 5.02 | 5.08 | | 26 | 5.08 | | | | | | 5.68 | 5.62 | 5.30 | 5.12 | 5.00 | 5.10 | | 27 | 5.06 | | | | | | 5.70 | 5.60 | | 5.10 | 4.98 | 5.10 | | 28 | 5.06 | | | | | | 5.70 | 5.58 | | 5.06 | 4.96 | 5.08 | | 29 | 5.06 | | | | | | 5.68 | 5.58 | 5.30 | 5.04 | 4.94 | 5.10 | | 30 | 5.06 | | | | | | 5.68 | 5.56 | 5.28 | 5.02 | 4.92 | 5.12 | | 31 | 5.06 | | | | | | | 5.56 | | 5.02 | 4.90 | | | MEAN | 5.03 | | | | | | | 5.66 | | 5.16 | 5.05 | 4.95 | | MAX | 5.10 | | | | | | | 5.76 | | 5.28 | 5.14 | 5.14 | | MIN | 4.94 | | | | | | | 5.56 | | 5.02 | 4.90 | 4.78 | 40 80 120 160 0 40 80 120 160 0 #### CHIPPEWA RIVER BASIN #### 454724091303600 BIG SISSABAGAMA LAKE NEAR STONE LAKE, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1986 to current year. REMARKS.--Lake sampled near center at a lake depth of about 45 ft. Lake ice-covered durinng March 7 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. Additional water-quality data for Big Sissabagama Lake on page 360. # WATER-QUALITY DATA, MARCH 7 TO AUGUST 18, 1988 (Milligrams per liter unless otherwise indicated) | | Maı | c. 07 | Apı | 21 | Jun | ie 16 | Jul | у 25 | Aug | g. 18 | |---|--------------------------|---------------------------|--------------------------|---------------------------|---------------------------|----------------------------|---------------------------|----------------------------|---------------------------|----------------------------| | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) | 1.5
54
7.53
0.5 | 49.0
66
7.13
5.0 | 1.5
72
7.41
7.0 | 46.0
73
7.30
6.5 | 1.5
78
8.00
23.0 | 48.0
94
6.70
13.0 | 1.5
57
8.30
26.0 | 46.0
99
7.00
13.0 | 1.5
63
8.60
26.0 | 46.0
98
7.00
14.0 | | Color (Pt-Co. scale) Turbidity (NTU) | | | 10
1.1 | 15
1.1 | | | | | | | | Secchi-disc (meters) | | | 2. | | 3. | | 2. | | | . 0 | | Dissolved oxygen | 11.8 | 0.1 | 10.3 | 10.2 | 8.0 | 0.6 | 7.6 | 0 | 7.8 | 0 | | Hardness, total (as CaCO ₃) | | | 33 | 32 | | | | | | | | Calcium, dissolved (Ca) | | | 8.6 | 8.5 | | | | | | | | Magnesium, Dissolved (Mg) | | | 2.7 | 2.7 | | | | | | | | Sodium, dissolved (Na) | | | 1.5 | 1.6 | | | | | | | | Potassium, dissolved (K) | | | 0.80 | 0.80 | | | | | | | | Alkalinity, total (as CaCO3) | | | 34 | 34 | | | | | | | | Sulfate, dissolved (SO,) | | | 3.4 | 3.4 | | | | | | | | Fluoride, total (as F) | | | 0.0 | 0.0 | | | | | | | | Chloride, dissolved (C1) | | | <1.0 | <1.0 | | | | | | | | Silica, dissolved (SiO ₂) | | | 8.1 | 8.0 | | | | | | | | Solids, dissolved, at 180°C | | | 56 | 56 | | | | | | | | Nitrogen, nitrite plus | | | | | | | | | | | | nitrate, diss (as N) | | | 0.06 | 0.07 | ~ | | | | | | | Nitrogen, ammonia, diss (as N) | | | 0.03 | 0.03 | | | | | | | | Nitrogen, ammonia plus | | | | | | | | | | | | organic, total (as N) | | | 0.30 | 0.40 | | | | | | | | Total
phosphorus (as P) | | | 0.022 | 0.020 | 0.013 | 0.189 | 0.019 | 0.220 | 0.027 | 0.240 | | Phosphorus, ortho, diss (as P) | | | 0.003 | 0.003 | | | | | | 0.200 | | Iron, dissolved (Fe) μg/L | | | <100 < | (100 | | | | | | | | Manganese, dissolved (Mn) μg/L | | | 63 | 65 | | | | | | | | Chlorophyll a, phyto. (µg/L) | | | 5 | | 6 | | 6 | | 20 | | 80 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER 120 160 40 40 80 120 160 80 120 180 40 #### 05356500 CHIPPEWA RIVER NEAR BRUCE, WI LOCATION.--Lat $45^{\circ}27^{\circ}08$ ", long $91^{\circ}15^{\circ}39$ ", in SE 1/4 sec.5, T.34 N., R.7 W., Rusk County, Hydrologic Unit 07050001, on right bank 1.0 mi east of Bruce and 1.0 mi downstream from Thornapple River. DRAINAGE AREA. -- 1,650 mi². PERIOD OF RECORD. -- December 1913 to current year. REVISED RECORDS.--WSP 875: 1936-38. WSP 1308: 1922, 1937(M). WSP 1508: 1914-26(M), 1927, 1928-31(M), 1933(M), 1934-36, 1938. WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,059.62 ft above National Geodetic Vertical Datum of 1929. Prior to May 28, 1935, nonrecording gage at railroad bridge 0.8 mi upstream at datum 2.30 ft higher. REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records good except those for ice-affected period, which is fair. Flow from 48 percent of the drainage area regulated by Moose Lake and Lake Chippewa. AVERAGE DISCHARGE. -- 74 years, 1,473 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,800 $\rm ft^3/s$, Sept. 1, 1941, gage height, 20.46 ft, from floodmarks, from rating curve extended above 20,000 $\rm ft^3/s$; minimum, 155 $\rm ft^3/s$, June 10, 1932, gage height, 0.9 ft, site and datum then in use. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 3,300 ft³/s (estimated), Mar. 26; maximum gage height, 6.82 ft, Mar. 26 (backwater from ice); maximum discharge during open water, 2,850 ft³/s, Apr. 7, gage height, 4.53 ft; minimum, 220 ft³/s, July 28, 29, gage height, 1.19 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 6 to Apr. 1.) 1.2 246 4.0 2,380 2.0 761 6.0 4,300 | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YEAR
MEAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|----------------------------------|--|--|--------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 325 | 877 | 1010 | 980 | 640 | 420 | 2800 | 655 | 503 | 445 | 365 | 503 | | 2 | 320 | 887 | 1020 | 900 | 500 | 420 | 2400 | 587 | 434 | 346 | 343 | 572 | | 3 | 348 | 915 | 959 | 940 | 470 | 420 | 2390 | 571 | 546 | 395 | 387 | 442 | | 4 | 348 | 1020 | 828 | 960 | 760 | 420 | 2630 | 640 | 484 | 353 | 528 | 456 | | 5 | 350 | 1100 | 695 | 900 | 740 | 420 | 2730 | 537 | 529 | 334 | 688 | 433 | | 6 | 355 | 1040 | 780 | 840 | 500 | 420 | 2670 | 559 | 432 | 383 | 546 | 416 | | 7 | 360 | 970 | 1000 | 760 | 450 | 420 | 2710 | 521 | 477 | 292 | 505 | 410 | | 8 | 360 | 875 | 1400 | 840 | 420 | 420 | 2440 | 561 | 400 | 406 | 481 | 488 | | 9 | 360 | 905 | 1200 | 780 | 400 | 470 | 2410 | 666 | 460 | 364 | 490 | 449 | | 10 | 374 | 777 | 1300 | 840 | 410 | 560 | 2280 | 798 | 461 | 402 | 465 | 394 | | 11 | 354 | 685 | 1100 | 840 | 370 | 620 | 2110 | 793 | 391 | 334 | 430 | 385 | | 12 | 341 | 580 | 1300 | 800 | 600 | 800 | 2590 | 761 | 444 | 377 | 447 | 377 | | 13 | 351 | 479 | 1100 | 840 | 600 | 1000 | 2550 | 742 | 374 | 357 | 518 | 376 | | 14 | 360 | 414 | 1200 | 860 | 600 | 860 | 2500 | 725 | 443 | 432 | 672 | 370 | | 15 | 398 | 421 | 1200 | 860 | 580 | 740 | 2430 | 693 | 371 | 342 | 509 | 374 | | 16 | 595 | 468 | 1200 | 860 | 540 | 700 | 2390 | 669 | 435 | 1320 | 482 | 389 | | 17 | 910 | 587 | 1100 | 820 | 490 | 660 | 2340 | 633 | 372 | 1320 | 473 | 804 | | 18 | 871 | 899 | 1100 | 800 | 440 | 640 | 2290 | 586 | 385 | 841 | 544 | 492 | | 19 | 702 | 1040 | 1000 | 780 | 400 | 700 | 1630 | 582 | 399 | 635 | 499 | 528 | | 20 | 623 | 1290 | 1000 | 780 | 390 | 720 | 1160 | 540 | 431 | 536 | 454 | 989 | | 21 | 577 | 985 | 980 | 780 | 380 | 700 | 1060 | 605 | 405 | 611 | 419 | 1210 | | 22 | 753 | 649 | 960 | 780 | 370 | 660 | 1040 | 489 | 360 | 525 | 436 | 1020 | | 23 | 729 | 616 | 960 | 780 | 450 | 740 | 811 | 493 | 420 | 487 | 492 | 724 | | 24 | 566 | 602 | 1000 | 780 | 370 | 940 | 725 | 546 | 362 | 479 | 490 | 738 | | 25 | 540 | 682 | 1000 | 780 | 440 | 1300 | 776 | 450 | 427 | 443 | 532 | 582 | | 26
27
28
29
30
31 | 510
495
476
679
760
916 | 894
505
482
686
1020 | 940
960
1000
1000
980
960 | 760
760
760
780
780
800 | 440
430
430
430 | 3300
3100
2900
2800
3000
3100 | 794
722
705
716
623 | 453
543
534
553
565
534 | 376
371
368
437
416 | 379
646
368
360
408
386 | 514
463
432
419
432
403 | 559
536
518
639
553 | | TOTAL | 16006 | 23350 | 32232 | 25520 | 14040 | 34370 | 55422 | 18584 | 12713 | 15306 | 14858 | 16726 | | MEAN | 516 | 778 | 1040 | 823 | 484 | 1109 | 1847 | 599 | 424 | 494 | 479 | 558 | | MAX | 916 | 1290 | 1400 | 980 | 760 | 3300 | 2800 | 798 | 546 | 1320 | 688 | 1210 | | MIN | 320 | 414 | 695 | 760 | 370 | 420 | 623 | 450 | 360 | 292 | 343 | 370 | CAL YR 1987 TOTAL 236870 MEAN 649 MAX 2070 MIN 320 WTR YR 1988 TOTAL 279127 MEAN 763 MAX 3300 MIN 292 #### 05360500 FLAMBEAU RIVER NEAR BRUCE, WI LOCATION.--Lat 45°22'21", long 91°12'34", in Lot 7 of NW 1/4 sec.2, T.33 N., R.7 W., Rusk County, Hydrologic Unit 07050002, on right bank 2.5 mi downstream from Thornapple Powerplant, 6.0 mi upstream from mouth, and 7.0 mi southeast of Bruce. DRAINAGE AREA. -- 1,860 mi². PERIOD OF RECORD. -- August 1951 to current year. REVISED RECORDS.--WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,056.34 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: None, except for ice period listed in rating table below. Records good except those for ice-affected period, which is fair. Flow regulated by several powerplants above station and by Rest Lake and Flambeau Flowage Reservoirs. AVERAGE DISCHARGE. -- 37 years, 1,832 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,600 $\rm ft^3/s$, Apr. 2, 1986, gage height, 10.45 ft; maximum gage height, 10.90 ft, May 1, 1954; minimum, about 100 $\rm ft^3/s$, Aug. 7, 9, 1957, gage height, 2.06 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 5,630 $\rm ft^3/s$, Apr. 4, gage height, 6.09 ft; minimum, 371 $\rm ft^3/s$, Oct. 20, June 29, gage height, 2.35 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 15 to Mar. 26.) | 2.4 | 400 | 5.0 | 3,480 | |-----|-------|-----|-------| | 3.0 | 833 | 6.0 | 5,440 | | 4.0 | 1,920 | | • | | | | DISCHA | ARGE, CUBIC | FEET PER | | WATER YEAR
MEAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|-----------------------------------|---|--|--------------------------|--|--------------------------------------|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 584 | 645 | 1550 | 780 | 760 | 660 | 2570 | 826 | 711 | 564 | 641 | 812 | | 2 | 551 | 1070 | 1450 | 720 | 800 | 780 | 3350 | 920 | 683 | 485 | 741 | 717 | | 3 | 610 | 1080 | 1230 | 760 | 900 | 720 | 3130 | 863 | 627 | 483 | 718 | 772 | | 4 | 732 | 1070 | 823 | 800 | 800 | 680 | 3330 | 967 | 793 | 535 | 1270 | 760 | | 5 | 777 | 954 | 933 | 840 | 660 | 640 | 4270 | 815 | 627 | 541 | 1210 | 746 | | 6 | 682 | 982 | 1000 | 800 | 800 | 680 | 4290 | 885 | 594 | 501 | 1220 | 695 | | 7 | 721 | 914 | 1200 | 740 | 720 | 740 | 4100 | 780 | 624 | 492 | 967 | 838 | | 8 | 692 | 987 | 913 | 700 | 680 | 720 | 4160 | 697 | 642 | 461 | 843 | 654 | | 9 | 616 | 720 | 1090 | 760 | 660 | 760 | 4140 | 1040 | 647 | 578 | 775 | 558 | | 10 | 649 | 689 | 1360 | 760 | 560 | 780 | 2830 | 1910 | 542 | 543 | 696 | 742 | | 11 | 673 | 858 | 1430 | 800 | 680 | 840 | 2890 | 2060 | 511 | 497 | 664 | 675 | | 12 | 662 | 956 | 1590 | 840 | 740 | 800 | 3180 | 1960 | 489 | 479 | 713 | 629 | | 13 | 656 | 853 | 1590 | 800 | 700 | 1100 | 2570 | 1520 | 487 | 471 | 865 | 607 | | 14 | 644 | 898 | 1520 | 760 | 680 | 900 | 2990 | 1430 | 479 | 553 | 1190 | 552 | | 15 | 689 | 536 | 1400 | 740 | 640 | 880 | 3150 | 1210 | 449 | 505 | 1480 | 558 | | 16 | 1070 | 655 | 1200 | 800 | 620 | 720 | 3050 | 1260 | 564 | 918 | 1470 | 603 | | 17 | 1210 | 923 | 1100 | 780 | 620 | 760 | 2500 | 1190 | 609 | 1260 | 1050 | 659 | | 18 | 1550 | 1030 | 1000 | 740 | 740 | 880 | 2160 | 800 | 519 | 865 | 1040 | 1130 | | 19 | 1430 | 1440 | 740 | 840 | 660 | 800 | 1860 | 1040 | 544 | 728 | 1110 | 668 | | 20 | 1260 | 1410 | 900 | 860 | 660 | 560 | 2090 | 885 | 582 | 684 | 842 | 940 | | 21 | 1080 | 1090 | 1000 | 880 | 580 | 600 | 1470 | 792 | 595 | 613 | 657 | 1110 | | 22 | 1360 | 912 | 1200 | 900 | 480 | 680 | 1060 | 811 | 614 | 609 | 772 | 1240 | | 23 | 1220 | 1190 | 1100 | 960 | 430 | 640 | 1240 | 813 | 560 | 603 | 932 | 1000 | | 24 | 1150 | 1060 | 1100 | 760 | 440 | 760 | 1130 | 721 | 528 | 523 | 973 | 1000 | | 25 | 1050 | 1080 | 1100 | 820 |
460 | 1000 | 1140 | 716 | 628 | 527 | 916 | 818 | | 26
27
28
29
30
31 | 1180
850
1040
1500
1640
629 | 827
880
696
1090
1230 | 1100
1100
1100
1200
1000
840 | 860
800
780
820
800
700 | 480
500
450
500 | 1700
2340
2980
2900
1900
2440 | 1270
1280
1240
1210
1290 | 731
649
721
704
730
725 | 466
419
420
459
746 | 533
552
579
536
665
589 | 845
984
746
661
704
698 | 775
791
649
722
771 | | TOTAL | 29157 | 28725 | 35859 | 24700 | 18400 | 33340 7 | 74940 | 31171 | 17158 | 18472 | 28393 | 23191 | | MEAN | 941 | 957 | 1157 | 797 | 634 | 1075 | 2498 | 1006 | 572 | 596 | 916 | 773 | | MAX | 1640 | 1440 | 1590 | 960 | 900 | 2980 | 4290 | 2060 | 793 | 1260 | 1480 | 1240 | | MIN | 551 | 536 | 740 | 700 | 430 | 560 | 1060 | 649 | 419 | 461 | 641 | 552 | CAL YR 1987 TOTAL 333327 MEAN 913 MAX 2170 MIN 467 WTR YR 1988 TOTAL 363506 MEAN 993 MAX 4290 MIN 419 #### 05362000 JUMP RIVER AT SHELDON, WI LOCATION.--Lat 45°18'29", long 90°57'23", in sec.26, T.33 N., R.5 W., Rusk County, Hydrologic Unit 07050004, on right bank just downstream from highway bridge in Sheldon, 1,500 ft upstream from Shoulder Creek and 11 mi upstream from mouth. DRAINAGE AREA. -- 576 mi². PERIOD OF RECORD. -- July 1915 to current year. REVISED RECORDS.--WSP 975: 1938. WSP 1175: Drainage area. WSP 1438: 1916-17(M), 1919(M), 1920, 1921(M), 1922, 1923-26(M), 1927, 1928-31(M), 1932, 1933-37(M), 1945-46(M), 1948-50(M). GAGE.--Water-stage recorder. Datum of gage is 1,092.75 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 9, 1939, and Sept. 1, 1941, to Apr. 1, 1953, Feb. 18, 1954, to Sept. 27, 1964, nonrecording gage at same site and datum. Apr. 2, 1953, to Feb. 18, 1954, nonrecording gage in creamery wellhouse 400 ft upstream at same datum. Feb. 9, 1939, to Aug. 31, 1941, and from Sept. 27, 1964, water-stage recorder at present site and datum. REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good except for ice-affected periods, which are poor. Data-collection platform at station. AVERAGE DISCHARGE.--73 years, 518 ft³/s, 12.21 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, $46,000 \text{ ft}^3/\text{s}$, Aug. 31, 1941, gage height, 18.8 ft from floodmark, from rating curve extended above 13,000 ft $^3/\text{s}$ on basis of contracted-opening measurement of peak flow; minimum observed, 11 ft $^3/\text{s}$, Dec. 18, 1943, gage height, 3.99 ft. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,500 ${\rm ft}^3/{\rm s}$ and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Mar. 26 | 0300 | ice jam | *10.64 | Apr. 4 | 1000 | *2,530 | 7.22 | Minimum discharge, 27 ft³/s, July 30, gage height 2.89 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Aug. 19 to Sept. 30; stage-discharge relation affected by ice Nov. 21-23, Dec. 3-7, and Dec. 13 to Apr. 2.) | 2.8 | 24 | 4.5 | 475 | |-----|-----|-----|-------| | 2.9 | 33 | 5.0 | 727 | | 3.0 | 45 | 6.0 | 1,410 | | 3.2 | 72 | 7.0 | 2,290 | | 3.5 | 142 | 8.0 | 3,460 | | 40 | 291 | | | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|-----------------------------------|----------------------------------|--|--|--|------------------------------------|----------------------------------|--|----------------------------------|---| | 1 | 75 | 261 | 889 | 120 | 84 | 78 | 2300 | 395 | 77 | 53 | 30 | 38 | | 2 | 70 | 250 | 675 | 110 | 82 | 78 | 2300 | 338 | 82 | 46 | 31 | 41 | | 3 | 65 | 256 | 520 | 110 | 80 | 80 | 2380 | 284 | 164 | 41 | 32 | 36 | | 4 | 68 | 328 | 440 | 100 | 78 | 82 | 2510 | 232 | 160 | 37 | 43 | 34 | | 5 | 74 | 443 | 340 | 92 | 76 | 84 | 2420 | 202 | 117 | 33 | 38 | 34 | | 6 | 80 | 424 | 330 | 84 | 74 | 92 | 2420 | 180 | 93 | 32 | 38 | 33 | | 7 | 83 | 373 | 320 | 78 | 74 | 98 | 2370 | 169 | 78 | 32 | 38 | 33 | | 8 | 91 | 330 | 300 | 74 | 72 | 110 | 2020 | 164 | 69 | 30 | 41 | 33 | | 9 | 89 | 319 | 321 | 70 | 72 | 120 | 1620 | 379 | 67 | 36 | 38 | 32 | | 10 | 86 | 301 | 512 | 68 | 70 | 130 | 1340 | 1020 | 60 | 47 | 35 | 30 | | 11 | 79 | 265 | 623 | 68 | 70 | 210 | 1170 | 1030 | 58 | 47 | 34 | 33 | | 12 | 73 | 249 | 609 | 66 | 68 | 400 | 972 | 843 | 51 | 47 | 39 | 34 | | 13 | 72 | 245 | 520 | 68 | 68 | 380 | 797 | 761 | 47 | 47 | 43 | 35 | | 14 | 72 | 285 | 420 | 70 | 68 | 340 | 650 | 605 | 46 | 43 | 50 | 33 | | 15 | 85 | 282 | 360 | 72 | 68 | 360 | 524 | 472 | 46 | 45 | 54 | 28 | | 16 | 148 | 284 | 330 | 74 | 70 | 340 | 429 | 396 | 46 | 61 | 60 | 35 | | 17 | 475 | 331 | 310 | 76 | 70 | 320 | 393 | 344 | 46 | 69 | 55 | 38 | | 18 | 599 | 685 | 270 | 78 | 70 | 290 | 356 | 304 | 45 | 94 | 49 | 36 | | 19 | 526 | 893 | 240 | 78 | 72 | 280 | 328 | 265 | 45 | 67 | 41 | 48 | | 20 | 433 | 717 | 230 | 78 | 72 | 270 | 299 | 237 | 44 | 53 | 35 | 62 | | 21 | 365 | 490 | 220 | 76 | 72 | 260 | 275 | 209 | 42 | 50 | 34 | 81 | | 22 | 343 | 460 | 210 | 76 | 74 | 250 | 250 | 184 | 42 | 47 | 37 | 113 | | 23 | 345 | 460 | 200 | 74 | 74 | 290 | 247 | 162 | 42 | 42 | 43 | 114 | | 24 | 340 | 460 | 190 | 72 | 74 | 400 | 265 | 144 | 41 | 40 | 41 | 100 | | 25 | 328 | 463 | 180 | 72 | 76 | 620 | 294 | 126 | 39 | 37 | 47 | 83 | | 26
27
28
29
30
31 | 323
328
350
340
314
282 | 428
394
382
513
889 | 170
170
160
150
140 | 74
74
76
78
80
82 | 76
76
76
78 | 2000
1900
1800
1800
1900
2400 | 306
343
450
508
452 | 111
102
96
92
87
84 | 36
36
40
41
44 | 37
35
33
30
28
29 | 52
51
46
42
40
36 | 67
58
56
56
52 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 7001
226
599
65
. 39
. 45 | 12460
415
893
245
.72
.80 | 10479
338
889
130
.59 | 2468
79.6
120
66
.14 | 2134
73.6
84
68
.13
.14 | 17762
573
2400
78
.99
1.15 | 30988
1033
2510
247
1.79
2.00 | 10017
323
1030
84
.56 | 1844
61.5
164
36
.11 | 1368
44.1
94
28
.08
.09 | 1293
41.7
60
30
.07 | 1506
50.2
114
28
.09
.10 | CAL YR 1987 TOTAL 84381.9 MEAN 231 MAX 1180 MIN 46 CFSM .40 IN. 5.45 WTR YR 1988 TOTAL 99320 MEAN 271 MAX 2510 MIN 28 CFSM .47 IN. 6.41 #### 05364850 DUNCAN CREEK TRIBUTARY NEAR TILDEN, WI LOCATION.--Lat 44°59'20", long 91°26'52", in SW 1/4 SW 1/4 sec.14, T.29 N., R.9 W., Chippewa County, Hydrologic Unit 07050005, on right bank 15 ft downstream from town road, approximately 0.4 mi upstream from U.S. Highway 53, and 1.4 mi southwest of Tilden. DRAINAGE AREA. -- 4.17 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- December 1986 to current year. GAGE.--Water-stage recorder. Elevation of gage is 940 ft above National Geodetic Vertical Datum of 1929, from topographic map. ${\tt REMARKS.--Estimated\ daily\ discharges:\ Dec.\ 27\ to\ Feb.\ 23.\ Records\ good\ above\ 5\ ft^3/s\ and\ fair\ below.}$ EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 49 $\rm ft^3/s$, July 28, 1987, gage height, 4.50 ft; minimum, 0.65 $\rm ft^3/s$, July 28, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 26 ${\rm ft}^3/{\rm s}$, Sept. 19, gage height, 4.03 ft; minimum, 0.65 ${\rm ft}^3/{\rm s}$, July 28. | | | DISCHA | RGE, CUBIC | FEET PE | | WATER YEA | | R 1987 TC | SEPTEMBE | IR 1988 | | | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------------|---------------------------------|---------------------------------|---------------------------------|-----------------------------|---------------------------------|--------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.6
1.6
1.6
1.6 | 1.1
1.1
1.4
1.2 | 1.4
1.4
1.4
1.3 | 1.6
1.5
1.5
1.5 | 1.3
1.3
1.3
1.3 | 4.1
4.9
3.0
2.4
2.3 | 1.5
1.6
2.3
1.8
1.7 | 1.3
1.3
1.2
1.2 | 1.1
1.3
1.2
1.1 | 1.0
1.0
.94
.93 | .74
.70
.79
1.1
.92 | .99
.96
.91
.90 | | 6
7
8
9
10 | 1.6
1.5
1.5
1.5 | 1.0
1.0
1.1
1.0 | 1.4
1.5
1.6
2.5
1.8 | 1.4
1.4
1.3
1.3 | 1.3
1.3
1.3
1.2 | 4.8
3.9
3.6
2.9
2.7 | 1.7
1.6
1.5
1.5 | 1.2
1.2
1.4
2.1
1.5 | 1.1
1.1
1.0
1.0 | .90
.89
.91
1.0 | .84
.80
1.5
1.1
.80 | .85
.88
.88
.88 | | 11
12
13
14
15 | 1.4
1.4
1.4
2.2 | 1.0
1.1
1.1
1.0
1.1 | 1.7
1.7
1.6
1.6 | 1.3
1.3
1.3
1.3 | 1.2
1.2
1.2
1.2 | 2.6
2.0
1.6
1.5 | 1.5
1.5
1.4
1.4 | 1.3
1.3
1.2
1.2 | 1.0
.97
.97
.97 | .93
.91
.94
.87 | .90
1.1
.99
.93 | .88
.88
.90
.88 | | 16
17
18
19
20 | 2.8
2.0
1.4
1.3
1.3 | 1.3
2.4
1.8
1.3 | 1.6
1.6
1.6
1.7 | 1.3
1.2
1.2
1.2 | 1.2
1.2
1.3
1.3 |
1.5
1.5
1.5
1.4 | 1.4
1.4
1.3
1.3 | 1.2
1.1
1.1
1.1 | .98
.98
.99
1.0 | 1.1
.89
.87
.84
.83 | . 89
. 86
. 84
. 86
. 84 | 1.1
1.7
7.1
7.5 | | 21
22
23
24
25 | 1.3
1.2
1.3
1.2 | 1.2
1.2
1.4
1.3 | 1.7
1.8
1.8
1.8 | 1.2
1.2
1.2
1.2 | 1.4
1.4
1.4
1.4 | 1.4
1.6
1.9
3.6
3.4 | 1.3
1.3
1.7
1.4 | 1.1
1.1
1.1
1.1 | 1.1
1.1
1.1
1.1 | .86
.80
.77
.78
.84 | .83
.92
1.1
.89
.85 | 2.0
1.6
1.6
1.5
1.4 | | 26
27
28
29
30
31 | 1.1
1.1
1.0
1.0 | 1.3
1.3
1.6
2.0 | 1.8
1.7
1.7
1.6
1.6 | 1.2
1.2
1.2
1.3
1.4 | 1.5
1.6
1.9
2.4 | 2.2
1.7
1.7
1.7
1.5 | 1.4
2.0
1.5
1.4
1.3 | 1.1
1.1
1.1
1.1
1.1 | 1.1
1.3
1.2
1.1 | .80
.73
.69
.67
.68 | .83
.88
.85
.83
.85 | 1.3
1.2
1.3
1.5 | | TOTAL
MEAN
MAX
MIN | 44.5
1.44
2.8
1.0 | 38.3
1.28
2.4
1.0 | 51.1
1.65
2.5
1.3 | 40.5
1.31
1.6
1.2 | 39.5
1.36
2.4
1.2 | 73.3
2.36
4.9
1.4 | 45.2
1.51
2.3
1.3 | 37.6
1.21
2.1
1.1 | 32.10
1.07
1.3
.94 | 26.89
.87
1.1
.67 | 28.10
.91
1.5
.70 | 46.54
1.55
7.5
.85 | #### 05364850 DUNCAN CREEK TRIBUTARY NEAR TILDEN, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD.--December 1986 to current year. #### PERIOD OF DAILY RECORD . -- SUSPENDED SEDIMENT DISCHARGE: December 1986 to current year. TOTAL PHOSPHORUS DISCHARGE: December 1986 to current year. TOTAL AMMONIA NITROGEN DISCHARGE: December 1986 to current year. WATER TEMPERATURE: May 1987 to current year. DISSOLVED OXYGEN: May 1987 to current year. INSTRUMENTATION .- - Water-quality sampler since December 1986. Water-quality monitor since May 1987. #### EXTREMES FOR PERIOD OF RECORD . -- XTREMES FOR PERIOD OF RECORD.-SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 11 tons, Sept. 19, 1988; minimum daily, 0.01 ton, Apr. 29, 1988. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 297 lbs, Sept. 19, 1988; minimum daily, 0.16 lbs, Dec. 1, 1987. TOTAL AMMONIA NITROGEN DISCHARGE: Maximum daily, 95 lbs, Mar. 2, 1988; minimum daily, 0.05 lbs, July 15, 1988. WATER TEMPERATURE: Maximum observed, 26.5°C, Aug. 1, 1988; minimum observed, 0.5°C, Jan. 10-14, 1988. DISSOLVED OXYGEN: Maximum observed, 15.5 mg/L, June 25, 1988; minimum observed, 1.3 mg/L, Aug. 2, 1987. EXTREMES FOR CURRENT YEAR.-SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 11 tons, Sept. 19; minimum daily, 0.01 ton, Apr. 29. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 297 lbs, Sept. 19; minimum daily, 0.16 lbs, Dec. 1. TOTAL AMMONIA NITROGEN DISCHARGE: Maximum daily, 95 lbs, Mar. 2; minimum daily, 0.05 lbs, July 15. WATER TEMPERATURE: Maximum observed, 26.5°C, Aug. 1; minimum observed, 0.5°C, Jan. 10-14. DISSOLVED OXYGEN: Maximum observed, 15.5 mg/L, June 25; minimum observed, 1.5 mg/L, Aug. 8. #### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER -
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |----------------|------|--|---|--|--|-----------|------|---|--|---| | OCT 1987 | | | | | | MAY 1988 | | | | | | 29
DEC | 1225 | | 1.0 | 138 | 6.0 | 04
JUN | 1120 | 1.2 | 15 | 5 13.0 | | 02
JAN 1988 | 1400 | | 1.2 | 140 | | 14
JUL | 1340 | 1.0 | 13 | 0 20.0 | | 15
FEB | 1050 | 1.3 | | 140 | 1.0 | 27
SEP | 1130 | 0.76 | 5 14 | 5 20.0 | | 29
MAR | 1205 | | 2.1 | 209 | 2.5 | 20 | 0845 | 7.9 | 19 | 3 13.0 | | 22 | 1100 | | 1.4 | 150 | 4.0 | | | | | | | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |-----------|--------------|--|---|---|--|---| | OCT 1987 | | | | | | | | 15 | 1200 | | 1.9 | 0.140 | 0.820 | 41 | | 15 | 1545 | | 2.5 | 0.130 | 0.680 | 29 | | 15 | 1800 | | 3.1 | 0.300 | 1.10 | 29 | | 16 | 1800 | | 2.5 | 0.170 | 0.800 | 32 | | 17 | 1800 | | 1.9 | 0.080 | 1.00 | | | 29 | 1225 | | 1.0 | 0.040 | 0.260 | 19 | | NOA | | | | | | | | 17: | 0715 | | $\frac{2.1}{1}$ | 0.270 | 0.680 | 41 | | 17 | 1100 | | 2.7 | 0.250 | 0.720 | 85 | | 20 | 1040 | | 1.1 | 0.040 | 0.310 | 15
75 | | 28
30 | 2130
0950 | | 2.4
1.5 | | | 73 | | DEC | 0930 | | 1.5 | | | , | | 01 | 0950 | | 1.4 | 0.070 | 0.010 | | | 02 | 1400 | | 1.2 | 0.030 | 0.270 | 4 | | 09 | 0430 | | 2.6 | 0.350 | 0.810 | 45 | | 09 | 0620 | | 2.8 | | | 195 | | 11 | 1530 | | 1.7 | 0.050 | 0.500 | 61 | | JAN 1988 | | | | | | _ | | 15 | 0115 | 1.3 | | | | 7
7 | | 15 | 1050 | 1.3 | | 0.140 | 0.220 | / | | FEB
29 | 1205 | | 2.1 | 3.90 | 1.30 | 32 | | | | | 3.1 | | _ , | | CHIPPEWA RIVER BASIN #### 05364850 DUNCAN CREEK TRIBUTARY NEAR TILDEN, WI--CONTINUED | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |--|--|---|--|---|---| | MAR 1988 01 01 01 01 02 04 22 24 24 24 25 25 25 25 | 1415
1600
1730
1915
2030
0945
1025
1100
1745
1815
1830
1900
2245
0115
0315
0730
1900
1500 | 3.2
4.8
5.9
7.4
4.8
2.4
1.4
3.2
4.9
6.6
8.8
11
6.8
4.4
3.1
2.7 | 4.60
4.70
4.30
3.90
3.70
2.60
0.070
0.560
1.40
2.10
2.60
2.90
2.50
2.30 | 0.190
2.10
1.80
0.150
0.160
0.160
0.260
0.670
0.920
1.10
2.20
1.30
1.20
 | 41
72
120
96
127
101
13
6
703
656
635

544
427
232
145
920
6 | | APR
03
03
04
28
MAY | 1100
1300
1900
0930
1100 | 2.4
2.3
2.2
1.8
1.5 | 0.010 | 0.290 | 434
530
332
137
3 | | 04
08
10
JUN | 1120
2345
1330 | 1.2
2.3
1.4 | 0.030
0.430
0.070 | 0.040
1.20
0.430 | 9

34 | | 14
29
JUL | 1340
0900 | $\begin{array}{c} 1.0 \\ 1.3 \end{array}$ | 0.160
0.280 | 0.490
0.680 | 41
 | | 15
19
27
AUG | 2400
1700
1130 | 1.2
0.86
0.76 | <0.010
0.130
0.070 | 0.580
0.400
0.430 | 141
26
 | | 04
04
04
09
17
SEP | 0500
1710
1730
0930
0905 | 0.84
1.2
1.2
1.1
0.88 | 1.00
0.410
0.400
0.160
0.300 | 0.100
8.00
5.40
3.40
0.720 | 26
28
45 | | 19 19 19 19 19 19 20 20 20 20 20 21 | 0745
1015
1415
1515
1530
1545
1715
1745
1815
0145
0500
0840
0844
0847
0847 | 1.7
1.5
1.4
1.7
1.9
2.2
7.7
8.1
9.5
17
11
8.0
7.9
7.9
7.9
7.9 | 0.130
6.40
0.570
0.990
0.930
0.170
0.160
0.330
0.100
0.130
0.140
0.110
0.210
0.120
0.130 | 5.00

5.60
11.0
7.80
2.20
4.70
3.00
2.60
3.00
1.50
1.50
1.20
1.40
0.540 | 1180

1070
3960
2770
2950
590
720
565
335
322

214
170
117 | 147 SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | | ., | (101.0) | MEAN VALU | ES | | | , | | | |----------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|---------------------------------|--------------------------------| | DAY | ОСТ | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .04
.04
.04
.04 | .06
.13
.06 | .02
.02
.02
.02 | .03
.03
.03
.03 | .03
.03
.03
.03 | .94
1.2
.29
.10 |
.04
.31
2.3
.77
.55 | .02
.02
.03
.03 | .09
.42
.24
.12 | .07
.07
.06
.06 | .24
.26
.18
.12 | .11
.11
.10
.10 | | 6
7
8
9
10 | .04
.04
.04
.04 | .06
.06
.05 | .02
.02
.03
.36 | .03
.03
.03
.03 | .03
.03
.03
.03 | 1.5
.77
.36
.08 | . 46
. 38
. 32
. 27
. 24 | .03
.03
.31
1.2
.17 | .12
.11
.11
.11 | .06
.06
.06
.07 | .06
.06
.54
.12
.06 | .10
.10
.10
.10 | | 11
12
13
14
15 | . 04
. 04
. 04
. 04 | .06
.06
.05 | . 23
. 28
. 26
. 25
. 26 | .03
.02
.02
.02 | .03
.03
.03
.03 | .06
.05
.04
.03 | .20
.17
.15
.13 | .12
.11
.11
.11 | .11
.11
.11
.11 | .06
.06
.06
.06 | .08
.10
.10
.09 | .10
.10
.10
.10 | | 16
17
18
19
20 | .18
.10
.06
.05 | . 42
. 13
. 07 | . 26
. 25
. 26
. 27
. 27 | .02
.02
.02
.02
.02 | .03
.03
.03
.03 | .03
.03
.03
.03 | .10
.08
.07
.06 | .10
.10
.10
.10 | .11
.11
.11
.11 | .09
.06
.06
.06 | .10
.10
.10
.10 | .12
.12
.62
11
4.3 | | 21
22
23
24
25 | .06
.05
.06
.06 | .05
.06
.05 | . 27
. 27
. 28
. 28
. 28 | .02
.02
.02
.02 | .04
.04
.04
.04 | .02
.37
.95
4.3
3.9 | .04
.04
.04
.03 | .10
.10
.10
.10 | . 12
. 12
. 12
. 12
. 12 | .07
.08
.08
.10 | .10
.11
.13
.10 | .12
.07
.06
.05 | | 26
27
28
29
30
31 | .05
.05
.06
.05
.05 | .05
.05
.16
.18
.04 | . 28
. 26
. 26
. 24
. 24 | .02
.03
.03
.03
.03 | .04
.04
.11
.26 | 2.4
.50
.13
.04
.03 | .04
1.1
.06
.01 | .10
.10
.09
.09
.09 | .12
.12
.35
.26 | .13
.13
.14
.15
.17 | .10
.10
.10
.10
.10 | .04
.04
.04
.03 | | TOTAL
MEAN
MAX
MIN | 1.72
.06
.18
.04 | 2.38
.08
.42
.04 | 6.12
.20
.36
.02 | 0.78
.03
.03
.02 | 1.25
.04
.26
.03 | 18.55
.60
4.3
.02 | 8.17
.27
2.3
.01 | 3.99
.13
1.2
.02 | 4.16
.14
.42
.07 | 2.67
.09
.22
.06 | 3.82
.12
.54
.06 | 18.22
.61
11
.03 | | CAL YR | 1087 | TOTAL 73 81 | MEAN | 20 MAX | 9 1 MTN | 0.2 | | | | | | | CAL YR 1987 TOTAL 73.81 MEAN .20 MAX 9.1 MIN .02 WTR YR 1988 TOTAL 71.83 MEAN .20 MAX 11 MIN .01 PHOSPHORUS, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY JUN JULAUG SEP JAN3.79 2.35 2.31 2.14 2.39 1.50 1.96 1.54 18.2 3.31 3.52 4.08 1.24 2 2.38 1.52 1.39 1.83 1.54 16.6 .53 4.59 1.62 7.19 1.77 $\begin{smallmatrix}2.33\\2.33\end{smallmatrix}$ 3.58 2.13 2.02 1.95 $\frac{1.83}{1.82}$ 1.54 1.54.37 3.36 3.49 5 2.29 1.83 1.99 1.70 1.54 5.42 1.20 .27 2.62 2.04 6.03 3.37 2.31 1.69 1.22 .27 2.61 2.02 3.26 2.19 1.78 1.79 2.12 1.69 1.57 $\frac{1.54}{1.54}$ 14.6 5.93 3.40 1.18 1.20.26 1.64 2.56 2.56 1.99 1.30 3.37 2.04 45.0 3.37 2.19 2.12 9.86 1.56 1.23 7.71 2.55 19.9 3.35 2.23 3.03 3.36 10 2.04 1.61 4.92 1.56 1.43 3.11 1.26 3.65 2.56 11 2.04 1.57 1.70 1.56 1.55 1.55 3.06 1.28 3.02 2.58 2.52 2.05 2.00 3.41 3.34 3.36 1.43 1.43 1.33 1.37 2:92 10.1 12 2.04 4.53 2.42 2.55 2.55 2.47 2.28 2.45 2.75 13 2.04 4.26 1.93 2.80 2.05 1.69 14 15 3.34 2.04 1.48 4.19 1.55 1.43 1.86 1.37 2.78 1.89 9.29 1.62 4.29 1.54 1.43 1.86 1.41 2.82 1.95 1.54 1.43 1.43 1.43 3.08 16 1.49 1.51 1.55 2.56 2.51 2.51 10.1 13.7 1.78 4.32 1.43 1.92 2.73 2.52 3.33 3.27 3.33 17 7.99 2.27 1.93 10.1 4.22 1.43 1.97 1.97 2.65 4.32 4.46 4.36 2.64 1.87 43.6 2.67 19 1.83 4 50 1.54 1.541.94 1.60 2.62 2.57 1 82 297 20 2.03 1.65 4.63 1.83 1.89 2.67 3.24 5.72 13.9 3.44 21 1.97 4.61 1.43 2.65 1.89 6.71 1.83 1.66 1.92 1.68 2.65 4.65 4.72 4.85 1.80 2.75 2.06 1.78 1.72 1.77 1.68 2.05 1.43 2.75 2.61 1.66 4.52 23 24 25 1.83 2.31 1.43 1.43 1.66 3.37 22.0 2.64 2.69 2.75 1.68 1.72 4.87 1.91 3.29 4.19 3.22 3.41 3.27 3.20 3.27 26 1.54 2.16 4.76 1.43 2.59 1.84 3.81 1.81 10.9 1.99 2.64 6.40 4.98 3.98 4.86 2.44 1.53 27 28 1.54 1.54 2.19 3.78 4.44 1.43 1.43 1.86 3.73 2.66 2.67 1.70 1.59 3.57 3.68 2.62 2.54 2.49 29 1.40 6.08 1.54 13.4 1.57 4.28 1.47 3.31 1.07 30 .57 4.16 1.66 2.49 1.58 3.60 31 4.15 1.66 48.52 1.57 TOTAL 73.50 2.45 10.1 200.24 537.96 122.60 59.02 55.98 1.87 84.21 60.50 85.11 214.57 72.17 2.75 2.81 4.67 2.47 1.95 2.52 1.57 6.46 45.0 1.30 3.95 2.04 2.33 7.71 17.9 MEAN 6.92 MAX 9.86 1.96 13.4 31.8 4.86 297 3.26 MIN 1.40 . 57 . 16 1.43 1.43 1.77 1.07 CAL YR 1987 TOTAL 2395.85 MEAN 6.56 MAX 190 MIN .16 WTR YR 1988 TOTAL 1614.38 MEAN 4.41 MAX 297 MIN .16 MEAN MAX MIN .22 #### CHIPPEWA RIVER BASIN #### 05364850 DUNCAN CREEK TRIBUTARY NEAR TILDEN, WI--CONTINUED NITROGEN, AMMONIA, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 80.0 .23 . 47 1.2 1.0 . 69 .12 . 68 .32 .28 .65 2 . 44 . 23 . 25 1.1 1.7 1.0 95.1 .14 .82 .28 .26 . 59 3 9.9 . 43 .81 .22 1.1 1.0 48.2 .17 .79 .23 .41 .53 . 29 .22 . 43 1.1 1.0 31.7 .96 .20 .77 .20 3.3 .50 5 .22 .22 .42 1.0 1.0 23.2 .82 .20 .77 . 17 1.6 .46 6 7 .43 .22 .23 1.0 1.0 .77 .42 .20 .15 1.1 .22 . 40 .24 1.0 1.0 23.2 .63 .19 .77 .13 .82 .40 8 .75 .40 . 97 . 97 $\frac{3.3}{1.5}$.61 .38 1.0 9.0 .56 .78 .12 . 94 .39 .22 2.8 3.6 .78 .12 .51 6.5 10 .38 .22 .81 5.1 .70 .94 .46 .80 .68 .34 .11 .97 11 .38 .22 .51 .95 . 81 .09 .74 .32 4.3 . 41 .50 12 13 .38 .24 .98 .95 . 45 3.0 .38 .50 .80 .08 1.8 .38 .24 .43 2.0 .34 .49 .29 .98 .95 .82 .07 1.6 .98 14 . 38 .22 .42 .95 1.7 .31 .50 .27 .06 15 2.1 . 24 .44 .98 .95 1.4 .28 .52 .77 .05 1.5 .25 .95 3.2 . 27 16 .98 .26 .76 .81 1.4 .99 1.3 .51 17 1.3 2.8 . 43 .91 .96 .23 .51 .41 1.4 .42 1.1 .58 .88 2.9 .45 .91 18 1.0 . 97 .21 .52 .67 . 48 1.3 19 27.4 .51 .54 .40 1.0 .82 .19 67 . 56 1.2 20 .48 . 27 .91 1.0 .55 1.1 . 48 .69 .17 .62 5.1 .45 .25 21 . 48 .92 1.1 .60 .16 .56 .61 .52 1.0 .83 22 .39 .26 . 49 .92 1.1 3.0 .22 .56 .60 . 45 $\frac{1.1}{1.2}$.60 23 .40 .30 .50 6.5 $\frac{1.1}{1.2}$ $\frac{6.1}{33.1}$.40 .58 .56 .60 24 .92 .94 .28 .51 .59 .54 .37 .57 $1.\overline{2}$ 25 .30 .28 .52 .92 40.2 .61 .85 .53 26 .28 .28 .92 .51 . 47 . 49 1.2 . 63 . 33 .78 13.1 - 54 27 . 92 1.3 . 28 .27 .28 . 48 7.2 .78 . 45 5.1 2.6 .65 .46 28 .25 .74 .48 .93 2.0 .26 .71 49 6.6 .16 .66 .22 29 1.2 . 45 1.0 38.2 1.4 .09 .67 1.7 .25 .65 .57 30 .23 . 57 . 45 1.1 .94 .10 .66 .38 .26 .63 . 45 31 .22 . 45 . 26 1.1 . 81 . 67 - 60 TOTAL. 17.21 13.11 15.91 30.49 72.54 498.93 36.17 18.25 23.01 8.74 36.03 48.45 .56 3.2 2.8 .51 2.8 .98 1.2 2.5 $\frac{1.2}{9.9}$.59 3.6 .77 2.0 .28 $\frac{1.2}{3.3}$ 16.1 95.1 .60 .09 .94 1.6 .25 27.4 . 81 .05 . 26 .38 . 12 CAL YR 1987 TOTAL 512.41 MEAN 1.4 MAX 58.0 MIN .18 . 22 .91 .22 WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 DAY MAX MIN MEAN MAX MTN MEAN MAX MTN MEAN MAX MTN MEAN OCTORER NOVEMBER DECEMBER JANUARY 13.0 12.0 9.0 3.0 2.5 10.5 7.5 8.0 3.0 2.0 2.5 3.0 3.0 2.5 2 11.0 8.5 9.5 11.0 9.0 10.0 3.0 2.5 4.0 1.5 2.5 2.5 3 11.0 6.5 8.5 13.0 11.0 12.0 4.5 4.0 4.0 2.5 12.5 8.0 10.0 13.0 8.5 11.5 4.0 3.5 4.0 2.5 5 11.5 10.5 11.0 8.0 5.5 6.5 4.0 3.5 4.0 2.0 1.5 2.0 6 7 10.5 8.5 7.5 10.0 7.5 7.5 5.0 6.0 4.0 3.5 3.5 1.5 1.0 1.5 10.5 8.5 4.5 6.0 4.5 4.0 4.0 1.0 1.0 1.0 8 8.0 6.5 7.0 7.5 7.5 8.5 5.5 5.0 7.0 5.0 4.5 4.5 1.0 1.0 1.0 8.0 3.5 4.5 4.5 5.0 1.0 1.0 5.0 1.0 5.0 10 7.5 2.5 3.5 4.5 5.5 7.0 5.0 5.0 1.0 . 5 1.0 8.0 11 .5 .5 4.0 6.0 5.5 2.5 4.0 5.0 5.0 5.0 .5 .5 .5 6.0 7.5 6.5 12 9.5 5.0 7.0 4.0 3.5 4.5 5.0 5.0 5.5 13 10.0 5.0 4.0 .5 . 5 8.0 6.0 5.5 4.0 14 10.5 8.5 4.0 4.0 1.0 4.0 15 10.0 9.5 9.5 8.5 5.5 7.0 3.5 3.0 3.5 1.0 1.0 1.0 9.5 16 11.5 10.5 10.0 8.5 9.0 3.5 3.5 3.5 1.0 1.5 1.5 8.5 7.0 17 10.5 10.0 9.5 4.0 7.5 3.5 3.5 3.5 1.5 1.5 1.5 18 10.0 8.5 4.5 3.0 4.0 3.5 3.5 3.5 1.5 1.5 1.5 19 9.5 6.0 8.0 5.0 2.5 3.5 3.5 3.5 3.5 3.5 2.0 1.5 $\frac{1.5}{2.0}$ 7.5 2.5 20 6.0 6.5 1.0 3.5 2.0 1.5 21 2.0 2.0 2.0 8.0 5.0 6.5 3.0 3.5 2.0 22 7.0 5.0 5.5 2.0 6.0 4.0 1.5 3.0 3.5 3.5 3.5 2.0 2.0 23 4.0 $\frac{2.0}{2.0}$ 6.0 7.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5 3.5 2.0 $\frac{2.0}{2.0}$ 6.0 4.0 4.5 4.5 25 8.0 6.0 3.5 3.5 4.0 3.5 3.5 2.0 2.0 2.0 26 7.0 4.0 3.5 3.5 3.5 6.5 4.5 3.5 3.5 3.5 3.5 2.0 2.0 2.0 2.5 5.0 3.0 2.0 2.5 2.5 6.0 3.5 3.5 4.0 $\frac{2.5}{2.5}$ 28 8.0 5.5 6.5 4.5 3.0 3.5 29 7.5 9.0 4.5 6.0 5.0 3.5 3.0 3.5 2.5 2.5 30 5.5 5.5 7.0 4.0 3.0 3.5 3.5 3.0 3.5 2.5 2.5 2.5 2.5 8.5 3.5 3.0 3.0 2.5 2.5 MONTH 13.0 4.0 7.9 13.0 1.0 5.5 5.0 1.5 3.7 3.0 .5 1.7 149 #### 05364850 DUNCAN CREEK TRIBUTARY NEAR TILDEN, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | WATER TEMP | EKAIUKE, | DEGREES | CENT IGNADI | E, WAIEK | TEAR OCT | DBER 1987 | IO SELIE | HDEX 1960 | | | |--|--|---|--|--
---|--|--|---|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 3.0
2.5
2.5
3.0
3.5 | 2.5
2.0
2.5
2.5
3.0 | 2.5
2.5
2.5
3.0
3.0 | 8.5
7.5
9.5
12.0
11.0 | 6.0
6.5
7.0
8.5
9.5 | 7.0
7.0
8.0
10.0
10.5 | 14.5
15.5
15.5
15.0
16.5 | 10.5
11.0
11.5
11.5
12.0 | 12.5
13.0
13.5
13.5
14.0 | | 6
7
8
9
10 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 4.0
4.0
4.0
5.0
5.5 | 3.0
3.0
3.5
3.5
4.0 | 3.0
3.0
3.5
4.0
4.5 | 10.5
11.5
12.0
11.0
10.0 | 8.5
7.5
9.5
9.5
8.0 | 9.5
9.5
10.5
10.5
9.0 | 16.5
15.5
16.0
15.0 | 13.0
14.0
14.0
14.0
13.0 | 15.0
14.5
15.0
14.5
15.0 | | 11
12
13
14
15 | 2.5
2.5
2.5
2.5
3.0 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 6.0
6.0
4.0
4.0 | 5.0
4.0
4.0
3.5
3.5 | 5.5
5.0
4.0
4.0 | 11.0
11.5
11.0
9.0
9.0 | 7.5
7.5
9.0
7.0
6.5 | 9.0
9.5
10.0
8.0
7.5 | 16.0
16.5
16.5
15.5
17.0 | 13.5
14.0
13.5
13.0
15.0 | 14.5
15.0
15.0
14.5
16.0 | | 16
17
18
19
20 | 3.0
3.0
3.0
3.0
3.0 | 2.5
3.0
3.0
3.0
2.5 | 3.0
3.0
3.0
3.0
3.0 | 4.5
4.5
4.5
4.5
4.0 | 4.0
4.0
4.0
4.0 | 4.0
4.5
4.5
4.0
4.0 | 10.5
9.0
8.5
8.5
9.0 | 6.5
7.5
6.5
6.5 | 8.5
8.5
7.0
7.0 | 16.5
17.0
18.5
19.0
21.0 | 15.0
13.0
14.5
16.0
16.5 | 15.5
15.0
16.5
17.5
18.5 | | 21
22
23
24
25 | 2.5
3.0
3.0
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
3.0
2.5
2.5
2.5 | 4.0
5.0
6.5
6.5
7.0 | 4.0
4.0
5.0
5.5
5.5 | 4.0
4.5
5.5
6.0
6.0 | 9.0
8.0
7.5
9.5 | 6.5
7.0
6.5
6.5
8.0 | 7.5
7.5
7.0
8.0
9.5 | 22.0
21.5
22.0
20.0
19.5 | 18.0
19.0
18.5
18.5 | 20.0
20.5
20.5
19.5
18.0 | | 26
27
28
29
30
31 | 3.0
3.0
3.0
3.0 | 2.5
2.5
3.0
2.5 | 2.5
3.0
3.0
3.0 | 7.0
5.5
6.0
6.5
6.5
8.0 | 5.0
4.5
5.0
5.5
5.0
6.0 | 5.5
5.0
5.5
6.0
6.0
7.0 | 9.0
9.5
11.5
13.0
13.5 |
7.5
6.5
7.0
8.0
9.5 | 8.0
7.5
9.0
10.5
11.5 | 18.5
19.0
19.5
20.0
19.0 | 16.0
17.5
17.5
18.0
17.0 | 17.0
18.0
18.5
19.0
18.0
18.0 | | MONTH | 3.0 | 2.5 | 2.7 | 8.0 | 2.0 | 4.4 | 13.5 | 6.0 | 8.7 | 22.0 | 10.5 | 16.3 | | | | | | | 2.0 | | | 0.0 | 0., | 22.0 | = | | | | | | 2., | | | | 2010 | | 0., | | | | | 1
2
3
4
5 | 19.0
18.5
17.5
18.5
19.0 | JUNE 17.0 17.0 15.5 16.0 16.0 | 18.0
17.5
16.5
17.0
17.5 | 20.5
21.0
22.0
22.5
23.0 | JULY 18.5 18.5 19.5 20.0 20.5 | 19.5
20.0
20.5
21.0
22.0 | 26.5
25.5
24.0
23.0
21.5 | AUGUST 25.0 24.5 23.0 22.0 20.5 | 25.5
25.0
23.5
22.0
21.0 | 18.5
18.5
18.5
17.5
16.5 | 17.5
17.0
17.5
17.0
17.5
17.0 | 18.0
18.0
17.5
17.5 | | 2
3
4 | 18.5
17.5
18.5 | JUNE
17.0
17.0
15.5
16.0 | 18.0
17.5
16.5
17.0 | 20.5
21.0
22.0
22.5 | JULY 18.5 18.5 19.5 20.0 | 19.5
20.0
20.5
21.0 | 26.5
25.5
24.0
23.0 | AUGUST 25.0 24.5 23.0 22.0 | 25.5
25.0
23.5
22.0 | 18.5
18.5
18.5
17.5 | SEPTEMBER
17.5
17.0
17.5
17.0 | 18 0 | | 2
3
4
5
6
7
8
9 | 18.5
17.5
18.5
19.0
19.0
19.0
18.5
16.5 | JUNE 17.0 17.0 15.5 16.0 16.0 17.0 16.5 16.5 16.5 | 18.0
17.5
16.5
17.0
17.5
18.0
18.0
17.0
15.5 | 20.5
21.0
22.0
22.5
23.0
23.5
24.0
24.0 | JULY 18.5 18.5 19.5 20.0 20.5 | 19.5
20.0
20.5
21.0
22.0
22.5
23.0
23.0 | 26.5
25.5
24.0
23.0
21.5
21.0
21.5
21.0 | AUGUST 25.0 24.5 23.0 22.0 20.5 19.5 19.5 20.0 | 25.5
25.0
23.5
22.0
21.0
20.5
20.5
21.0
20.5 | 18.5
18.5
18.5
17.5
16.5
15.0
15.0 | SEPTEMBER 17.5 17.0 17.5 17.0 15.0 13.5 13.5 14.5 14.0 | 18.0
17.5
17.5
16.0
14.5
14.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 18.5
17.5
18.5
19.0
19.0
18.5
16.5
19.5
18.5
20.0
21.5
22.5 | JUNE 17.0 17.0 15.5 16.0 16.0 17.0 16.5 16.0 14.5 14.5 16.0 17.5 19.5 | 18.0
17.5
16.5
17.0
17.5
18.0
18.0
17.0
15.5
16.0 | 20.5
21.0
22.0
22.5
23.0
23.5
24.0
23.5
23.0
21.5
20.5
22.0
21.5 | JULY 18.5 18.5 19.5 20.0 20.5 21.5 22.0 22.5 22.0 21.5 20.0 18.5 19.5 20.0 | 19.5
20.0
20.5
21.0
22.0
22.5
23.0
23.0
22.5
22.5
20.5
19.5
20.5 | 26.5
25.5
24.0
23.0
21.5
21.0
21.5
21.0
21.5
21.0
21.5 | AUGUST 25.0 24.5 23.0 22.0 20.5 19.5 19.5 20.5 20.0 19.5 20.0 21.5 23.0 22.5 | 25.5
25.0
23.5
22.0
21.0
20.5
20.5
20.5
20.5
21.0
22.5
23.5
23.5
23.0 | 18.5
18.5
18.5
17.5
16.5
15.0
15.0
15.0
15.0
16.5
15.5
14.5 | SEPTEMBER 17.5 17.0 17.5 17.0 15.0 13.5 14.5 14.0 13.5 14.5 15.5 14.5 15.5 | 18.0
17.5
17.5
16.0
14.5
15.0
14.5
14.5
15.0
16.0
14.5
14.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 18.5
17.5
18.5
19.0
19.0
18.5
16.5
19.5
18.5
22.5
22.5
22.5
22.0 | JUNE 17.0 17.0 15.5 16.0 16.0 17.0 16.5 16.0 14.5 14.5 16.0 17.5 19.5 21.0 20.5 | 18.0
17.5
16.5
17.0
17.5
18.0
18.0
17.0
15.5
16.0
17.5
20.0
21.5
20.0
20.5
20.0
21.5 | 20.5
21.0
22.0
22.5
23.0
23.5
24.0
24.0
23.5
23.0
21.5
22.0
21.5
23.0
22.0
22.0 | JULY 18.5 18.5 19.5 20.0 20.5 21.5 22.0 21.5 22.0 21.5 20.0 18.5 19.5 20.0 20.5 21.5 20.0 | 19.5
20.0
20.5
21.0
22.0
22.5
23.0
23.0
22.5
20.5
20.5
21.0
21.5
22.0
21.0
21.0 | 26.5
25.5
24.0
23.0
21.5
21.0
21.5
21.0
21.5
22.5
24.0
24.0
23.5 | AUGUST 25.0 24.5 23.0 22.0 20.5 19.5 20.5 20.0 19.5 20.0 21.5 23.0 22.5 21.5 | 25.5
25.0
23.5
22.0
21.0
20.5
20.5
21.0
20.5
21.0
22.5
23.5
23.0
22.5
24.0
24.5
24.5
22.0 | 18.5
18.5
18.5
17.5
16.5
15.0
15.0
16.0
15.0
16.5
14.5
14.5
14.5
14.0 | SEPTEMBER 17.5 17.0 17.5 17.0 15.0 13.5 14.5 14.0 13.5 14.5 14.0 13.5 14.5 14.0 13.5 14.5 14.0 13.5 | 18.0
17.5
17.5
16.0
14.5
15.0
14.5
15.0
16.0
14.5
14.0
13.5
14.5
15.0
17.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 18.5
17.5
19.0
19.0
18.5
16.5
19.5
18.5
22.5
22.0
20.5
22.5
21.0
22.5
21.5
22.0
21.5
22.0
21.5
22.0 | JUNE 17.0 17.0 17.0 15.5 16.0 16.0 17.0 16.5 16.5 16.5 14.5 16.0 17.5 19.5 21.0 20.5 20.5 20.5 20.5 20.5 20.5 21.0 20.5 19.5 21.0 20.5 20.5 20.5 20.5 20.5 | 18.0
17.5
16.5
17.0
17.5
18.0
18.0
17.0
15.5
16.0
17.5
20.0
21.5
21.0
20.5
21.5
21.0
20.5
21.5
21.0
20.5
21.5
21.0
20.5
21.5
21.0
20.5
21.5
21.0 | 20.5
21.0
22.0
22.5
23.0
23.5
24.0
24.0
23.5
23.0
21.5
22.0
21.5
22.0
21.5
20.5
21.5
22.0
21.5
22.0
21.5
20.5
21.5
22.0 | JULY 18.5 18.5 19.5 20.0 20.5 21.5 22.0 21.5 22.0 21.5 20.0 18.5 19.5 20.0 20.5 21.5 20.0 20.5 21.5 20.0 20.5 | 19.5
20.0
20.5
21.0
22.0
22.5
23.0
23.0
22.5
20.5
19.5
20.5
21.0
21.0
21.0
20.0
20.0
20.0
20.5
21.0
21.5
22.5
22.5
22.5 | 26.5
25.5
24.0
23.0
21.5
21.0
21.5
21.5
21.0
21.5
22.5
24.0
23.5
25.0
25.5
22.0
22.5
22.0
21.0
21.5 | AUGUST 25.0 24.5 23.0 22.0 20.5 19.5 20.5 20.0 19.5 20.0 21.5 23.0 22.5 21.5 23.0 24.0 22.5 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21. | 25.5
25.0
23.5
22.0
21.0
20.5
20.5
21.0
20.5
21.0
22.5
23.0
22.5
24.0
24.5
23.5
22.0
21.5
21.5
23.0
21.5
23.5
23.0
21.5
23.5
23.5
23.6
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
25.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5
26.5 |
18.5
18.5
18.5
17.5
16.5
15.0
16.0
15.0
16.0
15.5
14.5
14.5
15.0
15.5
14.5
15.0
16.5
17.5
16.0
16.0
15.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0
16.0 | SEPTEMBER 17.5 17.0 17.5 17.0 15.0 13.5 14.5 14.5 14.0 13.5 14.5 14.0 13.5 14.5 14.0 13.5 14.5 15.5 14.0 13.5 14.5 15.5 14.0 13.5 13.5 | 18.0
17.5
16.0
14.5
15.0
14.5
14.5
14.5
14.5
14.5
14.5
14.5
15.0
17.0
15.5
14.5
15.0
16.0
17.0
16.0
17.0
16.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
21
22
23
24
25
25
26
27
27
27
28
27
27
27
27
27
27
27
27
27
27
27
27
27 | 18.5
17.5
19.0
19.0
19.0
18.5
16.5
19.5
22.5
22.0
20.5
22.5
22.0
21.5
22.5
21.0
22.5
21.5
22.5
22.0 | JUNE 17.0 17.0 15.5 16.0 16.0 17.0 16.5 14.5 14.5 14.5 19.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20 | 18.0
17.5
16.5
17.0
17.5
18.0
18.0
17.0
15.5
16.0
17.5
20.0
21.5
21.0
20.5
21.0
20.5
21.5
21.0
20.5
21.5
21.5
21.0 | 20.5
21.0
22.6
22.5
23.0
23.5
24.0
23.5
23.0
21.5
22.0
21.5
23.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0
21.5
22.0 | JULY 18. 5 18. 5 19. 5 20. 0 20. 5 21. 5 22. 0 21. 5 22. 0 21. 5 20. 0 21. 5 20. 0 20. 5 19. 5 20. 0 20. 5 19. 0 20. 5 19. 0 20. 5 20. 5 20. 0 20. 5 | 19.5
20.0
20.5
21.0
22.0
22.5
23.0
23.0
22.5
22.5
20.5
21.0
21.0
21.0
21.0
20.0
20.0
21.5
21.0
21.5
21.0
21.5
21.0 | 26.5
25.5
24.0
23.0
21.5
21.0
21.5
21.0
21.5
22.5
24.0
24.0
24.0
24.0
22.5
25.5
22.5
22.5
22.5
22.5
22.0
21.0
21.0 | AUGUST 25.0 24.5 23.0 22.0 20.5 19.5 19.5 20.0 19.5 20.0 21.5 23.0 22.5 21.5 23.0 22.5 21.5 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 | 25.5
25.0
23.5
22.0
21.0
20.5
21.0
20.5
21.0
22.5
23.5
23.5
23.5
24.0
22.5
23.5
22.5
24.5
23.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 18.5
18.5
18.5
17.5
16.5
15.0
15.0
15.0
16.0
15.0
15.5
14.5
17.0
18.0
16.5
17.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0
18.0 | SEPTEMBER 17.5 17.0 17.5 17.0 15.0 13.5 14.5 14.5 14.0 13.5 14.5 14.5 14.5 14.5 14.5 15.5 14.0 13.5 14.5 15.5 14.0 13.5 13.5 | 18.0
17.5
16.0
14.5
15.0
14.5
15.0
14.5
14.5
14.5
14.5
15.0
17.0
16.0
17.0
15.5
14.5
15.0
16.0
17.0
16.0
17.0
16.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17 | YEAR MAXIMUM 26.5 MINIMUM .5 MEAN 10.7 ### 05364850 DUNCAN CREEK TRIBUTARY NEAR TILDEN, WI--CONTINUED OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | t | | 1
2
3
4
5 | | | | | | | 6.8
6.1
6.4
4.2
6.4 | 3.9
3.4
2.9
2.1
3.0 | 5.4
4.3
4.1
3.0
4.4 | 7.0
6.9
7.7
8.0
8.4 | 4.9
4.9
5.3
5.5
6.1 | 5.8
5.9
6.3
6.6
7.2 | | 6
7
8
9
10 | | | | | | | 5.7
5.9
5.5
5.0
6.1 |
3.4
3.2
1.5
2.9
3.2 | 4.4
4.4
3.2
3.7
4.4 | 8.9
9.0
8.7
9.0
9.3 | 6.6
6.5
5.8
6.3
6.2 | 7.5
7.5
7.1
7.4
7.4 | | 11
12
13
14
15 | 9.1 |

6.6 |

8.2 | 8.5
9.4
9.1
8.7 | 4.9
4.4
5.1
4.5 | 6.4
6.6
6.3
5.9 | 6.0
5.6
4.6
5.4
4.1 | 3.2
2.2
2.5
2.7
2.3 | 4.2
3.4
3.5
3.9
3.3 | 8.5
7.6
8.7
9.0
7.9 | 5.1
5.0
5.8
6.1
6.0 | 7.0
6.2
7.2
7.2
6.7 | | 16
17
18
19
20 | 10.5
11.4
12.5
12.1
14.9 | 6.9
7.3
6.0
5.2
5.4 | 9.1
9.1
8.9
8.6
9.7 | 7.8
8.4
12.6
11.6
7.6 | 2.0
5.4
6.9
4.4
4.6 | 4.9
6.8
9.0
7.6
5.8 | 4.2
4.6
5.3
5.9
6.0 | 2.0
2.4
3.4
4.1
3.5 | 3.0
3.6
4.2
4.8
4.8 | 7.1
6.9
5.9
7.1
6.0 | 5.1
4.6
2.0
3.3
4.3 | 6.2
5.8
4.1
4.2
5.1 | | 21
22
23
24
25 | 14.2

12.0
15.5 | 5.7

5.1
5.4 | 8.9

7.9
9.2 | 7.2
7.0
7.1
7.0
7.3 | 4.6
4.7
4.2
3.6
4.4 | 5.5
5.6
5.3
5.3
5.5 | 6.2
5.3
6.6
7.2
7.5 | 3.0
3.7
4.1
4.4
4.7 | 4.4
4.5
5.0
5.7
5.9 | 7.2
6.2
7.3
7.8
7.6 | 5.1
5.6
6.0
5.9 | 6.0
5.7
6.4
6.8
6.6 | | 26
27
28
29
30
31 | 14.2 | 5.9

 | 9.9 | 8.4
7.8
8.0
7.8
6.6
7.7 | 4.5
4.0
4.4
4.0
3.5
3.6 | 6.2
5.7
5.6
5.3
4.9
5.4 | 7.7
7.7
8.3
9.0
7.6
7.9 | 5.1
4.9
5.5
6.2
5.6
3.6 | 6.0
6.2
6.9
7.3
6.7 | 7.3
7.5
8.9
8.3
8.1 | 4.3
5.1
6.5
6.6
5.7 | 6.2
6.4
7.6
7.1
6.8 | | MONTH | | | | | | | 9.0 | 1.5 | 4.7 | 9.3 | 2.0 | 6.5 | #### 05364850 DUNCAN CREEK TRIBUTARY NEAR TILDEN, WI--CONTINUED #### PRECIPITATION QUANTITY PERIOD OF RECORD. -- May 1987 to current year. GAGE. -- Micrologger. TOTAL 2.08 --- REMARKS. -- Records good. EXTREMES FOR CURRENT YEAR. -- Maximum daily rainfall, 2.65 in., Sept. 19. #### RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 SUM VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP .00 .00 .01 .00 .00 .00 .52 .00 .00 .00 .01 ---___ .00 .41 .13 3 .01 ---------------.00 .00 .00 .00 . 49 ___ ___ ___ 4 5 .00 .00 .00 .00 .00 .65 .06 ---___ ___ ___ ___ .02 .06 .00 .00 .00 .00 .00 6 7 .02 ___ ------___ .00 .00 .00 .00 .00 .00 ------.02 ---___ ---.00 .00 .00 .00 .28 .00 ___ ___ ___ ___ 8 .02 .00 .00 .00 1.08 .00 1.21 . 17 .00 .01 ---___ .00 .03 10 .00 ---___ ------___ .00 .00 .00 .00 .00 .00 .00 ---___ ___ ___ .00 11 12 ___ .00 .00 0.0 0.0 .32 .41 .00 ---------------.00 .00 .00 .00 .00 .01 ___ ___ ___ ___ ___ .01 .00 .00 .00 ---.00 ___ ___ ___ ---.00 .08 .00 .00 .00 .00 ___ ___ ---___ 1.10 15 .00 .01 .00 .61 .00 .00 16 ---___ ___ ___ .00 .00 .00 .00 .00 17 .15 ---___ ___ ---___ .00 .00 .00 .00 .00 .00 ___ ___ ------___ 18 .03 .00 .00 .00 .00 .00 . 88 19 .00 2.65 ------___ .00 .01 .00 .00 20 .00 ---___ .00 .00 .00 .04 .00 .00 21 22 23 .00 .00 .00 ___ ---___ ------.00 .00 .00 ---------------___ .00 . 05 .21 .00 .00 .48 .00 ___ ___ .00 .00 . 04 .01 ___ .00 .00 .07 .00 ---___ ---25 .00 ---___ ___ .00 .00 .00 .00 .01 26 .00 . 45 .00 .00 .00 .00 ---.06 ------------. 38 .02 .00 .00 28 .00 ---___ ___ ___ ---.00 .02 .69 .00 .00 .00 29 .01 ___ ---___ ___ ---.00 .00 .00 .00 .00 ___ ---.00 ---------30 31 0.0 . 00 .00 .00 .00 .11 .00 .00 ---------___ --- 1.22 1.38 1.28 1.19 4.21 152 #### CHIPPEWA RIVER BASIN #### 05365500 CHIPPEWA RIVER AT CHIPPEWA FALLS, WI $\text{LOCATION.--Lat } 44^{\circ}55^{\circ}37^{\circ}, \text{ long } 91^{\circ}24^{\circ}33^{\circ}, \text{ in Lot 1, sec.} 12, \text{ T.28 N., R.9 W., Chippewa County, Hydrologic Unit } 07050005, \text{ on right bank at Chippewa Falls, 1.0 mi downstream from Duncan Creek.}$ DRAINAGE AREA. -- 5,650 mi². PERIOD OF RECORD.--June 1888 to September 1983, October 1986 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 785: 1934(M). WSP 1508: 1897, 1905, 1918(M), 1924(M). WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 798.46 ft above National Geodetic Vertical Datum of 1929. Prior to January 1914, nonrecording gage, and January 1914 to June 19, 1932, water-stage recorder at site 1 mi upstream at different datum. June 19, 1932, to current year, water-stage recorder at present site and datum. REMARKS.--Estimated daily discharges: Mar. 7-17. Records good except those for estimated daily discharges, which are fair. Considerable regulation by Moose Lake, Lake Chippewa, Rest Lake, Flambeau Flowage, and Lake Wissota Reservoirs. Diurnal fluctuation caused by hydroelectric plant 1.1 mi upstream. AVERAGE DISCHARGE.--97 years (1889-1983, 1987-88), $5,091 \text{ ft}^3/\text{s}$. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 102,000 $\mathrm{ft^3/s}$, Sept. 1, 1941, gage height, 24.8 ft; minimum 22 $\mathrm{ft^3/s}$, Apr. 2, 1934, gage height, 0.63 ft; minimum daily, 40 $\mathrm{ft^3/s}$, Feb. 4, 1917. EXTREMES OUTSIDE OF PERIOD OF RECORD.--A stage of 26.94 ft occurred Sept. 10, 1884, site and datum in use June 1932. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14,900 $\rm ft^3/s$, Apr. 7, gage height, 9.30 ft; minimum daily, 279 $\rm ft^3/s$, June 25. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 1.3 | 254 | 4.0 | 2,800 | |-----|-------|-----|--------| | 1.5 | 325 | 6.0 | 6,400 | | 2.0 | 585 | 9.0 | 14,000 | | 3.0 | 1 440 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|---------------------------|--|--------------------------------------|---|-----------------------------------|--|--|--------------------------------------| | 1 | 1900 | 1930 | 6800 | 2460 | 2250 | 1460 | 11900 | 3090 | 2290 | 1630 | 2010 | 1800 | | 2 | 719 | 3530 | 4450 | 2290 | 1500 | 3390 | 12200 | 3200 | 2220 | 542 | 1460 | 2120 | | 3 | 637 | 3050 | 5120 | 1300 | 2160 | 2110 | 11900 | 2490 | 1280 | 377 | 1830 | 330 | | 4 | 340 | 3460 | 3610 | 2590 | 1890 | 2080 | 11900 | 2530 | 470 | 627 | 1610 | 700 | | 5 | 1790 | 3170 | 2200 | 2290 | 2100 | 2290 | 11900 | 1800 | 1160 | 2040 | 1740 | 1710 | | 6 | 1100 | 4670 | 1860 | 3080 | 853 | 1480 | 12300 | 3140 | 2680 | 2140 | 771 | 1480 | | 7 | 2400 | 2830 | 4590 | 2730 | 788 | 2580 | 13900 | 1270 | 1910 | 2780 | 1820 | 1370 | | 8 | 1820 | 3310 | 4260 | 2440 | 1980 | 3700 | 13100 | 1200 | 993 | 770 | 2540 | 2640 | | 9 | 1570 | 2160 | 4070 | 1220 | 1600 | 5650 | 11800 | 3480 | 529 | 362 | 1530 | 1580 | | 10 | 583 | 2600 | 4940 | 1410 | 1550 | 4400 | 9420 | 3600 | 883 | 493 | 1370 | 610 | | 11 | 1240 | 1690 | 6860 | 4490 | 1740 | 4900 | 7150 | 5180 | 631 | 878 | 2370 | 522 | | 12 | 2480 | 3450 | 5330 | 2860 | 1950 | 6200 | 6780 | 5050 | 327 | 433 | 2070 | 1000 | | 13 | 1060 | 2480 | 5020 | 3330 | 532 | 6000 | 8730 | 4010 | 2540 | 1260 | 312 | 1130 | | 14 | 1160 | 1080 | 4910 | 2780 | 711 | 3400 | 6570 | 4300 | 2640 | 845 | 569 | 819 | | 15 | 1560 | 1190 | 4010 | 2640 | 1880 | 4650 | 8370 | 2360 | 700 | 3020 | 3050 | 879 | | 16 | 3340 | 3310 | 3420 | 1530 | 2430 | 2250 | 6590 | 3030 | 569 | 419 | 3320 | 2020 | | 17 | 2940 | 3500 | 3580 | 2380 | 1340 | 3100 | 6920 | 3630 | 472 | 992 | 2650 | 303 | | 18 | 4150 | 4440 | 3570 | 3210 | 1020 | 2960 | 5450 | 1270 | 821 | 2510 | 1290 | 2200 | | 19 | 5510 | 4510 | 1720 | 2630 | 1770 | 1900 | 4790 | 2990 | 605 | 2090 | 1430 | 2670 | | 20 | 4130 | 6070 | 2310 | 2300 | 692 | 1570 | 4940 | 2930 | 1360 | 945 | 1560 | 2920 | | 21 | 3530 | 3670 | 3530 | 1570 | 350 | 3350 | 3060 | 1080 | 1380 | 1660 | 1310 | 2550 | | 22 | 2960 | 2750 | 3830 | 1640 | 1340 | 2820 | 3440 | 951 | 951 | 933 | 2380 | 3750 | | 23 | 2950 | 3620 | 4380 | 607 | 1640 | 3300 | 2920 | 2400 | 1420 | 310 | 303 | 2870 | | 24 | 3500 | 3910 | 3180 | 787 | 1370 | 4580 | 2720 | 2640 | 1280 | 687 | 1090 | 387 | | 25 | 1110 | 3130 | 2670 | 2310 | 1260 | 6600 | 3000 | 1170 | 279 | 1680 | 2020 | 1040 | | 26
27
28
29
30
31 | 3940
2810
3700
2970
3410
2060 | 2280
3340
3610
3070
3930 | 2980
2260
3530
2560
3270
2130 | 1980
1880
1920
1430
1100
1260 | 845
353
457
1700 | 8030
8100
8510
12400
11300
9830 | 2970
3880
4270
3810
3250 | 1470
1390
1350
1150
626
2870 | 463
695
1430
1040
846 | 1490
1180
1160
1490
299
295 | 1980
512
516
1030
1110
1990 | 2540
2070
1870
1840
1310 | | TOTAL | 73369 | 95740 | 116950 | 66444 | 40051 | 144890 | 219930 | 77647 | 34864 | 36337 | 49543 | 49030 | | MEAN | 2367 | 3191 | 3773 | 2143 | 1381 | 4674 | 7331 | 2505 | 1162 | 1172 | 1598 | 1634 | | MAX | 5510 | 6070 | 6860 | 4490 | 2430 | 12400 | 13900 | 5180 | 2680 | 3020 | 3320 | 3750 | | MIN | 340 | 1080 | 1720 | 607 | 350 | 1460 | 2720 | 626 | 279 | 295 | 303 | 303 | CAL YR 1987 TOTAL 932641 MEAN 2555 MAX 9350 MIN 317 WTR YR 1988 TOTAL 1004795 MEAN 2745 MAX 13900 MIN 279 #### 05365707 NORTH FORK EAU CLAIRE RIVER NEAR THORP, WI LOCATION.--Lat 44°58'25", long 90°50'57", in NW 1/4 NE 1/4 sec.27, T.29 N., R.4 W., Clark County, Hydrologic Unit 07050006, on left bank 15 ft downstream from town road, 0.3 mi downstream from Goggle-Eye Creek, and 2.6 mi northwest of Thorp. DRAINAGE AREA. -- 51.0 mi². PERIOD OF RECORD. -- April 1986 to current year. GAGE.--Water-stage recorder. Elevation of gage
is 1,115 ft above National Geodetic Vertical Datum of 1929, from REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records good except those for ice-affected period and those below 1.0 ${\rm ft}^3/{\rm s}$, which are poor. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,050 ft³/s, Sept. 22, 1986, gage height, 10.13 ft, from rating curve extended above 2,500 ft³/s on basis of step-backwater measurement of peak flow; minimum, 0.02 ft³/s, July 30, 31, 1988, gage height, 1.11 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,030 $\rm ft^3/s$, Mar. 25, gage height, 6.60 ft; minimum discharge, 0.02 $\rm ft^3/s$, July 30,31, gage height, 1.11 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 15 to Mar. 23.) | 1.11 | 0.02 | 1.36 | 2.0 | 2.4 | 69 | |------|------|------|-----|-----|-------| | 1.15 | .11 | 1.4 | 3.2 | 3.0 | 154 | | 1.20 | .35 | 1.5 | 6.0 | 3.5 | 258 | | 1.26 | .74 | 1.7 | 14 | 4.0 | 400 | | 1.32 | 1.4 | 2.0 | 31 | 5.0 | 800 | | | | | | 6.0 | 1,430 | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | | |------------|-------|------|-----|---------|---------|------|---------|------|----|-----------|------|--| | | | | | Mπ | EAN VAI | JUES | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|-------------------------------------|-------------------------------------|---|---|--|--|---|--------------------------------------|--------------------------------------|--|--------------------------------------| | 1
2
3
4
5 | 3.6
3.7
2.8
2.5
2.1 | 13
13
25
56
45 | 86
52
35
28
22 | 8.0
7.2
6.6
6.0
5.4 | 6.8
5.8
5.0
4.6
4.5 | 8.6
30
64
50
35 | 88
80
124
122
107 | 24
19
15
12 | 2.9
2.9
4.1
4.3
3.4 | .40
.35
.32
.26
.23 | .08
.07
.04
.28
.30 | . 44
. 32
. 35
. 38
. 41 | | 6
7
8
9
10 | 2.2
2.7
2.5
2.6
2.6 | 29
23
22
18
14 | 16
13
13
92
119 | 4.9
4.5
4.5
5.0
5.8 | 4.4
4.5
4.7
4.8
4.7 | 52
86
140
250
400 | 191
135
91
64
53 | 8.8
7.8
26
116
113 | 2.5
2.0
1.9
1.7 | .18
.15
.18
.30
.29 | .18
.11
.59
.65
.46 | .35
.34
.26
.20 | | 11
12
13
14
15 | 2.4
2.4
2.9
3.0
5.1 | 11
10
9.8
9.7
9.5 | 95
74
51
35
25 | 7.0
7.2
6.4
5.8
6.8 | 4.6
4.6
4.5
4.9
5.8 | 290
190
130
86
64 | 45
34
28
23
18 | 65
37
25
20
15 | 1.2
1.0
.91
.76
.73 | . 24
. 19
. 29
. 40
. 93 | .35
.36
.36
.41 | .15
.15
.15
.14 | | 16
17
18
19
20 | 29
75
75
47
30 | 11
62
172
131
67 | 20
18
17
14 | 8.0
7.4
6.6
5.8
5.8 | 7.0
8.4
9.8
8.8
7.4 | 50
39
32
26
21 | 15
13
12
10
9.0 | 13
11
8.9
8.0
7.2 | .66
.66
.66
.70 | .85
.76
.53
.42
.39 | .25
.19
.15
.22
.25 | .17
.34
1.1
1.5
3.0 | | 21
22
23
24
25 | 25
22
24
26
27 | 44
25
60
92
71 | 14
13
13
12
12 | 6.0
5.8
5.4
5.0
4.8 | 7.0
7.4
6.8
6.6
6.2 | 17
14
33
342
1140 | 7.9
7.5
12
20
18 | 8.3
6.7
5.6
4.7
4.0 | .66
.63
.52
.50
.44 | .34
.30
.29
.25 | .25
.42
.94
.75
.62 | 2.0
2.4
1.9
1.4 | | 26
27
28
29
30
31 | 22
20
20
17
15
12 | 49
37
37
146
140 | 11
10
10
9.6
9.0
8.6 | 4.7
4.6
4.5
4.9
5.6
8.0 | 6.2
6.4
6.8
8.0 | 526
236
152
152
117
104 | 15
54
75
50
33 | 3.1
2.8
2.4
2.0
3.3
4.0 | . 35
. 35
. 46
. 51
. 42 | .15
.15
.11
.08
.05 | . 46
. 49
. 50
. 51
. 46
. 46 | 1.1
1.0
.96
1.1
1.1 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 529.1
17.1
75
2.1
.33
.39 | 1452.0
48.4
172
9.5
.95 | 961.2
31.0
119
8.6
.61 | 184.0
5.94
8.0
4.5
.12
.13 | 177.0
6.10
9.8
4.4
.12
.13 | 4876.6
157
1140
8.6
3.08
3.56 | 1554.4
51.8
191
7.5
1.02
1.13 | 608.6
19.6
116
2.0
.38
.44 | 40.05
1.33
4.3
.35
.03 | 9.60
.31
.93
.03
.01 | 11.50
.37
.94
.04
.01 | 24.21
.81
3.0
.11
.02 | CAL YR 1987 WTR YR 1988 TOTAL 9520.7 MEAN 26.1 MAX 376 MIN 1.1 CFSM .51 IN. 6.94 TOTAL 10428.26 MEAN 28.5 MAX 1140 MIN .03 CFSM .56 IN. 7.61 #### 05368000 HAY RIVER AT WHEELER, WI LOCATION.--Lat 45°02'52", long 91°54'39", in SW 1/4 sec.25, T.30 N., R.13 W., Dunn County, Hydrologic Unit 07050007, on right bank 25 ft downstream from highway bridge in Wheeler, 1.8 mi upstream from Otter Creek, and 2.4 mi downstream from South Fork Hay River. DRAINAGE AREA. -- 418 mi². PERIOD OF RECORD .-- October 1950 to current year. REVISED RECORDS. -- WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 889.30 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 25, 1951, nonrecording gage. REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records good except those for ice-affected period, which is fair. AVERAGE DISCHARGE. -- 38 years, 308 ft³/s, 10.01 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,600 ft³/s, Mar. 31, 1967, gage height, 15.04 ft, from rating curve extended above 9,000 ft³/s; minimum, 55 ft³/s, Mar. 13, 1954, gage height, 2.32 ft, result of freezeup. EXTREMES OUTSIDE OF PERIOD OF RECORD. -- Maximum stage since 1915, 16.6 ft April 1934, from floodmarks. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*): | DATE | 1 | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | |------|---|------|-----------------------------------|------------------|------|------|-----------------------------------|------------------| | Mar. | 9 | 1000 | *1,140 | *6.52 | | | | | Minimum discharge, 127 ft³/s, July 30, 31, gage height, 2.89 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Mar. 14-18; stage-discharge relation affected by ice Dec. 16 to Mar. 4.) | 2.9 | 128 | 5.0 | 590 | |-----|-----|-----|-------| | 3.0 | 143 | 6.0 | 930 | | 4.0 | 330 | 7.0 | 1,360 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---------------------------------|--|--|--------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | 1 | 207 | 223 | 294 | 220 | 240 | 310 | 334 | 233 | 178 | 151 | 135 | 144 | | 2 | 205 | 231 | 269 | 210 | 220 | 320 | 325 | 227 | 182 | 149 | 132 | 151 | | 3 | 204 | 235 | 259 | 210 | 210 | 320 | 372 | 223 | 197 | 146 | 134 | 149 | | 4 | 205 | 241 | 241 | 210 | 210 | 310 | 455 | 220 | 194 | 145 | 152 | 151 | | 5 | 203 | 235 | 241 | 210 | 210 | 278 | 431 | 217 | 186 | 142 | 170 | 148 | | 6 | 199 | 230 | 248 | 210 | 210 | 294 | 389 | 211 | 179 | 139 | 156 | 145 | | 7 | 201 | 227 | 243 | 210 | 210 | 448 | 359 | 207 | 174 | 137 | 148 | 143 | | 8 | 206 | 225 | 243 | 210 | 210 | 757 | 341 | 220 | 172 | 135 | 153 | 140 | | 9 | 205 | 221 | 303 | 210 | 210 | 1120 | 328 | 288 | 168 | 141 | 154 | 138 | | 10 | 202 | 219 | 391 | 210 | 210 | 937 | 315 | 342 | 167 | 143 | 146 | 137 | | 11 | 201 | 220 | 340 | 210 | 210 | 751 | 303 | 288 | 166 | 139 | 150 | 137 | | 12 | 215 | 222 | 311 | 210 | 210 | 640 | 296 | 253 | 163 | 135 | 171 | 137 | | 13 | 209 | 222 | 290 | 210 | 210 | 466 | 290 | 239 | 160 | 143 | 169 | 138 | | 14 | 202 | 221 | 271 | 210 | 220 | 384 | 284 | 228 | 159 | 152 | 159 | 137 | | 15 | 212 | 218 | 260 | 220 | 220 | 363 | 278 | 222 | 157 | 146 | 154 | 136 | | 16 | 272 | 222 | 270 | 230 | 220 | 340 | 271 | 221 | 156 | 144 | 150 | 148 | | 17 | 310 | 245 | 250 | 230 | 230 | 325 | 267 | 213 | 155 | 140 | 145 | 173 | | 18 | 282 | 292 | 260 | 230 | 240 | 318 | 261 | 208 | 154 | 140 | 142 | 191 | | 19 | 250 | 270 | 260 | 230 | 260 | 311 | 256 | 208 | 159 | 139 | 143 | 239 | | 20 | 237 | 250 | 250 | 230 | 250 | 302 | 253 | 213 | 168 | 140 | 144 | 449 | | 21 | 227 | 235 | 250 | 230 | 220 | 288 | 249 | 212 | 160 | 145 | 143 | 569 | | 22 | 226 | 237 | 240 | 220 | 270 | 290 | 245 | 208 | 158 | 146 | 144 | 344 | | 23 | 229 | 232 | 240 | 210 | 250 | 304 | 251 | 206 | 154 | 144 | 153 | 280 | | 24 | 229 | 231 | 240 | 210 | 240 | 348 | 259 | 202 | 152 | 141 | 153 | 246 | | 25 | 225 | 227 | 230 | 210 | 250 | 689 | 252 | 197 | 150 | 139 | 147 | 228 | | 26
27
28
29
30
31 | 222
221
219
218
217
217 | 225
223
231
310
332 | 210
220
230
230
220
220 | 210
210
210
220
230
250 | 270
290
300
300 | 810
580
430
389
372
351 | 243
254
263
251
240 | 194
191
188
187
186
181
| 146
144
154
169
158 | 136
134
132
129
128
131 | 144
144
144
142
141
140 | 216
210
209
229
235 | | TOTAL | 6877 | 7152 | 8024 | 6730 | 6800 | 14145 | 8915 | 6833 | 4939 | 4351 | 4602 | 6097 | | MEAN | 222 | 238 | 259 | 217 | 234 | 456 | 297 | 220 | 165 | 140 | 148 | 203 | | MAX | 310 | 332 | 391 | 250 | 300 | 1120 | 455 | 342 | 197 | 152 | 171 | 569 | | MIN | 199 | 218 | 210 | 210 | 210 | 278 | 240 | 181 | 144 | 128 | 132 | 136 | | CFSM | .53 | .57 | .62 | .52 | .56 | 1.09 | .71 | .53 | .39 | .34 | . 36 | . 49 | | IN. | .61 | .64 | .71 | .60 | .61 | 1.26 | .79 | .61 | .44 | .39 | . 41 | . 54 | CAL YR 1987 TOTAL 91212 MEAN 250 MAX 645 MIN 183 CFSM .60 IN. 8.12 WTR YR 1988 TOTAL 85465 MEAN 234 MAX 1120 MIN 128 CFSM .56 IN. 7.61 #### 05369000 RED CEDAR RIVER AT MENOMONIE, WI LOCATION.--Lat $44^{\circ}53'02''$, long $91^{\circ}55'57''$, in NW 1/4 sec.26, T.28 N., R.13 W., Dunn County, Hydrologic Unit 07050007, on right bank at Menomonie, 900 ft downstream from powerplant of Northern States Power Co., and 1,000 ft downstream from Wilson Creek. DRAINAGE AREA. -- 1,770 mi². PERIOD OF RECORD.--June 1907 to September 1908, May 1913 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 780 ft above National Geodetic Vertical Datum of 1929 (Northern States Power Co. bench mark). Prior to Sept. 3, 1908, nonrecording gage at site 1 mi downstream at different datum. May 9, 1913, to Sept. 30, 1923, water-stage recorder at same site at datum 0.42 ft lower than present datum. REMARKS.--No estimated daily discharges. Records good. Flow regulated by powerplants at Menomonie and Cedar Falls. AVERAGE DISCHARGE. -- 76 years, 1,275 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 40,000 ft³/s, Apr. 4, 1934, gage height, 16.0 ft, from floodmarks, from rating curve extended above 27,000 ft³/s on basis of computed flow over Cedar Falls Dam 6 mi upstream; minimum, less than 10 ft³/s, July 3, 1985, gage height, 0.46 ft, result of temporary power-plant shutdown at request of Dunn County Sheriff's Department. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,160 $\rm ft^3/s$, Apr. 5, gage height, 3.97 ft; minimum, 21 $\rm ft^3/s$, Dec. 1, gage height, 0.66 ft; minimum daily, 476 $\rm ft^3/s$, July 22. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 1.4 | 416 | 3.0 | 2,350 | |-----|-------|-----|-------| | 2.0 | 987 | 4.0 | 4,220 | | 2.5 | 1.600 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | MEAN VALUES | | | | | | | | | | | | |----------------------------------|--|--------------------------------------|--|---|---------------------------|--|--------------------------------------|--|---------------------------------|--|--|------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1010 | 1180 | 1440 | 843 | 1000 | 1290 | 1680 | 1020 | 783 | 650 | 542 | 645 | | 2 | 796 | 1150 | 1440 | 752 | 959 | 1600 | 1660 | 1070 | 848 | 624 | 553 | 658 | | 3 | 885 | 1260 | 1260 | 813 | 988 | 1290 | 1760 | 973 | 929 | 642 | 543 | 617 | | 4 | 823 | 1290 | 1190 | 959 | 947 | 1270 | 2020 | 1010 | 1050 | 630 | 562 | 719 | | 5 | 929 | 1230 | 1060 | 758 | 966 | 1320 | 1940 | 823 | 841 | 632 | 603 | 610 | | 6 | 856 | 1060 | 1230 | 866 | 855 | 1360 | 1830 | 988 | 874 | 629 | 655 | 706 | | 7 | 929 | 1160 | 1230 | 774 | 860 | 1580 | 1800 | 1030 | 895 | 633 | 651 | 630 | | 8 | 914 | 1130 | 1320 | 835 | 1020 | 2100 | 1870 | 1050 | 813 | 631 | 896 | 668 | | 9 | 965 | 1150 | 1540 | 790 | 771 | 2460 | 1570 | 1210 | 698 | 595 | 653 | 617 | | 10 | 880 | 1090 | 1770 | 813 | 868 | 3070 | 1560 | 1690 | 700 | 590 | 639 | 594 | | 11 | 974 | 1200 | 1780 | 828 | 801 | 2990 | 1510 | 1440 | 743 | 558 | 660 | 598 | | 12 | 649 | 1140 | 1550 | 934 | 906 | 2710 | 1260 | 1030 | 664 | 531 | 712 | 618 | | 13 | 708 | 1240 | 1400 | 768 | 765 | 1880 | 1310 | 987 | 705 | 539 | 737 | 608 | | 14 | 1330 | 1330 | 1160 | 845 | 796 | 2020 | 1170 | 1000 | 709 | 537 | 742 | 603 | | 15 | 1200 | 1280 | 1280 | 979 | 871 | 1560 | 1080 | 906 | 690 | 665 | 731 | 616 | | 16 | 1250 | 1190 | 1200 | 861 | 971 | 1640 | 1120 | 993 | 667 | 615 | 675 | 694 | | 17 | 1500 | 1840 | 997 | 931 | 846 | 1410 | 1020 | 922 | 612 | 610 | 634 | 804 | | 18 | 1420 | 1680 | 1050 | 930 | 913 | 1360 | 930 | 939 | 614 | 593 | 642 | 1050 | | 19 | 1390 | 1460 | 967 | 1040 | 991 | 1440 | 958 | 921 | 756 | 579 | 608 | 1280 | | 20 | 1210 | 1580 | 1140 | 1040 | 859 | 1190 | 1040 | 880 | 624 | 536 | 603 | 1530 | | 21 | 984 | 1330 | 1120 | 1020 | 919 | 1360 | 851 | 912 | 668 | 513 | 591 | 2320 | | 22 | 1100 | 1110 | 1240 | 1070 | 880 | 1260 | 1090 | 882 | 668 | 476 | 595 | 1790 | | 23 | 1440 | 1210 | 1340 | 1010 | 953 | 1230 | 1020 | 878 | 637 | 567 | 600 | 1480 | | 24 | 1300 | 1230 | 1100 | 900 | 899 | 1530 | 1120 | 884 | 734 | 541 | 600 | 1260 | | 25 | 1120 | 1150 | 1250 | 1000 | 899 | 2100 | 1020 | 808 | 621 | 552 | 602 | 1140 | | 26
27
28
29
30
31 | 1210
1240
1200
1130
1140
1070 | 1200
1180
1450
1410
1650 | 977
647
1120
1150
1160
1150 | 994
879
1000
1010
967
1030 | 916
881
960
1090 | 2700
2420
1940
1910
1660
1560 | 1080
1200
1420
1270
1050 | 878
779
968
846
814
873 | 614
609
627
606
621 | 549
604
521
548
547
543 | 608
608
617
602
655
601 | 930
920
1080
1030
1010 | | TOTAL | 33552 | 38560 | 38258 | 28239 | 26350 | 55210 | 40209 | 30404 | 21620 | 17980 | 19720 | 27825 | | MEAN | 1082 | 1285 | 1234 | 911 | 909 | 1781 | 1340 | 981 | 721 | 580 | 636 | 927 | | MAX | 1500 | 1840 | 1780 | 1070 | 1090 | 3070 | 2020 | 1690 | 1050 | 665 | 896 | 2320 | | MIN | 649 | 1060 | 647 | 752 | 765 | 1190 | 851 | 779 | 606 | 476 | 542 | 594 | CAL YR 1987 TOTAL 397348 MEAN 1089 MAX 2410 MIN 550 WTR YR 1988 TOTAL 377927 MEAN 1033 MAX 3070 MIN 476 # 05369500 CHIPPEWA RIVER AT DURAND, WI (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) (NATIONAL RADIOCHEMICAL SURVEILLANCE NETWORK STATION) LOCATION.--Lat 44°37'40", long 91°58'10", in SW 1/4 sec.21, T.25 N., R.13 W., Pepin County, Hydrologic Unit 07050005, on left bank in Durand, 75 ft downstream from bridge on U.S. Highway 10, and 9.5 mi downstream from Red Cedar River. DRAINAGE AREA. -- 9,010 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1928 to current year. REVISED RECORDS.--WSP 785: 1930, 1934(M). WSP 875: 1930 (monthly and yearly runoff). WSP 925: 1938. WSP 1508: 1929(M), 1932. WDR WI-82-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 694.59 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 9, 1930, nonrecording gage at bridge 400 ft downstream at same datum. REMARKS.--Estimated daily discharges: June 27, 28, July 11, 12, 18, 24, 25, 31, Aug. 1, and ice period listed in rating table below. Records good except for estimated daily discharges and July 3-5, 10, 13-15, 26, 28, and Aug. 2, which are fair. Flow regulated by powerplants, Moose Lake, Lake Chippewa, Rest Lake, Flambeau Flowage, and Lake Wissota on Chippewa and Flambeau Rivers. Gage-height telemeter and data-collection platform at station. AVERAGE DISCHARGE.--60 years, 7,655 ft³/s. EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 123,000 ${\rm ft}^3/{\rm s}$, Apr. 2, 1967, gage height, 16.93 ft; minimum observed, 1,020 ${\rm ft}^3/{\rm s}$, Nov. 24, 1950, gage height, 0.12 ft. EXTREMES OUTSIDE OF PERIOD OF RECORD.--A stage of 18.4 ft, from flood marks (levels by U.S. Army Corps of Engineers) occurred Sept. 12, 1884, and has not been exceeded since. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 16,900 ft³/s, Apr. 9, gage height, 6.54 ft; maximum gage height, 6.79 ft (backwater from ice); minimum observed, 1,690 ft³/s, Aug. 1, but may have been less during July, gage height, 0.45 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Sept. 21-30; stage-discharge relation affected by ice Jan. 2 to Mar. 10.) | 0.4 | 1,690 | 4.0 | 9,150 | |-----|-------|-----|--------| | 0.7 | 2,170 | 6.0 | 15,100 | | 1.0 | 2,650 | 8.0 | 22,400 | | 2.0 | 4.360 | | | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|----------------------------------|--|--------------------------------------|--|--|---|--|--------------------------------------| | 1 | 3060 | 4100 | 7180 | 4460 | 5200 | 4800 | 13200 | 5980 | 4150 | 2220 | 1700 | 2850 | | 2 | 3530 | 4110 | 8890 | 4400 | 5200 | 5600 | 14800 | 6300 | 4070 | 2670 | 2090 | 3220 | | 3 | 2600 | 5250 | 7170 | 4200 | 5000 | 7000 | 14700 | 5870 | 4280 | 2030 | 2830 | 2870 | | 4 | 2450 | 5580 | 6920 | 3900 | 5000 | 8200 | 14800 | 4650 | 3350 | 1950 | 2940 | 2220 | | 5 | 2590 | 5370 | 5790 | 4100 | 5000 | 7800 | 15300 | 5280 | 2780 | 1920 | 3000 | 2030 | | 6 | 2790 | 5330 | 4500 | 5000 | 4900 | 7400 | 15200 | 3820 | 2570 | 2420 | 2530 | 2830 | | 7 | 2770 | 6240 | 4700 | 4900 | 4600 | 7200 | 15800 | 4700 | 3690 |
3330 | 2150 | 2770 | | 8 | 3750 | 5070 | 6440 | 4800 | 4300 | 7000 | 16400 | 3890 | 3510 | 3600 | 3360 | 2700 | | 9 | 3510 | 5350 | 6930 | 4700 | 4200 | 7600 | 16200 | 4390 | 3430 | 2230 | 4140 | 3290 | | 10 | 3280 | 4570 | 6340 | 4200 | 4300 | 9800 | 13700 | 5970 | 2420 | 1990 | 2800 | 2910 | | 11 | 2480 | 4590 | 8620 | 3800 | 4300 | 11100 | 11000 | 7600 | 2280 | 1800 | 2730 | 2070 | | 12 | 2580 | 4250 | 8560 | 4400 | 4400 | 10600 | 10100 | 8050 | 2270 | 1700 | 3460 | 1930 | | 13 | 3730 | 4940 | 8760 | 5400 | 4500 | 10600 | 10600 | 7350 | 2210 | 1960 | 3260 | 2010 | | 14 | 2510 | 4450 | 7070 | 5200 | 3900 | 8870 | 10200 | 6180 | 3040 | 2080 | 2380 | 2300 | | 15 | 3540 | 3190 | 7650 | 5000 | 3600 | 8450 | 9450 | 5960 | 3780 | 2020 | 2090 | 1970 | | 16 | 3740 | 3520 | 6590 | 4900 | 4500 | 7030 | 9260 | 4910 | 2730 | 3580 | 3580 | 2230 | | 17 | 5430 | 5640 | 5700 | 4800 | 5600 | 6330 | 9610 | 5460 | 2240 | 2260 | 4180 | 2770 | | 18 | 5690 | 6260 | 5630 | 4900 | 5200 | 6060 | 7570 | 5180 | 2150 | 1900 | 3630 | 2550 | | 19 | 6630 | 6800 | 5950 | 5400 | 5400 | 6070 | 7560 | 4160 | 2210 | 3480 | 2770 | 3550 | | 20 | 6510 | 6040 | 4240 | 6200 | 5000 | 4750 | 6710 | 4400 | 2320 | 3000 | 2780 | 5270 | | 21 | 5980 | 6240 | 5270 | 6000 | 4400 | 4530 | 6680 | 4600 | 2270 | 2800 | 2420 | 6100 | | 22 | 6000 | 6190 | 5360 | 5600 | 3900 | 5860 | 5170 | 3720 | 2620 | 2290 | 2780 | 5630 | | 23 | 5030 | 5390 | 5970 | 4700 | 3500 | 6210 | 5790 | 3330 | 2800 | 2190 | 2930 | 5720 | | 24 | 4990 | 5910 | 6450 | 4600 | 4100 | 6040 | 5510 | 3880 | 2510 | 1900 | 2460 | 4960 | | 25 | 5450 | 5890 | 5450 | 4700 | 4700 | 8100 | 5120 | 4230 | 2740 | 1800 | 2270 | 3230 | | 26
27
28
29
30
31 | 3580
5690
4950
5570
4770
5430 | 5540
4690
5580
6450
5900 | 4990
5120
4780
5640
4990
5150 | 4900
5200
5000
4900
4500
4900 | 5000
5200
4800
4700
 | 12400
14500
14500
14000
15600
13500 | 5160
5880
6400
7480
6940 | 3240
3360
3390
3050
3050
2680 | 2120
e1900
e1900
2330
2280 | 2240
2480
2510
2190
2300
e1800 | 2960
2810
2040
1910
2050
2490 | 3500
4320
3920
3960
3890 | | TOTAL | 130610 | 158430 | 192800 | 149660 | 134400 | 267500 | 302290 | 148630 | 82950 | 72640 | 85520 | 99570 | | MEAN | 4213 | 5281 | 6219 | 4828 | 4634 | 8629 | 10080 | 4795 | 2765 | 2343 | 2759 | 3319 | | MAX | 6630 | 6800 | 8890 | 6200 | 5600 | 15600 | 16400 | 8050 | 4280 | 3600 | 4180 | 6100 | | MIN | 2450 | 3190 | 4240 | 3800 | 3500 | 4530 | 5120 | 2680 | 1900 | 1700 | 1700 | 1930 | CAL YR 1987 TOTAL 1726490 MEAN 4730 MAX 14300 MIN 2220 WTR YR 1988 TOTAL 1825000 MEAN 4986 MAX 16400 MIN 1700 # 05369500 CHIPPEWA RIVER AT DURAND, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) (NATIONAL RADIOCHEMICAL SURVEILLANCE NETWORK STATION) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1964-65, 1967, 1973 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE OCT 1987 13 DEC 16 MAR 1988 15 | CHL
II
CI
TIME | NST. CI
UBIC CC
FEET DU
PER AN
ECOND (US
0061) (00 | PE-
IFIC
DN- F
ICT- (ST
ICE A | PH TE
FAND- A
ARD W
ITS) (D | MPER-
TURE
VATER
DEG C) (F | TUR- OX
BID-
ITY S | B
M
P
YGEN,
DIS-
OLVED
MG/L) | ARO- OXY
ETRIC I
RES- SO
SURE (I
(MM (OF SA
HG) AT | DIS- FOLVED FOR CENT UNITED TO THE CONTROL OF CENT UNITED TO TO THE CENT UNITED TO THE CENTROL OF C | OLI-
ORM,
ECAL,
.7
M-MF
OLS./
0 ML)
1625) | |--------------------------------------|---|---|--|---|---|--|--|--|--|--| | APR
25 | 1150 489 | 90 | 126 | 8.10 | 10.0 | 1.4 | 12.0 | 760 | 107 | 26 | | JUN
07 | 1345 413 | | 140 | 8.30 | 24.0 | 2.8 | 9.6 | 761 | 114 | 60 | | AUG
23 | 1205 343 | 20 | 154 | 8.70 | 22.0 | 3.2 | 10.5 | 763 | 120 | 500 | | DATE | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVEI
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | | | OCT 1987
13 | 760 | 71 | 9 | 18 | 6.4 | 5.2 | 13 | 0.3 | 1.5 | | | DEC
16 | 95 | 61 | 8 | 15 | 5.7 | 4.7 | 14 | 0.3 | 1.7 | | | MAR 1988
15 | 67 | 63 | 9 | 16 | 5.6 | 4.6 | 13 | | 2.8 | | | APR
25 | 170 | 53 | 9 | 13 | 5.0 | 3.9 | 13 | 0.2 | 1.7 | | | JUN
07 | 1200 | 61 | 6 | 15 | 5.7 | 5.4 | 16 | | 1.4 | | | AUG 23 | K1800 | 73 | 10 | 18 | 6.9 | 5.2 | 13 | | 1.2 | | | DATE | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | CAR-BONATE WATER DIS IT FIELD MG/L AS CO3 (00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | | | OCT 1987
13 | 73 | | 60 | 11 | 8.4 | 0.20 | 4.9 | 98 | 95 | ı | | DEC
16 | 62 | | 50 | 19 | 7.9 | 0.20 | 9.7 | 102 | 98 | | | MAR 1988
15 | 62 | | 51 | 15 | 6.7 | 0.10 | 12 | 104 | 100 | | | APR
25 | 51 | | 42 | 16 | 5.8 | 0.10 | 8.0 | 84 | 83 | | | JUN
07 | 64 | | 52 | 14 | 6.5 | 0.30 | 5.1 | 86 | 88 | | | AUG
23 | 74 | 5 | 62 | 10 | 6.2 | 0.10 | 6.7 | 96 | 93 | | | DATE | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N) | PHOS-PHOROUS TOTAL (MG/L AS P) (00665) | PHOS-
PHOROUS | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | | OCT 1987
_13 | 0.13 | 1240 | 0.540 | 0.010 | 0.010 | 1.2 | 0.090 | 0.030 | 0.020 | | | DEC
16 | 0.14 | 1900 | 0.540 | 0.080 | 0.070 | 0.50 | 0.040 | 0.030 | 0.020 | | | MAR 1988
15 | 0.14 | 2180 | 0.820 | 0.260 | | | 0.110 | | 0.050 | | | APR 25 | 0.11 | 1110 | 0.530 | <0.010 | | | 0.080 | 0.030 | 0.020 | | | JUN | | | | | | | | | | | | 07
AUG | 0.12 | 968 | 0.330 | <0.010 | | | 0.070 | 0.040 | <0.010 | | | 23 | 0.13 | 886 | 0.240 | <0.010 | 0.080 | 1.0 | 0.150 | 0.050 | 0.040 | | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). #### 05369500 CHIPPEWA RIVER AT DURAND, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE OCT 1987 | TIME | SECOND
(00061) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) |
CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER
DIS-
SOLVE
(UG/L
AS CU
(01040 | DIS- D SOLVED (UG/L) AS FE) | |----------------|---------------|--|---|---|---|--|--|---|---|---|--| | MAR 1988
15 | 1200 | 7750 | 30 | <1 | 22 | <0.5 | <1 | 1 | <3 | | 3 330 | | APR
25 | 1150 | 4890 | 20 | <1 | 15 | <0.5 | <1 | 1 | <3 | | 2 220 | | AUG
23 | 1205 | 3420 | <10 | 1 | 15 | <0.5 | 2 | <1 | <3 | | 2 14 | | DATE | | DIS- I
SOLVED SO
(UG/L (I
AS PB) AS | THIUM NE DIS- D DLVED SO UG/L (U S LI) AS | DIS- D
DLVED SO
G/L (U
MN) AS | CURY DE US- D LVED SO G/L (U HG) AS | DLYB-
CNUM, NIC
DIS- DI
DLVED SO
IG/L (U | KEL, NI
S- D
LVED SO
G/L (U
NI) AS | UM, T
FIS- D
LVED SO
G/L (U
SE) AS | IUM, DI
IS- D
LVED SO
G/L (U
SR) AS | IS-
LVED
G/L
V) | ZINC,
DIS-
SOLVED
(UG/L
AS ZN)
01090) | | OCT 1987 | | | | - | | | | | 20 | | 40 | | 13
MAR 1988 | | <5
45 | <4 | | <0.1 | <10 | <1 | <1 | 38 | <6 | <3 | | 15
APR | | <5 | <4 | | <0.1 | <10 | <1 | <1 | 33 | <6 | 22 | | 25
AUG | | <5
<5 | <4 | | <0.1 | <10 | <1 | <1 | 27 | <6 | 5 | | 23 | | <5 | <4 | 2 | <0.1 | <10 | <1 | <1 | 38 | <6 | <3 | | 3 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | GROSS
ALPHA,
DIS-
SOLVED
(UG/L
AS
U-NAT)
(80030) | GROSS
ALPHA,
SUSP.
TOTAL
(UG/L
AS
U-NAT)
(80040) | GROSS
BETA,
DIS-
SOLVED
(PCI/L
AS
CS-137)
(03515) | GROSS
BETA,
SUSP.
TOTAL
(PCI/L
AS
CS-137)
(03516) | GROSS
BETA,
DIS-
SOLVED
(PCI/L
AS SR/
YT-90)
(80050) | GROSS
BETA,
SUSP.
TOTAL
(PCI/L
AS SR/
YT-90)
(80060) | RADIU
226,
DIS-
SOLVED
RADON
METHO
(PCI/L
(09511 | ,
D
) | | | | 1030 | 4670 | <0.4 | <0.4 | 1.5 | <0.4 | 1.3 | <0.4 | 0.0 | 3 | | JUN :
07 | 1988
· · · | 1345 | 4170 | 0.4 | <0.4 | 1.8 | <0.4 | 1.5 | <0.4 | 0.0 | 4 | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER -
ATURE
WATER
(DEG C)
(00010) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | | | | | | OCT 1987
13 | 1030 | 4670 | 164 | 8.0 | | | | | | | | | DEC
03
16 | 1215
1150 | 7150
6900 | 182
164 | 2.5
0.0 | | | | | | | | | JAN 1988
26 | 1405 | 5100 | 195 | 0.0 | | | | | | | | | MAR
15 | 1200 | 7750 | 162 | 0.5 | 23 | 481 | 30 | | | | | | APR
25 | 1150 | 4890 | 126 | 10.0 | 13 | 172 | 53 | | | | | | JUN
07 | 1345 | 4170 | 140 | 24.0 | 15 | 169 | 85 | | | | | | JUL
26 | 1100 | 2180 | 194 | 24.5 | | | | | | | | , | AUG
23
30 | 1205
1350 | 3420
1940 | 154
227 | 22.0
24.0 | 16
 | 148 | 81 | | | 159 #### 05369945 EAU GALLE RIVER AT LOW-WATER BRIDGE AT SPRING VALLEY, WI LOCATION.--Lat 44°52'02", long 92°15'07", in SE 1/4 NW 1/4 sec.31, T.28 N., R.15 W., St. Croix County, Hydrologic Unit 07050005, on right bank 50 ft downstream from Low-Water Bridge on Coulee Road, approximately 550 ft upstream from French Creek and at Spring Valley. DRAINAGE AREA. -- 47.9 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--November 1981 to September 1983, May 1986 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 960 ft, from topographic map. REMARKS.--No estimated daily discharges. Records good below 300 ${\rm ft}^3/{\rm s}$, poor above 300 ${\rm ft}^3/{\rm s}$, and fair October through February. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,000 ft³/s, Sept. 21, 1986, gage height, 8.80 ft, from rating curve extended above 140 ft³/s on basis of indirect measurement of peak flow; minimum discharge, 5.1 ft³/s, Mar. 7, 1982, gage height, 2.21 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $411 \text{ ft}^3/\text{s}$, Mar. 25, gage height, 3.77 ft, from rating curve extended above $140 \text{ ft}^3/\text{s}$ on basis of indirect measurement of peak flow; minimum discharge, $3.1 \text{ ft}^3/\text{s}$, Feb. 20. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Oct. 1 to Mar. 1.) | 0ct | . 1 to Ma | r. 1 (19 | 45) | Mar. | 1 (2000) | to Sept. | 30 | |-----|-----------|----------|-----|------|----------|----------|-----| | 1.4 | 6.5 | 2.0 | 32 | 1.2 | 5.9 | 2.5 | 79 | | 1.6 | 12 | 2.3 | 56 | 1.4 | 10 | 2.9 | 148 | | 1.8 | 20 | 2.5 | 79 | 1.8 | 22 | 3.5 | 311 | | | | | | 2.1 | 39 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|-----------------------------------|--|---|--|---|--|---|--|---|--|------------------------------------| | 1
2
3
4
5 | 9.6
9.8
9.9
10
9.6 | 9.7
9.8
11
10
9.8 | 15
13
12
12
12 | 9.0
9.7
9.2
7.9
7.5 | 7.7
7.8
8.1
7.8
7.7 | 66
155
60
26
20 | 15
15
29
32
22 | 10
9.7
9.7
9.6
9.5 | 9.2
9.5
9.4
9.2
9.1 | 8.7
8.7
8.8
8.8
8.6 | 8.3
8.0
8.3
9.7
8.8 | 8.1
8.1
7.8
8.0
7.8 | | 6
7
8
9
10 | 9.5
9.6
9.1
9.9
9.6 | 9.8
9.8
10
9.8
9.5 | 13
13
14
62
39 | 8.0
8.0
8.9
8.2
8.0 | 8.0
8.5
8.1
7.9
7.6 | 43
133
262
84
46 | 18
16
14
13
12 | 9.5
9.5
14
198
62 | 9.0
9.0
8.7
8.5
8.5 | 8.6
8.5
8.6
9.2
9.0 | 8.3
8.6
11
9.1
8.5 | 7.6
7.6
7.6
7.6
7.4 | | 11
12
13
14
15 | 9.9
9.8
9.5
9.3 | 9.6
9.6
9.7
9.6
9.6 | 24
23
16
13
12 | 9.0
9.1
8.3
8.6
9.3 | 7.6
7.8
7.8
8.2
7.8 | 39
37
20
18
17 | 12
12
12
12
12 | 18
13
12
11 | 8.6
8.5
8.4
8.4 | 8.7
8.6
9.4
8.9
8.7 | 9.1
8.9
8.5
8.3
8.0 | 7.5
7.6
7.4
7.3
7.2 | | 16
17
18
19
20 | 8.9
8.3
8.8
8.1
7.6 | 10
11
13
13
12 | 12
12
12
11
11 | 9.4
9.2
9.0
9.3
9.7 | 7.9
7.6
7.7
7.8
7.2 | 15
15
15
15
15 | 11
11
11
11
11 | 11
10
10
11
10 | 8.4
8.4
8.5
10 | 8.5
8.4
8.4
8.3
8.6 | 8.0
7.9
7.8
7.8
7.8 | 8.3
8.0
72
12
135 | | 21
22
23
24
25 | 7.6
8.0
7.9
8.2
8.3 | 12
13
14
14
15 | 11
11
11
11
10 | 8.8
9.1
9.0
9.1
8.7 | 7.2
7.7
7.1
7.0
7.0 | 14
14
25
63
206 | 10
10
11
10
10 | 10
10
10
9.9
9.8 | 8.7
8.7
8.3
8.8
8.9 | 8.7
8.3
8.3
8.3
8.2 | 7.8
8.2
8.5
7.9
7.7 | 22
13
10
9.7
9.6 | | 26
27
28
29
30
31 | 8.6
9.0
9.0
9.3
9.2
9.6 | 15
16
19
43
26 | 9.7
10
10
9.9
10
9.5 | 8.4
8.5
8.5
9.1
9.0
8.6 | 7.4
7.2
8.0
11 | 48
21
19
22
19
16 | 9.7
11
13
11
10 | 9.9
10
9.9
9.7
9.4
9.4 | 8.9
8.7
8.8
8.8 | 8.0
8.2
8.1
8.0
8.1
8.4 | 7.6
7.7
7.8
7.6
7.6
7.6 | 9.4
9.2
9.2
9.7
9.2 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 281.5
9.08
10
7.6
.19
.22 | 393.3
13.1
43
9.5
.27 | 464.1
15.0
62
9.5
.31
.36 | 272.1
8.78
9.7
7.5
.18
.21 | 226.2
7.80
11
7.0
.16
.18 | 1568
50.6
262
14
1.06
1.22 | 405.7
13.5
32
9.7
.28
.32 | 566.5
18.3
198
9.4
.38
.44 | 266.2
8.87
11
8.3
.19
.21 | 264.6
8.54
9.4
8.0
.18
.21 | 256.7
8.28
11
7.6
.17
.20 | 460.9
15.4
135
7.2
.32 | CAL YR 1987 TOTAL 5536.2 MEAN 15.2 MAX 573 MIN 6.7 CFSM .32 IN. 4.30 WTR YR 1988 TOTAL 5425.8 MEAN 14.8 MAX 262 MIN 7.0 CFSM .31 IN. 4.21 ### 05369945 EAU GALLE RIVER AT LOW-WATER BRIDGE AT SPRING VALLEY, WI--CONTINUED WATER-QUALITY RECORDS PERIOD OF DAILY RECORD.-WATER TEMPERATURE: March 1987 to current year. INSTRUMENTATION. -- Water-quality monitor since March 24, 1987. REMARKS.--Record was rated good, except for May and June, which were rated poor. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum temperature, 27.5°C June 19, 20, 1988; minimum, 0.0°C for several days in February and March, 1988. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum temperature, 27.5°C June 19, 20; minimum, 0.0°C for several
days in February and WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|-------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|---------------------------------|-------------------------------|---------------------------------|-----------------------|----------------------|----------------| | | | OCTOBER | | | NOVEMBER | ₹ | | DECEMBER | t . | | JANUARY | | | 1
2
3
4
5 | 12.5
11.5
10.0
11.0
10.5 | 11.0
9.0
8.0
8.5
10.5 | 11.5
10.5
9.0
10.0
10.5 | 8.0
9.5
11.0
11.0
8.5 | 7.5
8.0
10.0
8.5
6.0 | 8.0
9.0
10.5
10.5
7.0 | 2.0
2.5
3.0
1.5
2.0 | 1.5
1.5
1.5
.5 | 2.0
2.0
2.5
1.0 | .5
.5
.5
1.0 | .5
.5
.5
.5 | .5
.5
.5 | | 6
7
8
9
10 | 10.0
9.0
8.5
8.5
8.0 | 9.5
8.0
7.5
7.5
7.0 | 10.0
9.0
8.0
8.0
7.5 | 7.0
6.5
7.5
5.5
4.0 | 5.5
5.5
5.5
4.0
3.0 | 6.0
6.0
7.0
5.0
3.5 | 3.0
3.5
4.5
4.5
2.5 | 2.0
3.0
3.5
1.0 | 2.5
3.0
4.0
2.5
1.5 | | | | | 11
12
13
14
15 | 7.5
8.0
9.0
10.0 | 5.5
6.0
6.5
8.5
9.5 | 6.5
7.0
7.5
9.0
9.5 | 4.0
5.0
5.5
5.5
7.0 | 2.5
3.0
4.5
4.0
5.5 | 3.5
4.0
5.0
5.0
6.0 | 3.0
2.5
1.5
1.5 | 2.0
1.0
1.0
1.0 | 2.5
1.5
1.0
1.0 | | | | | 16
17
18
19
20 | 11.0
10.5
9.0
8.0
7.5 | 10.0
9.0
8.0
7.0
6.0 | 10.5
10.0
8.5
7.5
7.0 | 8.5
8.5
5.0
4.5
3.0 | 7.0
5.0
4.0
3.5
1.5 | 8.0
7.0
4.5
4.0
2.0 | 1.0
.5
1.0
1.0 | .5
.5
.5
.5 | 1.0
.5
.5
.5 | | | | | 21
22
23
24
25 | 6.5
6.5
6.5
7.5
7.0 | 5.5
6.0
6.0
6.0
5.5 | 6.0
6.0
6.5
6.5 | 2.5
4.0
4.5
4.0
4.5 | 1.0
2.5
4.0
3.0
3.5 | 2.0
3.0
4.5
3.5
4.0 | 1.0
2.0
2.0
2.5
2.0 | .5
1.0
1.0
2.0
.5 | 1.0
1.5
1.5
2.0
1.5 | | | | | 26
27
28
29
30
31 | 7.0
7.0
7.0
7.5
7.5
7.5 | 6.0
5.5
6.0
5.5
6.0
5.5 | 6.5
6.0
6.5
6.5
6.5 | 4.0
4.5
4.5
4.5
2.0 | 3.5
4.0
4.0
2.0
1.5 | 4.0
4.0
4.0
3.0
1.5 | 1.0
.5
1.0
1.0
1.0 | .5
.5
.5
.5
.5 | .5
.5
.5
1.0
1.0 | 1.0
.5
1.0 | .5
.5
.5 | .5
.5
.5 | | MONTH | 12.5 | 5.5 | 8.0 | 11.0 | 1.0 | 5.2 | 4.5 | . 5 | 1.4 | | | | CHIDDENA DIVED DACIN 161 WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |---|--|---|--|--|--|--|--|---|--|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | 2.0
4.0
3.0
2.5
3.5 | .0
.5
.0
.5 | .5
1.5
1.5
1.0 | 9.0
7.5
9.0
12.0
11.0 | 5.0
6.5
7.0
7.5
9.5 | 7.0
7.5
8.0
10.0
10.5 | 18.0
19.0
19.0
19.0
20.0 | 11.5
11.5
11.5
12.0
12.0 | 14.5
15.0
15.0
15.5
16.0 | | 6
7
8
9
10 | .5
.5
1.0
.5
.5 | .5
.0
.5
.0 | .5
.5
.5
.5 | 3.5
5.0
5.0
2.0
2.0 | 1.0
1.5
1.5
.0 | 2.0
3.0
3.0
1.0 | 11.5
12.5
15.0
12.5
10.0 | 7.5
7.5
9.0
9.0
7.0 | 9.5
10.0
12.0
10.5
8.5 | 19.5
19.0
18.0
16.0
19.0 | 12.5
15.0
15.5
12.0
11.0 | 16.5
17.5
17.0
13.5
14.5 | | 11
12
13
14
15 | .5
.5
.5
.5 | .0
.5
.5
.5 | .5
.5
.5
.5 | | | | 11.0
12.0
12.0
9.5
10.0 | 6.0
7.0
8.5
7.0
5.5 | 8.5
9.5
10.0
8.0
7.5 | 18.0
18.5
18.0
14.0
17.0 | 11.5
11.5
10.5
10.0
11.5 | 15.0
15.0
14.5
12.0
14.0 | | 16
17
18
19
20 | 1.5
1.0
1.0
1.0 | .5
.5
.5
.0 | 1.0
.5
.5
.5 | 4.5
5.0
5.0
3.5
2.5 | 1.0
2.5
2.5
2.0
1.0 | 3.0
4.0
3.5
3.0
1.5 | 11.0
10.0
9.0
9.5
10.0 | 6.5
7.5
5.0
5.0
6.5 | 8.5
9.0
7.0
7.0
8.0 | 14.0
17.0
19.0
18.0
21.0 | 11.0
9.0
10.5
13.0
13.5 | 12.0
12.0
14.0
16.0
17.5 | | 21
22
23
24
25 | 1.0
1.5
2.0
2.5
3.0 | .0
.5
.5
1.0 | .5
.5
1.0
1.5
2.0 | 3.5
5.5
7.0
5.0
5.0 | .5
2.5
4.5
2.5
.5 | 2.0
4.0
5.5
3.5
2.5 | 9.0
8.0
7.5
10.5 | 6.0
6.0
5.5
5.0
8.0 | 7.5
7.5
6.5
7.5
9.0 | 22.5
21.0
22.5
20.5
19.0 | 17.0
18.0
17.0
17.0 | 19.5
19.5
19.5
19.0
16.0 | | 26
27
28
29
30
31 | 3.0
2.0
.5
1.0 | .5
.0
.0
.0 | 1.5
.5
.0
.5 | 4.0
5.5
5.0
6.5
7.5
8.0 | 1.5
1.0
4.5
3.5
3.0
5.5 | 2.5
3.0
5.0
5.0
5.0
6.5 | 9.0
9.5
12.5
15.5
16.0 | 7.0
5.5
6.5
8.0
9.5 | 8.0
7.5
9.5
11.0
12.0 | 22.5
23.5
24.5
25.5
25.5
26.5 | 16.0
18.5
19.0
20.0
20.5
20.5 | 18.5
21.0
21.5
22.5
23.0
23.5 | | MONTH | 3.0 | .0 | .7 | | | | 16.0 | 5.0 | 8.7 | 26.5 | 9.0 | 16.8 | | HOMIN | 3.0 | .0 | . / | | | | 10.0 | 3.0 | 0.7 | 20.3 | ۶.۰ | 10.0 | | nonth
 3.0 | JUNE | .7 | | JULY | | 10.0 | AUGUST | 0.7 | 20.3 | SEPTEMBER | | | 1
2
3
4
5 | 26.0
25.0
21.5
23.5
25.0 | | 23.5
21.5
19.0
20.0
21.5 | 18.5
18.0
19.5
21.0
21.5 | | 17.0
17.0
17.5
18.5
20.0 | 22.5
23.0
22.5
21.5
21.0 | | 21.0
22.0
21.5
20.5
20.0 | 16.0
15.5
14.5
15.5 | | | | 1
2
3
4 | 26.0
25.0
21.5
23.5 | JUNE 20.5 19.5 17.0 17.5 | 23.5
21.5
19.0
20.0 | 18.5
18.0
19.5
21.0 | JULY 15.0 16.0 16.0 16.5 | 17.0
17.0
17.5
18.5 | 22.5
23.0
22.5
21.5 | AUGUST 20.0 20.5 20.5 20.0 | 21.0
22.0
21.5
20.5 | 16.0
15.5
14.5
15.5 | SEPTEMBER
14.5
13.5
13.5
13.5 | 15.5
14.5
14.0
14.5 | | 1
2
3
4
5
6
7
8
9 | 26.0
25.0
21.5
23.5
25.0
25.5
25.5
24.0
19.0 | JUNE 20.5 19.5 17.0 17.5 18.5 19.5 19.5 19.5 15.5 | 23.5
21.5
19.0
20.0
21.5
22.5
22.0
21.0
17.5 | 18.5
18.0
19.5
21.0
21.5
22.5
23.5
22.0
21.0 | JULY 15.0 16.0 16.5 18.5 19.5 20.0 21.0 19.5 | 17.0
17.0
17.5
18.5
20.0
21.5
21.5
20.0 | 22.5
23.0
22.5
21.5
21.0
21.0
21.0
21.0 | AUGUST 20.0 20.5 20.5 20.0 19.0 18.5 19.0 19.5 18.5 | 21.0
22.0
21.5
20.5
20.0
20.0
20.5
20.0
19.5 | 16.0
15.5
14.5
15.5
14.0
14.0
14.0
14.5
13.5 | SEPTEMBER 14.5 13.5 13.5 13.5 12.5 11.5 11.5 11.5 13.0 11.5 | 15.5
14.5
14.5
13.5
12.5
13.0
13.5 | | 1
2
3
4
5
6
7
8
9
10 | 26.0
25.0
21.5
23.5
25.0
25.5
24.0
19.0
20.0
21.5
22.5
23.5 | JUNE 20.5 19.5 17.0 17.5 18.5 19.5 19.5 19.5 14.5 16.0 17.0 19.0 20.0 | 23.5
21.5
19.0
20.0
21.5
22.5
22.0
21.0
17.5
17.0
18.5
19.5
20.5
22.5 | 18.5
18.0
19.5
21.0
21.5
22.5
23.5
22.0
21.0
21.0 | JULY 15.0 16.0 16.0 16.5 18.5 19.5 20.0 21.0 19.5 18.5 17.5 16.5 18.0 18.5 | 17.0
17.0
17.5
18.5
20.0
21.5
21.5
20.0
20.0 | 22.5
23.0
22.5
21.5
21.0
21.0
21.0
21.0
20.0
20.5
21.5
20.5
21.5 | AUGUST 20.0 20.5 20.5 20.0 19.0 18.5 19.0 19.5 18.5 17.5 17.5 18.5 19.0 18.5 | 21.0
22.0
21.5
20.5
20.0
20.0
20.5
20.0
19.5
19.0
20.0
20.0
20.0 | 16.0
15.5
14.5
15.5
14.0
14.0
14.0
14.5
13.5
13.5
15.0
13.5 | SEPTEMBER 14.5 13.5 13.5 13.5 12.5 11.5 11.5 11.5 11.5 11.5 11.5 1 | 15.5
14.5
14.0
14.5
13.5
12.5
13.5
12.5
12.5
12.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 26.0
25.0
21.5
23.5
25.0
25.5
24.0
19.0
20.0
21.5
22.5
24.0
25.5
24.0
25.5
24.0
25.5
24.0
25.5
24.0
25.5
25.5 | JUNE 20.5 19.5 17.0 17.5 18.5 19.5 19.5 15.5 14.5 16.0 17.0 19.0 20.0 20.0 21.5 17.5 18.5 22.0 | 23.5
21.5
19.0
20.0
21.5
22.5
22.0
21.0
17.5
17.0
18.5
19.5
20.5
22.5
22.0
20.0
20.0
21.0 | 18.5
18.0
19.5
21.0
21.5
22.5
23.5
22.0
21.0
21.0
21.0
21.0
21.0
21.5
22.0
21.0
21.5 | JULY 15.0 16.0 16.5 18.5 19.5 20.0 21.0 19.5 18.5 17.5 16.5 18.0 18.5 19.5 21.0 19.5 | 17.0
17.0
17.5
18.5
20.0
21.0
21.5
21.5
20.0
20.0
18.5
19.5
20.0
21.5 | 22.5
23.0
22.5
21.5
21.0
21.5
22.0
21.0
20.0
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | AUGUST 20.0 20.5 20.5 20.0 19.0 18.5 19.5 17.5 17.5 18.5 19.0 18.5 19.5 18.5 19.7 19.5 18.5 | 21.0
22.0
21.5
20.5
20.0
20.0
20.5
20.0
19.5
19.0
20.0
20.0
21.0
21.5
20.0 | 16.0
15.5
14.5
15.5
14.0
14.0
14.5
13.5
13.5
15.5
14.0
12.5 | SEPTEMBER 14.5 13.5 13.5 13.5 12.5 11.5 11.5 11.5 11.5 12.0 13.5 11.5 12.0 12.5 11.5 12.0 14.5 | 15.5
14.5
14.0
14.5
13.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 26.0
25.0
21.5
23.5
25.0
25.5
24.0
19.0
21.5
22.5
24.0
22.5
24.0
22.5
24.5
24.5
24.5
24.5
24.5
25.5 | JUNE 20.5 19.5 17.0 17.5 18.5 19.5 19.5 15.5 14.5 16.0 17.0 19.0 20.0 20.0 21.5 18.5 22.0 21.0 | 23.5
21.5
19.0
20.0
21.5
22.5
22.0
21.0
17.5
17.0
18.5
19.5
20.5
22.5
20.0
20.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 | 18.5
18.0
19.5
21.0
21.5
22.5
23.5
22.0
21.0
21.0
21.0
22.5
24.0
23.5
24.0
23.5
24.0
23.5
24.0
23.5
24.0 | JULY 15.0 16.0 16.5 18.5 19.5 20.0 21.0 19.5 18.5 17.5 18.0 19.5 19.5 18.5 17.5 18.0 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.8 | 17.0
17.0
17.5
18.5
20.0
21.5
21.5
20.0
20.0
18.5
20.0
21.5
20.0
21.5
20.0
21.5
20.0
21.5 | 22.5
23.0
22.5
21.5
21.0
21.0
21.0
21.0
20.0
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | AUGUST 20.0 20.5 20.5 20.0 19.0 18.5 19.0 19.5 18.5 17.5 17.5 18.5 19.0 18.5 17.0 17.0 17.6 16.0 | 21.0
22.0
21.5
20.5
20.0
20.0
20.5
20.0
19.5
19.0
20.0
20.0
21.5
20.0
21.5
20.0
21.5
20.0 | 16.0
15.5
14.5
15.5
14.0
14.0
14.5
13.5
15.5
15.0
12.5
14.0
12.5
14.0
14.5
14.0
14.5
14.0
14.5 | SEPTEMBER 14.5 13.5 13.5 13.5 12.5 11.5 11.5 11.5 11.5 12.0 13.5 11.5 12.0 12.5 12.5 12.5 12.5 13.0 14.5 12.5 12.5 13.0 14.5 12.5 12.5 12.5 12.5 13.0 14.5 12.5 | 15.5
14.5
14.0
14.5
13.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5
12 | #### 05370000 EAU GALLE RIVER AT SPRING VALLEY, WI LOCATION.--Lat 44°51'10", long 92°14'17", in SE 1/4 NE 1/4 sec.6, T.27 N., R.15 W., Pierce County, Hydrologic Unit 07050005, on right bank 770 ft downstream from flood control dam, 1,500 ft upstream from Mines Creek, at Spring Valley. DRAINAGE AREA. -- 64.1 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- March 1944 to current year. REVISED RECORDS.--WDR WI-67-1: 1966. WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder and v-notch sharp-crested weir. Datum of gage is 900.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to July 31, 1957, nonrecording gage at site 850 ft downstream at datum of 912.45 ft above National Geodetic Vertical Datum of 1929. Aug. 1, 1957, to June 6, 1966, nonrecording gage at downstream site at datum of 910.45 ft above National Geodetic Vertical Datum of 1929. June 7, 1966, to Oct. 31, 1968, nonrecording gage at downstream site at datum of 909.45 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: None. Records good. Low flow slightly regulated and high flow completely regulated by flood-control dam 770 ft upstream. AVERAGE DISCHARGE.--20 years (1969-88), 33.4 ft³/s, since operation of flood-control reservoir. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,000 ft³/s, Apr. 15, 1954, gage height, 12.50 ft, datum then in use; no flow Aug. 11-15, 1971, flow shut off at flood-control dam upstream due to request by Wisconsin
Department of Natural Resources for eradication of rough fish to improve sport fishing; minimum observed prior to dam construction period, 5.8 ft³/s, Sept. 25, 27, 28, 30, 1949. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Maximum stage since at least 1894, that of Sept. 18, 1942, 19.98 ft, with datum at 909.45 ft above National Geodetic Vertical Datum of 1929, from floodmarks, discharge, 33,000 ft³/s estimated by U.S. Army Corps of Engineers on basis of slope-area measurement by Geological Survey of peak discharge of 39,000 ft³/s at Elmwood, drainage area, 91.9 mi². EXTREMES FOR CURRENT YEAR.--Maximum discharge, 252 $\rm ft^3/s$, Mar. 25, gage height, 15.03 ft; minimum discharge, 4.3 $\rm ft^3/s$, Oct. 23, gage height, 12.81 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 13.1 | 7.4 | 14.1 | 40 | |------|-----|------|-----| | 13.3 | 10 | 14.3 | 62 | | 13.5 | 13 | 14.6 | 120 | | 13.7 | 18 | 15.0 | 240 | | 13 0 | 27 | | | # DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | J AN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---------------------------------|-------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|------------------------------|----------------------------|----------------------------|----------------------------------|-----------------------------| | 1
2
3
4
5 | 17
15
15
16
17 | 8.6
8.8
8.7
8.7 | 35
26
22
19
18 | 16
16
16
15
15 | 15
15
15
15
15 | 25
110
78
44
33 | 24
22
29
44
37 | 18
17
16
16
16 | 14
15
15
15
14 | 13
13
13
13
13 | 12
11
12
15
14 | 13
14
13
14
13 | | 6
7
8
9
10 | 17
16
16
16
16 | 8.7
8.7
9.9
12
14 | 18
18
18
54
78 | 15
15
15
15
15 | 15
15
15
15
15 | 33
101
203
123
60 | 31
27
24
22
21 | 16
16
20
132
125 | 14
13
13
13 | 13
12
12
14
15 | 12
12
22
17
14 | 13
12
12
12
12 | | 11
12
13
14
15 | 15
15
16
16
19 | 15
15
15
15
15 | 45
38
31
25
22 | 15
16
16
16
16 | 15
15
15
15
15 | 50
48
35
28
25 | 20
17
19
20
18 | 46
30
23
20
20 | 13
13
13
14
14 | 13
13
14
14
13 | 15
15
14
13
12 | 12
12
12
12
12 | | 16
17
18
19
20 | 24
20
19
18
17 | 17
20
21
22
19 | 20
19
20
19
18 | 16
16
16
16
18 | 15
15
15
15
15 | 23
21
20
21
21 | 17
18
17
17 | 18
18
17
17 | 13
13
13
19
24 | 13
12
12
12
12 | 12
12
11
11 | 15
15
47
47
115 | | 21
22
23
24
25 | 39
77
40
8.3
8.4 | 18
17
17
17
16 | 18
18
17
18
17 | 17
16
16
16
16 | 15
15
15
14
14 | 20
19
24
46
186 | 17
17
20
19
18 | 17
17
17
16
16 | 18
16
15
14
14 | 13
13
12
12
12 | 11
13
15
13 | 66
34
24
20
18 | | 26
27
28
29
30
31 | 8.4
8.4
8.4
8.4
8.4 | 16
16
19
53
57 | 17
17
17
17
17 | 16
15
15
15
16
15 | 14
15
15
17 | 80
40
30
29
30
26 | 17
20
20
21
19 | 16
16
16
16
15 | 13
13
13
13 | 11
11
11
11
11 | 11
12
12
12
12
12 | 17
17
22
26
27 | | TOTAL
MEAN
MAX
MIN | 563.1
18.2
77
8.3 | 516.7
17.2
57
8.6 | 753
24.3
78
17 | 487
15.7
18
15 | 434
15.0
17
14 | 1632
52.6
203
19 | 649
21.6
44
17 | 795
25.6
132
15 | 430
14.3
24
13 | 388
12.5
15
11 | 403
13.0
22
11 | 698
23.3
115
12 | CAL YR 1987 TOTAL 8005.8 MEAN 21.9 MAX 326 MIN 8.3 WTR YR 1988 TOTAL 7748.8 MEAN 21.2 MAX 203 MIN 8.3 #### 05370000 EAU GALLE RIVER AT SPRING VALLEY, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- June 1978 to current year. PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: June 1978 to current year. WATER TEMPERATURES: June 1978 to current year. INSTRUMENTATION.--Water-quality monitor since June 20, 1978. REMARKS.--The water-quality monitor is located 170 ft downstream from dam. The monitor was located 100 ft downstream from dam for July 2 to Oct. 30, 1986 period. Prior to July 2, 1986, the monitor was located 770 ft downstream from dam, but poor water circulation due to aquatic macrophytes, and ground-water seepage from the streambed, caused local water temperature and specific conductance differences. Records are good. EXTREMES FOR PERIOD OF DAILY RECORD. WATER TEMPERATURES: Maximum, 27.5°C Aug. 11, 1982; minimum, 0.0°C Mar. 30, 31, 1982, and many days during February and March 1984, and Nov. 20, 21, 1985. SPECIFIC CONDUCTANCE: Maximum, 837 microsiemens/cm Oct. 27, 1985; minimum, 138 microsiemens/cm Sept. 22, 1986, but may have been lower during period Jan. 16 to June 30, 1986, when there were relatively large differences between recorded values and field measurements. EXTREMES FOR CURRENT YEAR. -- WATER TEMPERATURES: Maximum, 26.0°C June 20; minimum, 1.5°C Dec. 3, 4, but may have been lower during period of missing record. SPECIFIC CONDUCTANCE: Maximum observed, 480 microsiemens/cm (field observation) Jan. 26, but may have been higher during period of missing record; minimum, 207 microsiemens/cm Dec. 11. WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|-----|---------|----------| | | | OCTOBER | | | NOVEMBER | R | | DECEMBER | R | | JANUARY | | | 1
2
3
4
5 | 16.5
15.0
14.0
14.0
13.5 | 15.0
14.0
13.5
13.5 | 15.0
14.0
13.5
13.5 | 7.5
7.5
8.5
9.5
8.5 | 7.5
7.5
7.5
8.0
8.0 | 7.5
7.5
7.5
8.0
8.0 | 2.5
2.5
2.5
2.5
2.5 | 2.0
2.0
1.5
1.5 | 2.0
2.0
1.5
1.5 | | | | | 6
7
8
9
10 | 13.0
12.5
17.0
11.5
10.5 | 12.0
12.0
11.5
10.5 | 12.0
12.0
11.5
10.5 | 8.0
8.0
7.5
7.5 | 7.5
7.5
7.5
7.0
6.0 | 7.5
7.5
7.5
7.0
6.0 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | | | | | 11
12
13
14
15 | 10.0

10.0 | 9.5

10.0 | 9.5

10.0 | 6.5
6.5
6.5
6.0 | 6.0
5.5
6.0
5.5
5.5 | 6.0
5.5
6.0
5.5
5.5 | 2.5
3.0
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | | |

 | | 16
17
18
19
20 | 10.5
10.5
10.0
10.0
9.5 | 10.0
10.0
10.0
9.0
8.5 | 10.0
10.0
10.0
9.0
8.5 | 6.5
7.0
6.0
5.5
4.5 | 6.0
5.5
5.5
4.5
3.0 | 6.0
5.5
5.5
4.5
3.0 | 3.0
3.5
2.5
3.0
2.5 | 2.5
2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5
2.5 | | | | | 21
22
23
24
25 | 8.5
8.5
8.0
8.0 | 8.5
8.0
8.0
8.0
7.5 | 8.5
8.0
8.0
8.0
7.5 | 4.5
4.5
4.0
4.0
3.5 | 4.0
3.5
3.5
3.5
3.5 | 4.0
3.5
3.5
3.5
3.5 | 2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5 | 2.5
2.5
2.5
2.5 | | | | | 26
27
28
29
30
31 | 7.5
7.5
7.5
7.5
8.0
7.5 | 7.5
7.0
7.0
7.0
7.0
7.5 | 7.5
7.0
7.0
7.0
7.0
7.5 | 3.5
3.5
3.0
3.5
3.0 | 3.5
3.0
3.0
3.0
2.5 | 3.5
3.0
3.0
3.0
2.5 | | | | | | | | MONTH | | | | 9.5 | 2.5 | 5.3 | | | | | | | 05370000 EAU GALLE RIVER AT SPRING VALLEY, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--
--|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | 3.0
3.0 | 2.5 | 2.5 | 5.5
5.0 | 5.0
5.0 | 5.0
5.0 | 12.0
12.5 | 10.5
11.5 | 10.5
11.5 | | 3
4
5 | | | |
3.5
3.5
3.5 | 2.0
2.0
3.0 | 2.0
2.0
3.0 | 5.5
6.5
6.5 | 5.0
5.5
5.5 | 5.0
5.5
5.5 | 12.5
14.0
15.0 | 12.0
12.5
13.0 | 12.0
12.5
13.0 | | 6 | | | | 3.0 | 3.0 | 3.0 | 8.0 | 5.0 | 5.0 | 14.5 | 13.5 | 13.5 | | 7
8
9 | | | | 3.0
2.5
2.5 | 2.5
1.5
1.5 | 2.5
1.5
1.5 | 7.5
7.5
9.5 | 6.0
6.5
7.5 | 6.0
6.5
7.5 | 14.0
15.5
16.5 | 12.5
13.5
15.5 | 12.5
13.5
15.5 | | 10 | | | | 2.5 | 2.0 | 2.0 | 10.0 | 8.5 | 8.5 | 17.0 | 15.0 | 15.0 | | 11
12
13 | | | | 3.0
4.0
4.5 | 2.5
3.0
3.0 | 2.5
3.0
3.0 | 10.5
10.5
12.0 | 8.5
9.0
9.5 | 8.5
9.0
9.5 | 15.5
16.5
16.5 | 14.5
15.0
14.0 | 14.5
15.0
14.0 | | 14
15 | | | | 5.0 | 3.0 | 3.0 | 10.5 | 10.0 | 10.0 | 15.0
17.0 | 14.0
14.5 | 14.0
14.5 | | 16
17 | | | | 3.0
3.0 | 3.0
3.0 | 3.0
3.0 | 10.5
10.0 | 9.5
9.5 | 9.5
9.5 | 16.0
15.5 | 14.5
14.5 | 14.5
14.5 | | 18
19 | | | | 3.0
3.5 | 3.0
3.0 | 3.0
3.0 | 10.0
10.5 | 9.0
9.0 | 9.0
9.0 | 15.5
16.0 | 15.0
15.5 | $15.0 \\ 15.5$ | | 20
21 | | | | 3.5
4.0 | 3.0 | 3.0 | 10.5
10.5 | 9.0
9.5 | 9.0
9.5 | 18.5
17.5 | 15.5
16.5 | 15.5
16.5 | | 22
23 | | | | 3.5
3.0 | 3.0
3.0 | 3.0
3.0 | 9.5
9.0 | 9.0
8.5 | 9.0
8.5 | $\begin{array}{c} 18.5 \\ 18.5 \end{array}$ | 17.0
17.0 | 17.0
17.0 | | 24
25 | | | | 3.0
3.5 | 3.0
3.0 | 3.0
3.0 | $9.5 \\ 11.0$ | 8.5
9.0 | 8.5
9.0 | 18.0
18.0 | 17.5
16.5 | 17.5
16.5 | | 26
27 | 3.0
3.0 | 3.0
2.5 | 3.0
2.5 | 4.0
4.5 | 3.0
3.5 | 3.0
3.5 | 10.0
10.0 | 9.5
8.5 | 9.5
8.5 | 18.5
19.0 | 16.5
17.0 | 16.5
17.0 | | 28
29
30 | 3.0 | 3.0
2.5 | 3.0
2.5
 | 4.0
5.0 | 4.0 | 4.0 | 11.0 12.5 | 9.0
10.0 | 9.0
10.0 | 19.0
19.0 | 17.5
18.5 | 17.5
18.5 | | 31 | | | | 5.0
5.0 | 4.5
4.5 | 4.5
4.5 | 12.5 | 11.0 | 11.0 | 19.5
19.5 | $\frac{18.5}{19.0}$ | 18.5
19.0 | | MONTH | | | | 5.0 | 1.5 | 2.9 | 12.5 | 5.0 | 8.1 | 19.5 | 10.5 | 15.1 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | | | 1
2
3 | 21.5
20.0 | 19.0
19.5 | 19.0
19.5 | 22.0
22.0 | 20.0
20.5 | 20.0
20.5 | 23.0
23.5 | 21.5
21.0 | 21.5
21.0 | 19.0
19.5 | 18.0
18.0 | 18.0
18.0 | | | | 19.0 | | | 20.0 | | | 21.5 | | 19.0 | 18.0 | 18.0 | | 2
3
4
5 | 20.0
20.0
20.5
21.0 | 19.0
19.5
19.0
19.0
19.5 | 19.5
19.0
19.0
19.5 | 22.0
22.0
21.5
22.5 | 20.0
20.5
20.5
20.5
20.5
20.5 | 20.5
20.5
20.5
20.5
20.5 | 23.5
23.5
24.5
24.0 | 21.5
21.0
21.5
22.0
22.0 | 21.0
21.5
22.0
22.0 | 19.0
19.5
19.0
19.5
18.5 | 18.0
18.0
18.0
17.5
17.5 | 18.0
18.0
18.0
17.5
17.5 | | 2
3
4
5
6
7
8
9 | 20.0
20.0
20.5
21.0
20.5
21.5
20.5
19.0 | 19.0
19.5
19.0
19.0
19.5
19.5
19.0
19.0 | 19.5
19.0
19.0
19.5 | 22.0
22.0
21.5
22.5
22.5
22.5
23.5
24.0 | 20.0
20.5
20.5
20.5
20.5
21.5
21.5 | 20.5
20.5
20.5
20.5 | 23.5
23.5
24.5
24.0 | 21.5
21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5 | 21.0
21.5
22.0
22.0 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5 | 18.0
18.0
17.5
17.5
17.0
17.0
17.0 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5 | | 2
3
4
5
6
7
8
9 | 20.0
20.0
20.5
21.0
20.5
21.5
20.5
19.0 | 19.0
19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5 | 22.0
22.0
21.5
22.5
22.5
22.5
23.5
24.0
23.5 | 20.0
20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0 | 20.5
20.5
20.5
20.5
21.5
21.0
21.5
21.5
22.0 | 23.5
23.5
24.5
24.0
23.0
24.0
25.0
25.0
24.5 | 21.5
21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0 | 21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5
18.0
17.5 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5 | | 2
3
4
5
6
7
8
9 | 20.0
20.0
20.5
21.0
20.5
21.5
20.5
19.0 | 19.0
19.5
19.0
19.0
19.5
19.5
19.0
19.0 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0 | 22.0
22.0
21.5
22.5
22.5
22.5
23.5
24.0 | 20.0
20.5
20.5
20.5
20.5
21.5
21.5 | 20.5
20.5
20.5
20.5
20.5
21.0
21.5
21.5 | 23.5
23.5
24.5
24.0
23.0
24.0
25.0
25.0 | 21.5
21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5 | 21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5 | 18.0
18.0
17.5
17.5
17.0
17.0
17.0 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5 | | 2
3
4
5
6
7
8
9
10 | 20.0
20.5
21.0
20.5
21.5
21.5
20.5
19.0
19.5 | 19.0
19.5
19.0
19.0
19.5
19.5
19.5
19.0
18.5
18.5 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5 | 22.0
22.0
21.5
22.5
22.5
22.5
23.5
24.0
23.5
22.5
22.5 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0 | 20.5
20.5
20.5
20.5
20.5
21.0
21.5
22.0
21.5
22.0 | 23.5
23.5
24.5
24.0
23.0
24.0
25.0
24.5 | 21.5
21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0 | 21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
22.0
23.0 | 19.0
19.5
19.0
19.5
18.5
17.5
17.5
17.5
17.5 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20.0
20.5
21.0
20.5
21.5
20.5
19.0
19.5
20.0
19.5
20.5
21.0
20.5 | 19.0
19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5
18.5 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5
18.5
19.0
19.0 | 22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.0
24.5
24.5
24.5 | 20.0
20.5
20.5
20.5
20.5
20.5
21.5
21.5
22.0
21.5
20.5
20.5 | 20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
20.5
20.5
20.5 | 23.5
23.5
24.5
24.0
23.0
25.0
25.0
24.5
24.5
23.5
24.5
24.5
24.5 | 21.5
21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
23.0
23.5 | 21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
22.5 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5
17.5
17.5
17.5
17.5 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20.0
20.5
21.0
20.5
21.5
20.5
19.0
19.5
20.0
19.5
21.0
20.5
21.0
20.5
21.0
20.5 | 19.0
19.5
19.0
19.5
19.5
19.5
19.0
19.0
18.5
18.5
18.5
19.0
19.0
19.0 | 19.5
19.0
19.5
19.5
19.5
19.0
19.0
18.5
18.5
18.5
19.0
19.0
19.0 | 22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.5
22.5
24.5
24.5
23.5
23.5
22.5
22.5 | 20.0
20.5
20.5
20.5
20.5
21.5
21.5
21.5
22.0
21.5
21.5
22.5
21.5
21.5
21.5
21.5 | 20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
20.5
21.5
21.5
21.5
21.5
21.5
21.5 | 23.5
24.5
24.0
23.0
24.0
25.0
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 21.5
21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
23.0
22.5
22.0
23.0
22.0
23.0
22.5 | 21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
22.5
22.0
23.0
23.0
22.0
23.0
22.0 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
17.0
18.0 |
18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0
17.0 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
17.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 20.0
20.5
21.0
20.5
21.5
20.5
19.5
20.5
20.5
21.0
20.5
21.0
20.5
21.0
24.0
26.0 | 19.0
19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5
18.5
19.0
19.0
19.0
19.0
22.5 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5
18.5
19.0
19.0
19.0 | 22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.5
22.0
24.5
24.5
23.5
23.5
23.0
22.5
23.0
22.5 | 20.0
20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
22.5
20.5
21.5
22.5
22.5
21.5
21.5
21.5 | 20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
20.5
20.5
21.5
21.5
21.5
22.0 | 23.5
24.5
24.0
23.0
24.0
25.0
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 21.5
21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
22.5
22.0 | 21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
22.5
22.0
23.0
23.0
22.5 | 19.0
19.5
19.0
19.5
18.5
17.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
17.0
16.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 20.0
20.5
21.0
20.5
21.5
20.5
19.5
20.5
20.5
21.0
20.5
21.0
20.5
21.0
24.0
24.0
24.0
24.0
24.0
24.0 | 19.0
19.5
19.0
19.0
19.5
19.5
19.0
19.0
19.0
19.0
19.0
19.0
22.5
22.0
21.5
20.5 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
19.0
18.5
18.5
19.0
19.0
19.0
20.0
22.5
22.0
21.5
20.5 | 22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.5
24.0
24.5
24.5
24.5
22.0
22.0
22.0
22.0
22.5 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
21.5
22.0
21.5
22.5
22.5
21.5
21.5
21.5
21.5
21.5 | 20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 23.5
23.5
24.5
24.0
25.0
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 21.5
21.0
21.5
22.0
22.0
22.0
23.5
22.0
23.0
23.0
23.0
22.0
23.0
22.0
22.0 | 21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
23.0
23.0
22.5
22.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
18.0
18.5
17.5 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.5
16.0
17.0
17.0
17.0
17.0
16.5
16.5
16.5 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
17.0
16.0
17.0
16.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 20.0
20.5
21.0
20.5
21.5
20.5
19.0
19.5
20.0
19.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5 | 19.0
19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5
18.5
19.0
19.0
19.0
19.0
22.5 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
18.5
18.5
18.5
19.0
19.0
19.0
19.0
20.0
22.5 | 22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.5
22.0
24.5
24.5
23.5
22.5
23.5
22.0
22.5
23.5 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
21.5
22.0
21.5
22.5
21.5
21.5
21.5
21.5
21.5
21.5 | 20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
22.5
21.5
21.5
21.5
21.5
21.5
21.5 | 23.5
23.5
24.5
24.0
25.0
25.0
24.5
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5 | 21.5
21.0
21.5
22.0
22.0
22.0
23.5
22.0
23.0
23.0
23.0
22.0
22.0
22.0
22.0 | 21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
23.0
22.5
22.0
23.0
22.0
23.0
22.0
22.0
23.0
22.0 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
18.0
18.5
17.5
17.5 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
16.0
17.0
16.0 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.0
17.0
17.0
17.0
16.0
16.0
17.0
17.0
16.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 20.0
20.5
21.0
20.5
21.5
20.5
19.5
20.5
20.5
21.0
20.5
21.0
20.5
21.0
22.0
24.0
22.5
22.5
22.5 | 19.0 19.5 19.0 19.0 19.5 19.0 19.0 18.5 18.5 18.5 18.5 19.0 19.0 19.0 19.0 20.0 22.5 22.0 21.5 20.5 21.0 21.0 20.5 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
19.0
19.0
19.0
19.0
20.0
22.5
22.0
21.5
20.5
21.0
21.0
20.5 | 22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.0
24.5
24.5
23.5
23.0
22.5
22.0
22.0
23.5
22.0
22.0 | 20.0
20.5
20.5
20.5
20.5
20.5
21.5
21.5
22.0
21.5
22.5
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21 | 20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0
21.0 |
23.5
24.5
24.0
25.0
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.0
24.0
25.0
24.5
24.0
25.0
24.0
25.0
24.5
24.0
25.0
24.5
24.5
24.0
25.0
24.5
24.0
25.0
24.5
24.0
25.0
24.5
24.5
24.0
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.5
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6
24.6 | 21.5
21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
22.5
22.0
23.0
22.0
23.0
22.5
22.0
23.0
22.0
23.0
22.0 | 21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
22.5
22.0
23.0
22.0
23.0
22.5
22.0
23.0
22.5
22.0 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
17.0
18.0
18.5
17.5
17.5 | 18.0
18.0
18.0
17.5
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
17.0
16.0
16.0
17.0
14.0
14.0
14.0
14.0
14.0 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
16.0
16.0
17.0
14.0
14.0
14.0
14.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
21
22
23
24
25
25
26
26
27
27
28
28
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 20.0
20.5
21.0
20.5
21.5
20.5
19.0
19.5
20.5
21.0
20.5
21.0
20.5
21.0
24.0
24.0
24.0
22.5
22.5
22.5
22.5
22.5 | 19.0 19.5 19.0 19.5 19.0 19.0 19.0 18.5 18.5 18.5 18.5 19.0 19.0 19.0 19.0 20.0 22.5 22.0 21.5 20.5 21.0 20.0 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
19.0
19.0
19.0
19.0
19.0
20.0
22.5
22.0
21.5
20.5
21.0
20.5
21.0
20.0 | 22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.0
24.0
24.5
24.5
23.5
22.0
22.0
22.0
22.0
22.0
22.0
22.0
22 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.0
21.0
21.0
20.5
21.0
21.0
20.5
21.0
21.0
20.5
21.0
21.0
20.5
21.0
21.0
20.5
21.0
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5
21.0
20.5 | 23.5
23.5
24.5
24.0
25.0
25.0
24.5
24.5
24.5
24.5
24.5
24.5
24.5
23.5
24.5
24.5
24.5
24.5
24.0
24.0
24.0
24.0
24.0
24.0
24.0
25.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0 | 21.5
21.0
21.5
22.0
22.0
22.0
21.5
24.0
23.5
22.0
23.0
22.5
22.0
23.0
22.5
22.0
23.0
22.5
22.0
23.0
22.5
22.0 | 21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
23.0
22.5
22.0
23.0
23.0
22.5
22.0
23.0
23.0
23.5
22.0 | 19.0
19.5
19.0
19.5
18.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
17.0
18.0
17.5
17.5
17.5
17.5
17.5
17.5
17.5
17.5 | 18.0
18.0
18.0
17.5
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
17.0
17.0
16.0
16.0
17.0
14.0
14.0
14.0
14.0
14.0
14.0 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.0
16.0
17.0
17.0
16.0
16.0
16.0
17.0
14.0
14.0
14.0
14.0
14.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 20.0
20.5
21.0
20.5
21.5
20.5
19.5
20.5
20.5
21.0
20.5
21.0
20.5
21.0
24.0
26.0
24.5
22.5
22.5
22.5
22.5 | 19.0 19.5 19.0 19.5 19.5 19.0 19.0 19.0 18.5 18.5 18.5 19.0 19.0 19.0 20.5 21.5 20.5 21.0 21.0 | 19.5
19.0
19.0
19.5
19.5
19.0
19.0
19.0
19.0
19.0
19.0
20.0
22.5
22.0
21.0
20.5
21.0 |
22.0
22.0
21.5
22.5
22.5
23.5
24.0
23.5
22.0
24.0
24.5
23.0
22.5
23.0
22.5
22.0
22.0
22.0
22.0
22.0
22.0
22 | 20.0
20.5
20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 20.5
20.5
20.5
20.5
21.0
21.5
21.5
22.0
21.5
20.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5
21.5 | 23.5
23.5
24.5
24.0
25.0
25.0
24.5
24.5
24.5
24.5
24.5
24.5
23.5
24.5
23.5
24.5
24.5
24.5
24.5
24.5
24.5
24.0
25.0
24.0
25.0
24.0
24.0
25.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
25.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
24.0
25.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0 | 21.5
21.0
21.5
22.0
22.0
22.0
22.0
23.5
22.0
23.0
23.0
22.5
22.0
23.0
22.5
22.0
23.0
22.5
22.0
23.0
22.5
22.0 | 21.0
21.5
22.0
22.0
21.5
24.0
23.5
22.0
23.0
23.0
22.5
22.0
23.0
22.5
22.0
23.0
22.5
22.0
23.0
20.5
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0
20.0 | 19.0
19.5
19.0
19.5
18.5
18.5
17.5
17.5
17.5
17.5
17.0
17.0
17.0
17.0
17.0
18.0
17.5
16.0
16.0
15.5
15.5
15.5 | 18.0
18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.0
16.0
17.0
16.0
17.0
16.0
17.0
14.0
14.0
14.0
14.0 | 18.0
18.0
17.5
17.5
17.0
17.0
16.5
16.5
16.5
16.5
16.5
16.0
17.0
16.0
17.0
14.0
14.0
14.0 | SPECIFIC CONDUCTANCE, US/CM AT 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | SECTETO | CONDUCTAN | ICE, US/CI | 1 A1 Z3 | DEGREES CE | NIIGRADE, | WAIEK IEA | AK OCIOBEK | 196/ 10 | SELIENDEL | 1300 | | | |---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | | NOVEMBER | | | DECEMBER | | | JANUARY | | | | | 1 | 348 | 324 | 339 | 365 | 364 | 365 | 373 | 365 | 370 | | | | | | $\frac{1}{2}$ | 339 | 330 | 335 | 365 | 361 | 363 | 364 | 359 | 362 | | | | | | 3 | 341 | 333 | 337 | 364 | 359 | 362 | 365 | 351 | 361 | | | | | | 4 | 344 | 338 | 340 | 372 | 364 | 367 | 371 | 359 | 365 | | | | | | 5 | 340 | 333 | 336 | 374 | 366 | 371 | 372 | 352 | 364 | | | | | | | • | 000 | 334 | ٠. ٠ | 000 | 3, 2 | 0,2 | 000 | | | | | | | 6 | 345 | 336 | 339 | 369 | 363 | 368 | 367 | 364 | 365 | | | | | | 7 | 347 | 338 | 343 | 369 | 367 | 368 | 365 | 363 | 364 | | | | | | 8 | 349 | 341 | 346 | 371 | 365 | 369 | 364 | 360 | 363 | | | | | | 9 | 349 | 344 | 346 | 371 | 368 | 370 | 363 | 304 | 347 | | | | | | 10 | 352 | 345 | 348 | 371 | 364 | 369 | 289 | 217 | 241 | 11 | 354 | 341 | 348 | 371 | 364 | 369 | 219 | 207 | 214 | | | | | | 12 | | | | 371 | 363 | 368 | 226 | 209 | 214 | | | | | | 13 | | | | 371 | 363 | 368 | 251 | 228 | 237 | | | | | | 14 | | | | 372 | 367 | 370 | 327 | 250 | 298 | | | | | | 15 | 349 | 345 | 348 | 372 | 368 | 370 | 329 | 321 | 326 | | | | | | 16 | 240 | 240 | 244 | 270 | 260 | 270 | 24.0 | 200 | 221 | | | | | | 16 | 348 | 340 | 344 | 372 | 368 | 370 | 348 | 326 | 331 | | | | | | 17
18 | 349 | 342 | 346 | 378 | 371 | 373 | 356 | 336 | 347
344 | | | | | | 19 | 352
354 | 342
342 | 347
348 | 386
384 | 368
365 | 377
374 | 353
359 | 340
345 | 350 | | | | | | 20 | 357 | 352 | 354 | 390 | 374 | 385 | 354 | 341 | 348 | | | | | | 20 | 331 | 332 | 334 | 390 | 3/4 | 303 | 334 | 341 | 346 | | | | | | 21 | 357 | 352 | 354 | 388 | 366 | 380 | 356 | 344 | 351 | | | | | | 22 | 357 | 352 | 354 | 384 | 366 | 376 | 359 | 345 | 354 | | | | | | 23 | 361 | 349 | 353 | 384 | 374 | 376 | 363 | 352 | 358 | | | | | | 24 | 361 | 354 | 358 | 388 | 374 | 382 | 364 | 357 | 359 | | | | | | 25 | 364 | 353 | 359 | 383 | 373 | 377 | | | | | | | | | | | 555 | 33, | 555 | 3.3 | 3,, | | | | | | | | | 26 | 364 | 357 | 361 | 386 | 376 | 381 | | | | | | | | | 27 | 364 | 357 | 361 | 383 | 377 | 381 | | | | | | | | | 28 | 364 | 357 | 362 | 382 | 372 | 377 | | | | | | | | | 29 | 365 | 356 | 361 | 373 | 369 | 371 | | | | | | | | | 30 | 364 | 355 | 360 | 376 | 369 | 373 | | | | | | | | | 31 | 365 | 360 | 363 | MONTH | | | | 390 | 359 | 372 | 35477 | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | | 1 | | | | | | | 297 | 272 | 285 | 300 | 291 | 294 | | | 2 | | | | | | | 288 | 278 | 283 | 302 | 294 | 297 | | | 3 | | | | | | | 281 | 267 | 276 | 302 | 297 | 299 | | | 4 | | | | | | | 289 | 234 | 266 | 300 | 296 | 298 | | | 5 | | | | | | | 280 | 246 | 259 | 304 | 294 | 298 | | | 3 | | | | | | | 200 | 240 | 233 | 304 | 234 | 230 | | | 6 | | | | | | | 294 | 267 | 281 | 302 | 296
 298 | | | ž | | | | | | | 311 | 295 | 303 | 303 | 298 | 300 | | | 8 | | | | | | | 331 | 297 | 312 | 304 | 295 | 298 | | | 9 | | | | | | | 313 | 298 | 305 | 294 | 288 | 291 | | | 10 | | | | | | | 317 | 299 | 308 | 287 | 278 | 283 | | | | | | | | | | | | | | | | | | 11 | | | | | | | 318 | 296 | 308 | 279 | 272 | 275 | | | 12 | | | | | | | 315 | 300 | 307 | 283 | 268 | 274 | | | 13 | | | | | | | 312 | 293 | 301 | 284 | 271 | 278 | | | 14 | | | | | | | 300 | 289 | 294 | 282 | 274 | 279 | | | 15 | | | | | | | 317 | 294 | 304 | 290 | 274 | 281 | | | | | | | | | | | | | | | | | | 16 | | | | 328 | 305 | 319 | 313 | 296 | 305 | 287 | 278 | 283 | | | 17 | | | | 328 | 313 | 322 | 310 | 299 | 303 | 291 | 283 | 287 | | | 18 | | | | 333 | 316 | 326 | 326 | 303 | 312 | 299 | 291 | 293 | | | 19 | | | | 337 | 323 | 330 | 322 | 301 | 311 | 300 | 293 | 295 | | | 20 | | | | 346 | 331 | 336 | 313 | 296 | 307 | 301 | 293 | 297 | | | 0.1 | | | | 0 = 1 | 005 | 000 | 242 | 0.03 | 205 | 201 | 005 | 000 | | | 21 | | | | 354 | 325 | 338 | 313 | 297 | 305 | 301 | 295 | 298 | | | 22 | | | | 339 | 321 | 331 | 311 | 304 | 309 | 304 | 298 | 301 | | | 23 | | | | 334 | 311 | 324 | 310 | 299 | 306 | 305 | 302 | 303 | | | 24 | | | | 322 | 306 | 317 | 310 | 295 | 303 | 309 | 305 | 307 | | | 25 | | | | 320 | 262 | 290 | 306 | 280 | 295 | 311 | 306 | 308 | | | 26 | | | | 271 | 250 | 266 | 205 | 200 | 202 | 217 | 205 | 200 | | | 26 | | | | 274 | 259
261 | 266 | 295 | 288 | 292 | 312 | 305
306 | 309
309 | | | 27 | | | | 274 | 261
271 | 267
275 | 299 | 286 | 292
294 | 312
313 | 306
307 | 319 | | | 28 | | | | 283 | 271 | 275 | 303 | 287
288 | 294 | 313 | 310 | 313 | | | 29 | | | | 291
293 | 276
274 | 285
283 | 297
300 | 288
291 | 293
294 | 314 | 310 | 313 | | | 30
31 | | | | 293
290 | 274
277 | 283
284 | 300 | 291 | 294 | 313 | 306 | 310 | | | ЭT | | | | 230 | 211 | 204 | | _ | | 213 | 500 | 210 | | | MONTH | | | | | | | 331 | 234 | 297 | 314 | 268 | 296 | | | | | | | | | | | | | | | | | CHIPPEWA RIVER BASIN 05370000 EAU GALLE RIVER AT SPRING VALLEY, WI--CONTINUED SPECIFIC CONDUCTANCE, US/CM AT 25 DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | 3 | | 1 | 311 | 305 | 308 | 328 | 323 | 327 | 335 | 321 | 330 | 350 | 340 | 345 | | 2 | 309 | 301 | 306 | 326 | 319 | 322 | 337 | 324 | 331 | 348 | 342 | 345 | | 3 | 312 | 305 | 307 | 323 | 317 | 320 | 334 | 325 | 328 | 351 | 340 | 345 | | 4 | 313 | 307 | 310 | 323 | 315 | 320 | 329 | 314 | 319 | 352 | 327 | 342 | | 5 | 314 | 308 | 311 | 323 | 312 | 317 | 329 | 320 | 324 | 356 | 341 | 348 | | 6 | 320 | 309 | 314 | 319 | 304 | 313 | 341 | 329 | 333 | 356 | 345 | 352 | | 7 | 321 | 316 | 319 | 315 | 308 | 312 | 342 | 315 | 333 | 362 | 346 | 355 | | 8 | 327 | 319 | 322 | 316 | 306 | 311 | 312 | 292 | 301 | 355 | 346 | 350 | | 9 | 330 | 323 | 327 | 312 | 290 | 301 | 320 | 300 | 310 | 356 | 341 | 351 | | 10 | 333 | 325 | 328 | 311 | 297 | 302 | 334 | 313 | 323 | 357 | 341 | 351 | | 11 | 329 | 323 | 327 | 317 | 307 | 311 | 333 | 303 | 317 | 360 | 346 | 353 | | 12 | 329 | 322 | 325 | 323 | 310 | 315 | 327 | 310 | 319 | 361 | 349 | 354 | | 13 | 329 | 321 | 326 | 325 | 303 | 311 | 326 | 311 | 320 | 361 | 352 | 356 | | 14 | 328 | 319 | 324 | 317 | 310 | 313 | 333 | 312 | 323 | 364 | 351 | 359 | | 15 | 329 | 322 | 326 | 316 | 305 | 311 | 338 | 324 | 330 | 366 | 358 | 363 | | 16 | 328 | 324 | 326 | 344 | 300 | 313 | 336 | 324 | 332 | 366 | 351 | 360 | | 17 | 331 | 326 | 328 | 319 | 312 | 317 | 339 | 329 | 335 | 363 | 353 | 358 | | 18 | 328 | 325 | 326 | 322 | 314 | 318 | 345 | 338 | 341 | 363 | 340 | 350 | | 19 | 328 | 292 | 309 | 326 | 316 | 321 | 351 | 345 | 347 | 348 | 331 | 339 | | 20 | 299 | 291 | 296 | 325 | 314 | 320 | 364 | 339 | 349 | 329 | 267 | 297 | | 21 | 306 | 297 | 302 | 326 | 317 | 320 | 358 | 344 | 348 | 302 | 275 | 289 | | 22 | 312 | 303 | 307 | 328 | 321 | 325 | 358 | 344 | 351 | 313 | 299 | 305 | | 23 | 316 | 310 | 313 | 330 | 318 | 325 | 369 | 321 | 349 | 323 | 314 | 318 | | 24 | 317 | 311 | 314 | 328 | 316 | 323 | 344 | 310 | 332 | 329 | 322 | 325 | | 25 | 322 | 312 | 316 | 330 | 320 | 324 | 341 | 310 | 325 | 336 | 327 | 333 | | 26
27
28
29
30
31 | 324
322
328
333
331 | 317
317
317
324
325 | 321
319
323
328
328 | 332
336
336
333
341
341 | 327
325
322
326
326
320 | 329
331
329
330
333
332 | 344
346
343
348
351
350 | 330
322
319
338
342
341 | 336
335
336
342
347
347 | 340
343
349
351
351 | 335
340
340
348
347 | 339
342
344
349
349 | | MONTH | 333 | 291 | 318 | 344 | 290 | 319 | 369 | 292 | 332 | 366 | 267 | 342 | TREMPEALEAU-BLACK RIVER BASIN #### BUFFALO RIVER BASIN ## 443311091231000 CRYSTAL LAKE AT STRUM, WI ## LAKE-STAGE RECORDS LOCATION.--Lat $44^{\circ}33^{\circ}11^{\circ}$, long $91^{\circ}23^{\circ}10^{\circ}$, in SW 1/4 sec.17, T.24 N., R.8 W., Trempealeau County, Hydrologic Unit 07040003, at Strum. PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Staff gage read by LaVerne Anderson. Elevation of gage is 870.56 ft, revised, National Geodetic Vertical Datum of 1929. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 15.3 ft, Aug. 15, 1986; minimum observed, 13.3 ft, June 14, 1986. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 14.56 ft, June 6; minimum observed, 14.40 ft, July 6 and Aug. 20. #### GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | |--------------|----------------|---------------|----------------|--------------|----------------|---------------|----------------|--------|-------------------------| | June 6
13 | 14.56
14.52 | June 21
27 | 14.44
14.42 | July 6
12 | 14.40
14.44 | July 22
30 | 14.44
14.42 | Aug. 5 | 14.42
14.42
14.40 | ## WATER-QUALITY RECORDS LOCATION.--Lat $44^{\circ}33^{\circ}16^{\circ}$, long $91^{\circ}23^{\circ}09^{\circ}$, in SW 1/4 sec.17, T.24 N., R.8 W., Trempealeau County, Hydrologic Unit 07040003, near center of lake, at Strum. PERIOD OF RECORD. -- April 1985 to current year. REMARKS. -- Secchi disc readings made by LaVerne Anderson. | DATE | SECCHI
DEPTH | |--------------|-----------------|---------------|-----------------|--------------|-----------------|---------------|-----------------|--------------------|-------------------| | June 6
13 | 1.0
0.8 | June 21
27 | 0.7
0.7 | July 6
12 | 0.6
0.7 | July 22
30 | 0.8
0.7 | Aug. 5
11
20 | 0.7
0.8
0.8 | ## 05378500 MISSISSIPPI RIVER AT WINONA, MN LOCATION.--Lat 44°03'21", long 91°38'16", in sec.23, T.107 N., R.7 W., Winona County, Hydrologic Unit 07040003, on right bank at Winona pumping station in Winona, 9.5 mi upstream from Trempealeau River, and at mile 725.7 upstream from the Ohio River. DRAINAGE AREA.--59,200 mi², approximately. PERIOD OF RECORD.--June 1928 to current year. Gage-height records collected in this vicinity since 1878 are contained in reports of Mississippi River Commission. GAGE.--Water-stage recorder. Datum of gage is 639.64 ft above National Geodetic Vertical Datum of 1929. June 10, 1928, to Apr. 15, 1931, nonrecording gage at site 800 ft upstream. Prior to Oct. 1, 1929, at datum 0.20 ft higher and Oct. 1, 1929, to Apr. 15, 1931, at datum 0.12 ft lower. Apr. 16, 1931, to Nov. 12, 1934, nonrecording gage at present site and datum. Since Mar. 31, 1937, auxiliary water-stage recorder 2.7 mi upstream at tailwater of navigation dam 5A. REMARKS.--No estimated daily discharges. Records good. Some regulation by reservoirs, navigation dams, and powerplants at low and medium stages. Flood flow not materially affected by artificial storage. AVERAGE DISCHARGE.--60 years, 27,830 ft³/s, 6.38 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 268,000 ft³/s, Apr. 19, 1965, gage height, 20.77 ft, from floodmark; minimum, 1,940 ft³/s, Dec. 12, 1980, gage height, 3.96 ft, result of ice jam; minimum gage height, -3.38 ft, Aug. 31, 1934 (prior to dam construction in 1936); minimum gage height since 1938, after completion of dam, 1.95 ft, Jan. 27, 1944. DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 18, 1880, reached an elevation of 657.14 ft, discharge, 172,000 ft^s/S, from information by U.S. Army Corps of Engineers. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 46,800 ft³/s, Apr. 11, gage height, 6.97 ft; minimum daily discharge, 5,500 ft³/s, July 5; minimum gage height, 4.74 ft, Dec. 8. | DAY | OCT | VOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|----------------------------------|--|---|--|--------------------------------------|--|---|---| | 1 | 13600 | 19400 | 21400 | 17100 | 13800 | 13500 | 42600 | 25000 | 14500 | 6800 | 6500 | 10600 |
| 2 | 13500 | 19300 | 23000 | 12000 | 13700 | 14100 | 41500 | 24400 | 13800 | 6300 | 6500 | 10400 | | 3 | 14200 | 17700 | 23400 | 12900 | 13700 | 15100 | 41600 | 24200 | 13900 | 6400 | 6400 | 13400 | | 4 | 13800 | 17400 | 24200 | 13600 | 13700 | 25100 | 41700 | 24100 | 13900 | 6500 | 6300 | 11500 | | 5 | 13100 | 17500 | 25900 | 13500 | 13700 | 27100 | 41600 | 24200 | 13900 | 5500 | 6700 | 10600 | | 6 | 12900 | 17500 | 22900 | 13800 | 13500 | 23800 | 43100 | 23300 | 13900 | 6500 | 7800 | 9470 | | 7 | 13400 | 17800 | 20200 | 13200 | 13500 | 21200 | 43700 | 22600 | 13300 | 6500 | 7800 | 9180 | | 8 | 13100 | 17800 | 16600 | 13200 | 13500 | 20600 | 43400 | 21500 | 10900 | 6600 | 7500 | 8530 | | 9 | 11800 | 18300 | 16400 | 12500 | 12600 | 22900 | 43200 | 21300 | 9500 | 6700 | 10500 | 8210 | | 10 | 12300 | 18200 | 16800 | 12600 | 12600 | 26200 | 44900 | 22500 | 8800 | 6800 | 11000 | 7600 | | 11 | 12000 | 17500 | 17700 | 12700 | 12600 | 30000 | 46400 | 23800 | 8100 | 7100 | 10600 | 7500 | | 12 | 12100 | 16500 | 21000 | 12900 | 12600 | 33500 | 45800 | 25900 | 8100 | 8300 | 11000 | 7200 | | 13 | 13100 | 16400 | 25300 | 12900 | 12600 | 35100 | 43900 | 28000 | 8200 | 7400 | 10900 | 7700 | | 14 | 13700 | 16800 | 25200 | 12900 | 12700 | 33000 | 42300 | 29700 | 8100 | 7000 | 10300 | 8200 | | 15 | 16300 | 17200 | 25400 | 12900 | 12700 | 31200 | 40800 | 29400 | 7600 | 7100 | 10200 | 8100 | | 16 | 19300 | 16900 | 23300 | 13500 | 12800 | 29100 | 39100 | 29000 | 7500 | 7500 | 10000 | 7790 | | 17 | 19600 | 17100 | 20900 | 13600 | 12800 | 28500 | 38300 | 28800 | 7300 | 8400 | 9800 | 10300 | | 18 | 18600 | 17700 | 17700 | 13700 | 12900 | 27400 | 36400 | 27500 | 6700 | 8400 | 9500 | 12000 | | 19 | 19200 | 18100 | 14300 | 13700 | 13200 | 26700 | 34000 | 25800 | 6900 | 9000 | 9700 | 11400 | | 20 | 18200 | 19100 | 13900 | 14600 | 13200 | 26300 | 32000 | 24400 | 8400 | 8900 | 9800 | 14400 | | 21 | 18100 | 20800 | 14100 | 14900 | 13200 | 25800 | 29700 | 24400 | 9300 | 8900 | 9900 | 14700 | | 22 | 17200 | 21900 | 15500 | 14900 | 13100 | 24300 | 28300 | 23300 | 8900 | 8700 | 9900 | 17900 | | 23 | 17100 | 25700 | 18400 | 14800 | 13200 | 23200 | 28700 | 21500 | 8800 | 8500 | 10200 | 18000 | | 24 | 16900 | 21900 | 22500 | 14800 | 13200 | 23900 | 28400 | 16500 | 8400 | 7700 | 15500 | 17800 | | 25 | 17500 | 15400 | 21700 | 14700 | 13200 | 23900 | 27000 | 12400 | 7600 | 7200 | 14400 | 13800 | | 26
27
28
29
30
31 | 17300
16900
17500
17400
17700
18600 | 19600
22400
20500
18200
20700 | 21300
18300
16600
16600
18000
18300 | 14700
14500
14200
14000
13500
13700 | 13100
13100
13200
13100 | 26500
29000
33100
38000
40300
42200 | 25300
25700
25200
24700
24700 | 14800
15200
16000
16200
16100
15900 | 8100
7900
7900
7100
7100 | 7200
6600
6500
6500
6500
6500 | 13000
12700
12300
11600
11100
9270 | 13000
11900
12100
12100
16600 | | TOTAL | 486 000 | 5613 00 | 6168 0 0 | 4265 0 0 | 38 0 80 0 | 8406 0 0 | 1094000 | 69770 0 | 284400 | 224500 | 30867 0 | 341980 | | MEAN | 1568 0 | 1871 0 | 19900 | 13760 | 1313 0 | 2712 0 | 36470 | 22510 | 9480 | 7242 | 9957 | 11 400 | 42200 13500 .53 46400 24700 .69 29700 12400 . 44 6700 . 18 14500 9000 5500 .14 15500 6300 18000 7200 .19 .21 TOTAL 7716500 MEAN 21140 MAX 39200 MIN 11800 CFSM .36 IN. 4.85 TOTAL 6263250 MEAN 17110 MAX 46400 MIN 5500 CFSM .29 IN. 3.94 CAL YR 1987 13800 12600 .24 17100 12000 .27 MAX MIN IN. CFSM 19600 11800 .26 .31 25700 15400 .32 .35 25900 13900 .34 .39 #### TREMPEALEAU RIVER BASIN #### 05379500 TREMPEALEAU RIVER AT DODGE, WI LOCATION.--Lat $44^{\circ}07^{\circ}55^{\circ}$, long $91^{\circ}33^{\circ}14^{\circ}$, in SE 1/4 sec.10, T.19 N., R.10 W., Trempealeau County, Hydrologic Unit 07040005, near left bank on downstream side of highway bridge in Dodge, 9.0 mi upstream from mouth. DRAINAGE AREA .-- 643 mi². PERIOD OF RECORD.--December 1913 to September 1919, April 1934 to current year. REVISED RECORDS.--WSP 1238: Drainage area. WSP 1388: 1919(M). WSP 1438: 1914, 1915-18(M), 1934-44(M), 1946-49(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 661.42 ft above National Geodetic Vertical Datum of 1929. Prior to July 14, 1977, nonrecording gage at same site and datum. Prior to Oct. 1, 1966, datum 2.00 ft higher. REMARKS.--Estimated daily discharges: Ice period, Dec. 17 to Mar. 6, and Aug. 3-15. Records good except for estimated daily discharges, which are fair. Gage-height telemeter and data-collection platform at station. AVERAGE DISCHARGE.--59 years (1915-19, 1935-88), 431 ft^3/s , 9.10 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,400 $\rm ft^3/s$, Apr. 4, 1956, gage height, 10.35 ft; minimum daily, 98 $\rm ft^3/s$, Jan. 10, 1938. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,300 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------| | Mar. 9 | 0300 | *2,290 | *8.40 | Mar. 26 | 2300 | 1,450 | 6.84 | Minimum discharge, 209 ft³/s, July 30, gage height, 3.12 ft. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR
TEAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------------|------------|------------|------------|------------|------------|---------------------------|------------|------------|------------|--------------|------------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 342 | 376 | 603 | 400 | 440 | 700 | 597 | 538 | 317 | 273 | 224 | 224 | | 2 | 340 | 390 | 521 | 370 | 430 | 1000 | 575 | 499 | 312 | 266 | 225 | 231 | | 3 | 339 | 398 | 486 | 380 | 410 | 1200 | 676 | 472 | 311 | 259 | 220 | 233 | | 3
4
5 | 340
341 | 397
390 | 460
449 | 400
390 | 380
360 | 1100
1000 | 741
684 | 451
436 | 306
302 | 252
248 | 230
230 | 244
250 | | | | | | | | | | | | | | | | 6 | 346 | 378 | 434 | 370 | 340 | 1200 | 688 | 422 | 295 | 246 | 230 | 248 | | 7 | 348 | 372 | 428 | 360 | 340 | 1460 | 706 | 413 | 292 | 242 | 230
240 | 244
234 | | 8
9 | 349
350 | 374
377 | 430
548 | 340 | 340 | 1860 | 635
565 | 416
606 | 288
285 | 240
249 | 280 | 234 | | 10 | 350
347 | 377
376 | 674 | 340
360 | 330
330 | 1750
1140 | 538 | 738 | 282 | 254 | 260 | 225 | | | | | | | | | | | | | | | | 11 | 346 | 374 | 609 | 370 | 330 | 923 | 519 | 620 | 279 | 268 | 260 | 225 | | 12 | 347 | 370 | 547 | 370 | 340 | 836 | 500 | 527 | 279 | 275 | 280 | 225 | | 13
14 | 350
349 | 368
367 | 506
476 | 380
340 | 340 | 782
641 | 486
473 | 472
448 | 275
272 | 270
276 | 290
300 | 225
226 | | 15 | 349
349 | 367
367 | 476
461 | 340
350 | 340
340 | 573 | 473
461 | 446 | 267 | 270 | 300 | 227 | | | 349 | 307 | 401 | 330 | 340 | | 401 | | | | | | | 16 | 390 | 370 | 456 | 360 | 350 | 540 | 453 | 417 | 265 | 279 | 259 | 233 | | 17 | 448 | 427 | 450 | 380 | 360 | 525 | 444 | 404 | 263 | 300 | 242 | 272 | | 18 | 423 | 590 | 440 | 360 | 380 | 520 | 440 | 390 | 262 | 293 | 236 | 292
318 | | 19
20 | 398
379 | 587
499 | 440
440 | 350
340 | 400
430 | 513
499 | 433
427 | 382
377 | 263
266 | 276
268 | 231
242 | 540 | | | | | | | | | | | | | | | | 21 | 374 | 447 | 430 | 340 | 400 | 482 | 423 | 374 | 262 | 271 | 237 | 464
536 | | 22 | 371 | 426 | 440 | 330 | 350 | 474 | 424 | 370 | 260 | 270 | 240 | 536 | | 23 | 372 | 422 | 450 | 330 | 370 | 494 | 467 | 364 | 252 | 261 | 270 | 610 | | 24
25 | 372 | 440 | 430
410 | 330 | 380 | 543 | 508 | 356 | 270
286 | 249
244 | 277
263 | 489
414 | | | 372 | 447 | 410 | 330 | 370 | 1030 | 513 | 346 | | | | | | 26 | 373 | 429 | 380 | 320 | 380 | 1380 | 493 | 338 | 267 | 236 | 242 | 355 | | 27 | 374 | 419 | 390 | 310 | 440 | 1160 | 626 | 337 | 257 | 234 | 239 | 323 | | 28 | 372 | 452 | 400 | 320 | 520 | 846 | 780 | 340 | 257 | 229 | 243 | 304 | | 29 | 369 | 669 | 420 | 330 | 600 | 795 | 770 | 339 | 313 | 225 | 240 | 306
305 | | 30 | 366 | 732 | 430 | 360 | | 752 | 631 | 331 | 286 | 221
219 | 237
233 | 303 | | 31 | 362 | | 440 | 410 | | 656 | | 325 | | 219 | 233 | | | TOTAL | 11298 | | 14478 | 11020 | 11120 | | 16676 | 13285 | 8391 | 7963 | 7730 | 9251 | | MEAN | 364 | 434 | 467 | 355 | 383 | 883 | 556 | 429 | 280 | 257 | 249 | 308 | | MAX | 448 | 732 | 674 | 410 | 600 | 1860 | 780 | 738 | 317 | 300 | 300 | 610 | | MIN | 339 | 367 | 380 | 310 | 330 | 474 | 423 | 325 | 252 | 219 | 220 | 224 | | CFSM | -57 | . 68 | .73 | .55 | .60 | 1.37 | .86 | .67 | .43
.49 | . 40
. 46 | .39
.45 | . 48
. 54 | | IN. | .65 | . 75 | .84 | .64 | .64 | 1.58 | .96 | .77 | . 49 | . 40 | .43 | . 54 | CAL YR 1987 TOTAL 174930 MEAN 479 MAX 2660 MIN 317 CFSM .75 IN. 10.12 WTR YR 1988 TOTAL 151616 MEAN 414 MAX 1860 MIN 219 CFSM .64 IN. 8.77 #### BLACK RIVER BASIN #### 05381000 BLACK RIVER AT NEILLSVILLE, WI LOCATION.--Lat 44°33'34", long 90°36'52", in sec.15, T.24 N., R.2 W., Clark County, Hydrologic Unit 07040007, on right bank at downstream side of bridge on U.S. Highway 10 in Neillsville, 1.0 mi downstream from O'Neill Creek, and 2.6 mi upstream from Cunningham Creek. DRAINAGE AREA. -- 749 mi². PERIOD OF RECORD.--April 1905 to March 1909, October 1913 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1914. WSP 1438: 1905, 1906-8(M), 1914-17(M), 1918-19, 1920-25(M), 1926-27, 1928-29(M), 1930, 1931(M), 1932, 1933(M), 1934, 1935(M), 1936. WSP 1508: 1950. WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 962.34 ft above
National Geodetic Vertical Datum of 1929. Prior to Oct. 24, 1934, nonrecording gage; Oct. 24, 1934, to June 16, 1977, water-stage recorder; June 17, 1977, to Nov. 19, 1977, nonrecording gage at site 150 ft downstream at datum 1.58 ft lower. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. AVERAGE DISCHARGE.--78 years (1906-8, 1914-88), 597 ft³/s, 10.82 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 48,800 $\rm ft^3/s$, Sept. 10, 1938, gage height, 23.8 ft; minimum, 0.6 $\rm ft^3/s$, Aug. 15, 1936, gage height, 1.84 ft. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 5,000 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|--------|----------|-----------------------------------|---------------------| | Mar. 25 | 0545 | *10.300 | *12.21 | No otl | her peak | greater than bas | se discharge. | Minimum, 10 ft^3/s , Aug. 3, gage height, 2.33 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 4-7, and Dec. 13 to Mar. 11.) | 2.28 | 11 | 4.0 | 392 | |------|-----|------|-------| | | | 4.0 | | | 2.3 | 12 | 5.0 | 850 | | 2.4 | 20 | 6.0 | 1,500 | | 2.6 | 41 | 7.0 | 2,370 | | 3.0 | 104 | 9.0 | 4,740 | | 3.5 | 224 | 11.0 | 7,940 | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|------------------------------------|---|--|---|--|---------------------------------|--------------------------------|----------------------------------|---| | 1 | 88 | 266 | 1230 | 180 | 100 | 250 | 1640 | 784 | 88 | 29 | 12 | 33 | | 2 | 84 | 251 | 908 | 160 | 100 | 500 | 1460 | 580 | 83 | 31 | 12 | 29 | | 3 | 75 | 261 | 622 | 160 | 98 | 560 | 1800 | 449 | 94 | 28 | 11 | 28 | | 4 | 73 | 347 | 420 | 170 | 96 | 600 | 1960 | 367 | 86 | 26 | 11 | 27 | | 5 | 73 | 497 | 300 | 140 | 92 | 580 | 1780 | 312 | 82 | 24 | 17 | 33 | | 6
7
8
9
10 | 75
76
76
76
77 | 516
439
377
347
326 | 250
270
273
745
1400 | 110
90
72
60
47 | 88
84
80
76
74 | 640
900
1500
2800
4500 | 1950
2140
1710
1290
986 | 267
237
227
385
634 | 88
85
78
69 | 22
20
17
17
19 | 17
15
18
17
16 | 31
28
25
23
27 | | 11 | 79 | 283 | 1270 | 38 | 72 | 3500 | 802 | 802 | 55 | 19 | 20 | 29 | | 12 | 82 | 248 | 1030 | 49 | 70 | 2720 | 661 | 689 | 50 | 18 | 33 | 27 | | 13 | 83 | 228 | 740 | 66 | 68 | 1970 | 563 | 547 | 47 | 18 | 33 | 24 | | 14 | 83 | 211 | 520 | 84 | 66 | 1440 | 481 | 438 | 41 | 18 | 39 | 22 | | 15 | 81 | 200 | 340 | 96 | 66 | 1210 | 417 | 365 | 38 | 20 | 44 | 21 | | 16 | 85 | 199 | 260 | 100 | 70 | 913 | 365 | 306 | 35 | 30 | 44 | 29 | | 17 | 230 | 246 | 240 | 110 | 74 | 736 | 330 | 263 | 32 | 60 | 37 | 39 | | 18 | 627 | 889 | 230 | 110 | 82 | 634 | 299 | 228 | 33 | 81 | 30 | 36 | | 19 | 703 | 1520 | 200 | 120 | 92 | 508 | 270 | 199 | 31 | 60 | 26 | 67 | | 20 | 588 | 1180 | 220 | 130 | 100 | 434 | 248 | 178 | 31 | 48 | 23 | 118 | | 21 | 465 | 750 | 250 | 120 | 100 | 374 | 228 | 163 | 30 | 44 | 21 | 129 | | 22 | 399 | 529 | 250 | 120 | 110 | 373 | 217 | 147 | 30 | 43 | 32 | 147 | | 23 | 386 | 581 | 240 | 110 | 110 | 469 | 264 | 132 | 28 | 36 | 54 | 139 | | 24 | 390 | 888 | 230 | 110 | 110 | 900 | 395 | 120 | 27 | 32 | 44 | 120 | | 25 | 410 | 936 | 210 | 110 | 110 | 6920 | 385 | 109 | 25 | 27 | 39 | 99 | | 26
27
28
29
30
31 | 395
366
352
339
317
286 | 778
619
522
732
1210 | 180
170
190
220
210
200 | 100
90
92
92
96
100 | 110
120
120
180 | 6840
4140
3710
2960
2530
2090 | 368
768
1570
1400
1110 | 101
92
91
94
95
94 | 22
22
27
27
28 | 24
21
20
17
14 | 37
37
36
43
41
37 | 86
77
67
66
61 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 7519
243
703
73
.32
.37 | 16376
546
1520
199
.73
.81 | 13818
446
1400
170
.60 | 3232
104
180
38
.14 | 2718
93.7
180
66
.13
.13 | 58201
1877
6920
250
2.51
2.89 | 27857
929
2140
217
1.24
1.38 | 9495
306
802
91
.41
.47 | 1473
49.1
94
22
.07 | 896
28.9
81
13
.04 | 896
28.9
54
11
.04 | 1687
56.2
147
21
.08
.08 | CAL YR 1987 TOTAL 117118 MEAN 321 MAX 2000 MIN 44 CFSM .43 IN. 5.82 WTR YR 1988 TOTAL 144168 MEAN 394 MAX 6920 MIN 11 CFSM .53 IN. 7.16 #### BLACK RIVER BASIN ## 05382000 BLACK RIVER NEAR GALESVILLE, WI (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) LOCATION.--Lat 44°04'22", long 91°17'41", in SW 1/4 sec.1, T.18 N., R.8 W., LaCrosse County, Hydrologic Unit 07040007, on left bank 1,000 ft upstream from bridge on U.S. Highway 53, 4.5 mi southeast of Galesville, and 4.8 mi downstream from Fleming Creek. DRAINAGE AREA. -- 2,080 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD .-- December 1931 to current year. REVISED RECORDS.--WSP 1438: 1932-34, 1935-36(M). WDR WI-81-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 658.43 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 2, 1941, nonrecording gage on bridge 1,000 ft downstream at same datum. Apr. 3, 1941, to Oct. 1, 1971, water-stage recorder at site 1,100 ft downstream at same datum. REMARKS.--Estimated daily discharges: May 26, June 15 to July 27, and ice-affected period, Dec. 15 to Mar. 11. Records good except for estimated daily discharges, which are fair. Flow partly regulated by Hatfield Dam Powerplant where drainage area is 1,290 mi² and storage capacity is 272,000,000 ft³. Water diverted periodically from basin into Lemonweir River basin for cranberry culture. Gage-height telemeter at station. AVERAGE DISCHARGE. -- 56 years, 1,747 ft³/s, 11.41 in/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 65,500 ft³/s, Apr. 1, 1967, gage height, 14.63 ft; maximum gage height, 15.46 ft, Sept. 23, 1980; minimum observed, 180 ft³/s, Dec. 20, 1931. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 12,500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Mar. 27 | 1600 | *11,000 | *10.57 | | | | | Minimum discharge, 320 ft³/s, Sept. 15, gage height, 1.54 ft. | | | DISCHARG | E, CUBIC | FEET PE | R SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------|-------|----------|----------|---------|-----------|--------------------------|---------|---------|-----------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | i | 601 | 770 | 1830 | 1100 | 700 | 740 | 4450 | 3850 | 474 | 460 | 344 | 362 | | 2 | 614 | 781 | 2170 | 1100 | 720 | 800 | 3740 | 2780 | 553 | 440 | 349 | 355 | | 3 | 620 | 803 | 2110 | 1100 | 700 | 860 | 3420 | 2070 | 524 | 430 | 357 | 357 | | 4 | 597 | 809 | 1800 | 1000 | 680 | 840 | 3960 | 1940 | 502 | 430 | 370 | 382 | | 5 | 533 | 796 | 1690 | 920 | 680 | 880 | 4010 | 1780 | 492 | 420 | 384 | 390 | | 6 | 555 | 799 | 1580 | 840 | 680 | 1000 | 4050 | 1650 | 422 | 420 | 373 | 383 | | 7 | 621 | 963 | 1510 | 760 | 660 | 1300 | 3890 | 1360 | 417 | 420 | 364 | 367 | | 8 | 640 | 994 | 1320 | 700 | 660 | 1500 | 3890 | 1280 | 461 | 430 | 383 | 352 | | ğ | 608 | 941 | 1340 | 660 | 640 | 1900 | 3470 | 1210 | 423 | 440 | 394 | 350 | | 10 | 630 | 984 | 1380 | 640 | 640 | 2500 | 2830 | 1350 | 414 | 450 | 401 | 346 | | 11 | 595 | 1050 | 1800 | 640 | 620 | 3400 | 2600 | 2110 | 385 | 430 | 388 | 345 | | 12 | 530 | 868 | 2690 | 660 | 600 | 4330 | 2180 | 2440 | 429 | 430 | 382 | 342 | | 13 | 568 | 808 | 2460 | 640 | 580 | 4730 | 2020 | 2220 | 371 | 440 | 379 | 338 | | 14 | 693 | 809 | 1920 | 640 | 560 | 4710 | 1950 | 1850 | 365 | 440 | 395 | 338 | | 15 | 707 | 724 | 1900 | 620 | 540 | 3850 | 1860 | 1720 | 350 | 420 | 402 | 333 | | 16 | 722 | 609 | 1800 | 620 | 540 | 3300 | 1690 | 1570 | 350 | 490 | 388 | 332 | | 17 | 842 | 663 | 1700 | 640 | 560 | 2340 | 1450 | 1480 | 360 | 600 | 370 | 400 | | 18 | 792 | 904 | 1600 | 680 | 560 | 2330 | 1360 | 1090 | 360 | 500 | 364 | 655 | | 19 | 830 | 1130 | 1600 | 700 | 560 | 2230 | 1350 | 1080 | 380 | 430 | 365 | 627 | | 20 | 1180 | 1440 | 1300 | 680 | 560 | 1970 | 1200 | 938 | 420 | 390 | 360 | 715 | | 21 | 1310 | 1710 | 1300 | 660 | 580 | 1790 | 1260 | 870 | 450 | 370 | 353 | 664 | | 22 | 1210 | 1740 | 1300 | 640 | 580 | 1680 | 1140 | 872 | 440 | 370 | 374 | 736 | | 23 | 1100 | 1570 | 1400 | 640 | 600 | 1690 | 1170 | 770 | 410 | 390 | 454 | 910 | | 24 | 1020 | 1430 | 1300 | 620 | 600 | 2230 | 1210 | 636 | 380 | 380 | 505 | 978 | | 25 | 902 | 1520 | 1200 | 620 | 620 | 3900 | 1300 | 668 | 380 | 370 | 435 | 909 | | 26 | 901 | 1510 | 1200 | 620 | 620 | 6670 | 1390 | 640 | 410 | 370 | 401 | 839 | | 27 | 732 | 1560 | 1200 | 620 | 640 | 10400 | 1750 | 640 | 440 | 360 | 394 | 768 | | 28 | 596 | 1640 | 1200 | 620 | 640 | 9460 | 2040 | 619 | 460 | 362 | 391 | 854 | | 29 | 546 | 1770 | 1100 | 620 | 660 | 7910 | 3300 |
558 | 480 | 362 | 379 | 866 | | 30 | 637 | 1780 | 1100 | 620 | | 6500 | 4140 | 490 | 500 | 359 | 370 | 853 | | 31 | 745 | | 1100 | 660 | | 5190 | | 472 | | 348 | 366 | | | TOTAL | 23177 | 33875 | 48900 | 22280 | 17980 | | 74070 | 43003 | 12802 | 12951 | 11934 | 16446 | | MEAN | 748 | 1129 | 1577 | 719 | 620 | 3320 | 2469 | 1387 | 427 | 418 | 385 | 548 | | MAX | 1310 | 1780 | 2690 | 1100 | 720 | 10400 | 4450 | 3850 | 553 | 600 | 505 | 978 | | MIN | 530 | 609 | 1100 | 620 | 540 | 740 | 1140 | 472 | 350 | 348 | 344 | 332 | | CFSM | . 36 | .54 | .76 | . 35 | .30 | 1.60 | 1.19 | .67 | .21 | .20 | .19 | .26 | | IN. | . 41 | .61 | .87 | . 40 | .32 | 1.84 | 1.32 | .77 | .23 | . 23 | .21 | . 29 | CAL YR 1987 TOTAL 448634 MEAN 1229 MAX 4890 MIN 498 CFSM .59 IN. 8.02 WTR YR 1988 TOTAL 420348 MEAN 1148 MAX 10400 MIN 332 CFSM .55 IN. 7.52 ## BLACK RIVER BASIN # 05382000 BLACK RIVER NEAR GALESVILLE, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1954 to current year. National Stream-Quality Accounting Network data collection began in March 1979. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(FTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |----------------|--|---|--|--|--|--|---|--|---|---|---|---| | NOV 1987
24 | 1330 | 1420 | 95 | 7.60 | 9.0 | 3.3 | 11.8 | 750 | 104 | K80 | K310 | 63 | | JAN 1988
27 | 1220 | 616 | 162 | 7.40 | 0.0 | 3.0 | 12.5 | 771 | 85 | K12 | 55 | 60 | | MAR
16 | 1130 | 3410 | 110 | 7.50 | 1.0 | 4.7 | 13.4 | 771 | 93 | K21 | 120 | 33 | | APR
26 | 1300 | 1290 | 114 | 7.40 | 10.0 | 2.3 | 11.0 | 761 | 98 | 28 | 180 | 46 | | JUN
08 | 1150 | 449 | 137 | 8.40 | 22.5 | 2.9 | 8.5 | 761 | 98 | 350 | 260 | 60 | | AUG
24 | 1125 | 523 | 140 | 8.20 | 19.5 | 3.6 | 8.9 | 765 | 97 | >600 | K1100 | 64 | | DATE | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | NOV 1987
24 | 15 | 15 | 6.1 | 4.8 | 14 | 0.3 | 2.9 | 56 | 46 | 18 | 12 | 0.10 | | JAN 1988
27 | 14 | 14 | 6.2 | 3.5 | 11 | 0.3 | 2.4 | 56 | 46 | 16 | 5.9 | 0.20 | | MAR | | | | | | | | | | | | | | 16
APR | 7 | 7.7 | 3.4 | 2.7 | 13 | 0.2 | 5.1 | 30 | 24 | 17 | 6.4 | 0.10 | | 26
JUN | 10 | 11 | 4.6 | 3.0 | 12 | 0.2 | 2.2 | 42 | 34 | 16 | 5.9 | 0.10 | | 08
AUG | 8 | 14 | 6.2 | 3.6 | 11 | 0.2 | 1.8 | 60 | 50 | 13 | 5.5 | 0.30 | | 24 | 11 | 15 | 6.5 | 3.2 | 9 | 0.2 | 2.2 | 63 | 52 | 12 | 5.7 | 0.10 | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-PHOROUS ORTHO, DIS-SOLVED (MG/L AS P) (00671) | | NOV 1987 | 0.0 | | 100 | 0.10 | 076 | 0.540 | 0.050 | 0.040 | 0.50 | 0 100 | 0.060 | 0.050 | | 24
JAN 1988 | 9.2 | 98 | 100 | 0.13 | 376 | 0.540 | 0.050 | 0.040 | 0.50 | 0.100 | 0.060 | 0.050 | | 27
MAR | 13 | 88 | 94 | 0.12 | 146 | 1.00 | 0.100 | 0.120 | 0.40 | 0.100 | 0.060 | 0.040 | | 16
APR | 7.8 | 72 | 70 | 0.10 | 663 | 0.650 | 0.440 | 0.430 | 1.2 | 0.170 | 0.110 | 0.060 | | 26
JUN | 6.9 | 73 | 74 | 0.10 | 254 | 0.410 | <0.010 | 0.030 | 0.50 | 0.080 | 0.060 | 0.040 | | 08
AUG | 7.6 | 80 | 85 | 0.11 | 97.0 | 0.280 | <0.010 | 0.020 | 0.70 | 0.160 | 0.050 | 0.040 | | 24 | 8.8 | 92 | 87 | 0.13 | 130 | 0.360 | 0.020 | <0.010 | 0.70 | 0.170 | 0.060 | 0.040 | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). ## ${\tt BLACK \cdot RIVER \ BASIN}$ ## 05382000 BLACK RIVER NEAR GALESVILLE, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS
CHARC
INST
CUBI
FEI
PEI
SECC
(0006 | GE, ALUI
F. INUI
IC DIS
ET SOLI
R (UG
DND AS | M, A
S-
VED
/L
AL) | RSENIC
DIS-
SOLVED
(UG/L
AS AS)
01000) | BARII
DIS
SOLVI
(UG
AS 1 | -
ED
/L
BA) | BER'
LIU
DIS
SOL'
(UG
AS 1 | M,
-
VED
/L
BE) | CADMI
DIS
SOLV
(UG,
AS (| S-
VED
/L
CD) | CHRO
MIUM
DIS-
SOLV
(UG/
AS C | ,
ED
L
R) | COBAL
DIS-
SOLVE
(UG/
AS C | ED
'L
(O) | COPPE
DIS-
SOLV
(UG/
AS C | ED
L
U) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | |----------------------------|-----------------------------|---|---|---|---|--|-------------------------------|---|-----------------------------|--------------------------------------|------------------------|---|-------------------------------|--|--|---------------------------------------|-------------------------------------|---| | NOV 1987
24
MAR 1988 | 1330 | 1420 | | 30 | <1 | | 18 | < | 0.5 | | <1 | | <1 | | <3 | | 3 | 280 | | 16 | 1130 | 3410 | | 60 | <1 | | 25 | < | 0.5 | | <1 | | <1 | | <3 | | 2 | 410 | | APR
26 | 1300 | 1290 | | 30 | <1 | | 21 | < | 0.5 | | <1 | | <1 | | <3 | | 2 | 350 | | AUG
24 | 1125 | 523 | | <10 | <1 | | 18 | < | 0.5 | | <1 | | <1 | | <3 | | 1 | 53 | | DATE | I
SC
(U
A S | EAD,
DIS-
DLVED
JG/L
S PB)
1049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANG
NESE
DIS
SOLV
(UG/
AS M | , MER
- D
ED SO
L (U
N) AS | CURY
IS-
LVED
G/L
HG)
890) | DEI
Di
SOI
(UC
AS | LYB-
NUM,
IS-
LVED
G/L
MO)
060) | (U)
AS | | 801
(UC
AS | JM,
IS-
LVED
G/L
SE) | T:
D:
SO!
(UC
AS | RON-
IUM,
IS-
LVED
G/L
SR)
D80) | VANA
DIUI
DIS
SOL
(UG,
AS (| M,
S-
VED
/L
V) | ZING
DIS
SOLV
(UG)
AS Z | S-
VED
/L
ZN) | | NOV 1987
24 | | < 5 | <4 | | 17 | 0.2 | | <10 | | 3 | | <1 | | 36 | | <6 | | 9 | | MAR 1988
16 | | <5 | <4 | | | <0.1 | | <10 | | <1 | | <1 | | 24 | | <6 | | <3 | | APR | 26
AUG | | <5 | <4 | | | <0.1 | | <10 | | 4 | | <1 | | 27 | | <6 | | 32 | | 24 | | < 5 | <4 | | 21 | <0.1 | | <10 | | 3 | | <1 | | 34 | | <6 | | 18 | | | | DATI | ı tı | 4E | DIS-
HARGE,
INST.
CUBIC
FEET
PER
SECOND
00061) | SPE
CIF:
CON-
DUC:
ANCI
(US/0 | IC
-
C-
E
CM) | TEMPI
ATUI
WATI
(DEG
(000) | RE
ER
C) | SEDI
MENT
SUS-
PENI
(MG/ | r,
-
DED
/L) | SEDI
MENT
DIS
CHARG
SUS
PEND
(T/DA
(8015 | ,
E,
-
ED
Y) | SED
SUS
SIEV
DIA
% FIN
THA
.062
(7033 | SP.
TE
M.
MER
N
MM | | | | | | OC
NC | OT 1987 | 12 | 40 | 547 | : | 145 | 1 | 1.0 | | | | | | | | | | | | | 24 | 133 | 30 1 | 420 | | 95 | 9 | 9.0 | | 13 | 50 | | | 88 | | | | | | | AN 1988
27
AR | 12: | 20 | 616 | - | 162 | (| 0.0 | | 6 | 10 | | | 82 |
| | | | | | 16 | 11: | 30 3 | 410 | : | 110 | : | 1.0 | | 36 | 331 | | | 54 | | | | | | | PR
26 | 130 | 0 1 | 290 | : | 114 | 10 | 0.0 | | 34 | 118 | | | 41 | | | | | | MA | 27 | 09: | 35 | 600 | : | 132 | 20 | 0.0 | | | | | | | | | | | | Ju | ЛN
08 | 11! | 50 | 449 | | 137 | 2: | 2.5 | | 14 | 17 | | | 94 | | | | | | | JL
27 | 08 | . 5 | 363 | : | 152 | 23 | 3.5 | | | | | | | | | | | | AU | 24 | 11: | 25 | 523 | | L40 | 19 | 9.5 | | 42 | 59 | | | 94 | | | | | | SE | 3P
13 | 130 | 00 | 327 | - | 160 | 19 | 9.5 | | | | | | | | | | ## LA CROSSE RIVER BASIN #### 435447091042600 NESHONOC LAKE AT WEST SALEM, WI #### LAKE-STAGE RECORDS LOCATION.--Lat 43°54'47", long 91°04'26", in NE 1/4 sec.34, T.17 N., R.6 W., LaCrosse County, Hydrologic Unit 07040006, at U.S. Highway 16 over Neshonoc Lake, at West Salem. PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Staff gage read by Gary Willinger. Elevation of gage is 699 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 8.70 ft, July 31, 1987; minimum observed, 7.02 ft, June 15, 1987. EXTREMES FOR CURRENT YEAR. -- Maximum gage height observed, 7.82 ft, Oct. 4; minimum observed, 7.32 ft, May 25. ## GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | GAGE
DATE HEIGHT | GAGE
DATE HEIGHT | GAGE
DATE HEIGHT | DATE 1 | GAGE
HEIGHT | |----------------------------|----------------------|---------------------------------------|--|------------------------------------|-------------------------------|------------------------------| | Oct. 4
Apr. 25
May 6 | 7.82
7.72
7.67 | May 18 7.52
25 7.32
June 6 7.47 | June 17 7.42
25 7.47
July 3 7.52 | July 15 7.42
23 7.44
31 7.50 | Aug. 8
18
26
Sept. 3 | 7.52
7.47
7.42
7.57 | #### WATER-QUALITY RECORDS LOCATION.--Lat 43°54'47", long 91°04'26", in NE 1/4 sec.34, T.17 N., R.6 W., LaCrosse County, Hydrologic Unit 07040006, at U.S. Highway 16 over Neshonoc Lake, at West Salem. PERIOD OF RECORD. -- April 1985 to current year. REMARKS. -- Secchi disc readings made by Gary Willinger. | DATE | SECCHI
DEPTH | |----------------------------|-------------------|------------------------|-------------------|-------------------------|-------------------|---------------------|-------------------|-------------------------------|--------------------------| | Oct. 4
Apr. 25
May 6 | 0.7
0.6
0.7 | May 18
25
June 6 | 0.6
0.5
0.4 | June 17
25
July 3 | 0.4
0.3
0.6 | July 15
23
31 | 0.4
0.4
0.4 | Aug. 8
18
26
Sept. 3 | 0.4
0.4
0.5
0.5 | #### 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA LOCATION.--Lat 43°01'29", long 91°10'21", in SE 1/4 SE 1/4 sec.22, T.95 N., R.3 W., Clayton County, Hydrologic Unit 07060001, on right bank in city park at east end of Main Street in McGregor, 2.6 mi upstream from Wisconsin River, 4.3 mi downstream from Yellow River, and at mile 633.4 upstream from Ohio River. DRAINAGE AREA. -- 67,500 mi², approximately. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- August 1936 to current year. REVISED RECORDS. -- WDR IA-75-1: 1974. GAGE.--Water-stage recorder. Datum of gage is 604.84 ft above National Geodetic Vertical Datum. Prior to June 1, 1937, and since June 2, 1939, auxiliary water-stage recorder; June 1, 1937 to June 1, 1939, auxiliary nonrecording gage 14.1 mi upstream in tailwater of dam 9, at datum 5.30 ft lower. REMARKS.--Estimated daily discharges: Dec. 26 to Mar. 13, May 14 to June 8, and July 25 to Aug. 8. Records good except those for estimated daily discharges and for discharges less than 10,000 ft³/s, which are fair. Stage-discharge relation affected by backwater from Wisconsin River and Lock and Dam No. 10. Minor flow regulation caused by navigation dams. U.S. Army Corps of Engineers data collection platform at station. AVERAGE DISCHARGE. -- 52 years, 35,470 ft³/s, 7.14 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 276,000 ft³/s, Apr. 24, 1965; maximum gage height, 25.38 ft, Apr. 24, 1965; minimum daily discharge, 6,200 ft³/s Dec. 9, 1936; minimum gage height, -0.86 ft Aug. 18, 1936. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since at least 1828, that of Apr. 24, 1965. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 57,200 ft³/s, Apr. 2; maximum gage height, 9.84 ft, Apr.1; minimum daily discharge, 8,990 ft³/s, Sept. 15; minimum gage height, 5.95 ft Sept. 17. DISCUADOR CUBIO REEM DED CROOND MAMED VEAD COMODED 1097 TO CEDTEMBED 1099 | | | DISCHA | ARGE, CUBIC | FEET PER | SECOND | , WATER Y
MEAN VALU | EAR OCTOBER
ES | 1987 TO | SEPTEMBER | 1988 | | | |--|--|---|--|--|---|--|--|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 19100 | 22600 | 29000 | 19000 | 18000 | 18000 | 56800 | 30300 | 20000 | 11200 | 10000 | 14900 | | 2 | 17500 | 23700 | 28800 | 18000 | 18000 | 19000 | 57200 | 31700 | 19000 | 11400 | 10000 | 14000 | | 3 | 17900 | 24400 | 28400 | 18000 | 17000 | 21000 | 56900 | 33800 | 17000 | 11500 | 9000 | 14800 | | 4 | 17000 | 24400 | 28800 | 17000 | 17000 | 23000 | 55500 | 34300 | 16000 | 10900 | 9000 | 14700 | | 5 | 16100 | 24000 | 28500 | 16000 | 17000 | 25000 | 52500 | 32800 | 16000 | 9730 | 9000 | 16200 | | 6 | 16700 | 22800 | 27000 | 15500 | 17000 | 27000 | 51200 | 29700 | 16000 | 10200 | 9000 | 16300 | | 7 | 16400 | 21300 | 27100 | 15500 | 17000 | 29000 | 49700 | 26400 | 16000 | 10200 | 9500 | 15800 | | 8 | 17100 | 21000 | 26600 | 16000 | 17000 | 30000 | 49700 | 24800 | 15100 | 10300 | 11000 | 13900 | | 9 | 16900 | 21100 | 26200 | 16000 | 17000 | 32000 | 50300 | 25800 | 14400 | 9940 | 13800 | 12100 | | 10 | 16800 | 21500 | 25500 | 16000 | 16500 | 34000 | 52000 | 27000 | 13800 | 11000 | 15200 | 11500 | | 11 | 16900 | 21500 | 23800 | 16000 | 16500 | 37000 | 53100 | 28100 | 12800 | 12200 | 15200 | 11700 | | 12 | 15900 | 21300 | 24100 | 16000 | 16500 | 40000 | 53400 | 29900 | 12400 | 12300 | 15500 | 10100 | | 13 | 16200 | 21200 | 25100 | 16000 | 16500 | 43000 | 52800 | 31100 | 11600 | 13100 | 16100 | 10400 | | 14 | 16000 | 21400 | 27100 | 16000 | 16500 | 43800 | 52100 | 32000 | 11900 | 11700 | 15600 | 10200 | | 15 | 16900 | 20900 | 30400 | 16000 | 16500 | 44500 | 49700 | 33000 | 9760 | 13100 | 15600 | 8990 | | 16 | 20200 | 20500 | 31700 | 16000 | 16000 | 43700 | 47100 | 35000 | 9850 | 11800 | 15500 | 10100 | | 17 | 25600 | 21100 | 28200 | 16500 | 16000 | 41400 | 45000 | 36000 | 10500 | 12100 | 15000 | 11100 | | 18 | 26400 | 22800 | 27000 | 17000 | 16000 | 39000 | 42600 | 36000 | 11700 | 11600 | 13000 | 13600 | | 19 | 25400 | 23600 | 24400 | 17000 | 16000 | 37400 | 39500 | 35000 | 11000 | 10900 | 12500 | 18100 | | 20 | 23700 | 24000 | 24500 | 17000 | 16500 | 35700 | 37300 | 32000 | 10600 | 11000 | 12200 | 21600 | | 21 | 22100 | 23900 | 22900 | 18000 | 17000 | 32900 | 35800 | 30000 | 12600 | 10800 | 13000 | 23800 | | 22 | 21600 | 23600 | 20400 | 18500 | 17000 | 30200 | 34700 | 28000 | 12600 | 11100 | 13000 | 25900 | | 23 | 21600 | 24800 | 19500 | 18500 | 17000 | 28600 | 35000 | 25000 | 13000 | 11700 | 15700 | 28100 | | 24 | 21500 | 26300 | 21200 | 18500 | 17000 | 27600 | 35200 | 21000 | 13900 | 11900 | 18300 | 26700 | | 25 | 21600 | 26400 | 24200 | 18500 | 17000 | 28300 | 34200 | 18000 | 12900 | 12000 | 18500 | 23400 | | 26
27
28
29
30
31 | 21800
21600
21800
21900
21800
21900 | 26300
24700
24200
25900
28300 | 25000
25000
24000
23000
21000
19000 | 18500
18000
18000
18000
18000
18000 | 17000
17000
17000
17500 | 29300
33100
37700
46200
49900
54100 | 31500
31300
30300
29400
29400 | 15000
14000
15000
17000
18000
20000 | 12900
13600
12500
11500
11700 | 12500
11500
10500
10000
9500
10000 | 18600
18200
16600
15100
15300
15300 | 19700
17300
17800
18500
18900 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 613900
19800
26400
15900
.29
.34 | 699500
23320
28300
20500
.35
.39 | 787400
25400
31700
19000
.38
.43 | 17130
19000
15500 | 488000
16830
18000
16000
.25
.27 | 1061400
34240
54100
18000
.51
.58 | 1331200
44370
57200
29400
.66
.73 | 845700
27280
36000
14000
.40
.47 | 402610
13420
20000
9760
.20
.22 | 347670
11220
13100
9500
.17
.19 | 429300
13850
18600
9000
.21
.24 | 490190
16340
28100
8990
.24
.27 | CAL YR 1987 TOTAL 10052500 MEAN 27540 MAX 51400 MIN 10100 CFSM .41 IN. 5.54 WTR YR 1988 TOTAL 8027870 MEAN 21930 MAX 57200 MIN 8990 CFSM .32 IN. 4.42 ## 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--Continued WATER-QUALITY RECORDS LOCATION.--Samples collected by boat 1.5 mi downstream from discharge station. Prior to April 1981, at bridge on U.S. Highway 18, 1.2 mi upstream from gage. PERIOD OF RECORD. -- Water years 1975 to current year. PERIOD OF DAILY RECORD . -- RIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July 1975 to current year. WATER TEMPERATURES: July 1975 to current year. SUSPENDED-SEDIMENT DISCHARGE: July 1975 to current year. REMARKS. -- Records of specific conductance are obtained from suspended-sediment samples
at time of analysis. EXTREMES FOR PERIOD OF DAILY RECORD.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 2350 mg/L, Mar. 19, 1986; minimum daily mean, 1 mg/L, Dec. 23-25, 1976, Dec. 20, 28, 1977, Feb. 13-17, 23, Mar. 5-9, 1986 and Dec. 2, 6, 8-11,1987. SEDIMENT LOADS: Maximum daily, 363,000 tons Mar. 19, 1986; minimum daily, 31 tons Dec. 25, 1976. EXTREMES FOR CURRENT YEAR.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 108 mg/L May 11; minimum daily mean, 1 mg/L Dec. 2,6, 8-11. SEDIMENT LOADS: Maximum daily, 11,100 tons Apr. 12; minimum daily, 64 tons Dec. 11. # SPECIFIC CONDUCTANCE MICROSIEMENS/CM AT 25 DEG C, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 INSTANTANEOUS VALUES | INSTANTANEOUS VALUES | | | | | | | | | | | | | |----------------------|-----|-----|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | 375 | | 410 | | | | | 400 | | | | 2 | | | | | | | | 320 | 380 | | 340 | 380 | | 3 | | 400 | | | | | 340 | | | | | | | 4 | 420 | | | 380 | | 420 | | | | 400 | | | | 5 | | | | | 430 | | | 300 | 400 | | 340 | 370 | | 6 | 410 | | 380 · | | | | 345 | | | | | | | 7 | | | | | | 410 | | | | | | | | 8 | | 400 | | 420 | 450 | | | | 395 | 385 | 340 | 380 | | 9 | | | | | | | | 320 | | | | | | 10 | | | | | | | | | | | | | | 11 | 420 | | 375 | 430 | | 360 | | 320 | | | | | | 12 | | 390 | | | 445 | | 350 | | 430 | 380 | | | | 13 | | | | | | | | | | | 340 | 380 | | 14 | 420 | | | | | 375 | 370 | | | | | | | 15 | | 400 | 365 | 450 | 450 | | | | | | | | | 16 | | | | | | | | 350 | | 380 | 345 | 380 | | 17 | | | | | | | | | 420 | | | | | 18 | | 390 | 370 | 445 | | 350 | 335 | 345 | | | | | | 19 | 420 | | | | 435 | | | | | | 350 | 400 | | 20 | | | | | | | 350 | | | 355 | | | | 21 | | | 380 | | | 365 | | | 420 | | | | | 22 | 430 | 390 | | 420 | 440 | | | | | | 380 | 400 | | 23 | | | | | | | | | | 340 | | | | 24 | | | 360 | | | | | 360 | 405 | | | | | 25 | 420 | 390 | | 420 | | 350 | | | | | 375 | 390 | | 26 | | | | | 440 | | 334 | | | 350 | | | | 27 | | | | | | | 340 | | | | | 360 | | 28 | 420 | | | | 430 | 350 | | 365 | 400 | | 375 | | | 29 | | | 380 | 420 | | | | | | 340 | | 260 | | 30 | 395 | 380 | | | | | | | | | | 360 | | 31 | | | | | | 375 | | 380 | | | | | ## 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--CONTINUED ## WATER-QUALITY RECORDS WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY OCT | NOV | DEC | JAN | | | | | INSTANTANEOUS VALUES | | | | | | | | | | | | | |--------------------|---------|------------|---------|---------------|---------|-----------------|----------|----------------------|----------|----------|----------|--|--|--|--|--|--|--|--|--| | | | | 0111 | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | | | | | | | | 1 | | . 0 | | .0 | | | 15.0 | 26.0 | 26.0 | 26.0 | 22.0 | | | | | | | | | | | 3
4 13.0
5 | 6.0
 | | .0 |
 | 1.5 | 9.0
 |
16.0 |
26.0 | 26.5 | 23.0 | 22.0 | | | | | | | | | | | 6 13.0 | | 3.0 | | | | 10.0 | | | | | | | | | | | | | | | | 7
8
9 | 6.0 | | .0 | .0 | 2.0 | |
17.0 | 26.0 | 24.0 | 26.0 | 22.0 | | | | | | | | | | | 10 | 11 9.0
12
13 | 5.0 | 3.0 | . 0
 | .0 | 2.0 | 11.0 | 18.0 | 26.0 | 25.0 |
27.0 |
19.5 | | | | | | | | | | | 14 10.0
15 | 4.5 | .0 | .0 | .0 | 2.0 | 11.0 | | | | | | | | | | | | | | | | 16
17 | | | | | | | 18.0 | 26.0 | 25.0 | 28.0 | 20.0 | | | | | | | | | | | 18
19 9.0
20 | 5.0
 | .0
 | .0
 | .0 | 2.0 | 11.0

8.0 | 18.0 | |
27.0 | 27.0 | 21.0 | | | | | | | | | | | 21 | | . 0 | | | 3.0 | | | 26.0 | | | | | | | | | | | | | | 22 8.0
23
24 | 5.0
 |

.0 | . 0
 | . 0
 | | | 20.0 |
25.5 | 26.5 | 26.0
 | 21.0 | | | | | | | | | | | 25 6.0 | 4.0 | | .0 | | 6.0 | | | | | 26.5 | 21.0 | | | | | | | | | | | 26
27
28 6.0 | | | | .0

1.0 |
8.0 | 9.0
9.0 |
18.0 |
27.0 | 26.0 |
27.0 | 21.0 | | | | | | | | | | | 29
30 6.0
31 | 4.0 | . 0
 | . 0
 | | 7.5 | | 26.0 | | 27.5 | | 18.0 | | | | | | | | | | SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MEAN
CONCEN-
TRATION
(MG/L) | LOADS
(T/DAY) | |--------|--------------------------------------|------------------|--------------------------------------|------------------|--------------------------------------|------------------|--------------------------------------|------------------|--------------------------------------|------------------|--------------------------------------|------------------| | | 00 | TOBER | NOV | EMBER | DEC | EMBER | JA | NUARY | FEB | RUARY | M | IARCH | | 1
2 | 10 | 516 | 14 | 854 | 2 | 157 | 3 | 154 | 3 | 146 | 6 | 292 | | 2 | 10 | 472 | 16 | 1020 | 1 | 78 | 3 | 146 | 3 | 146 | 7 | 359 | | 3 | 9 | 435 | 18 | 1190 | 2 | 153 | 3 | 146 | 3 | 138 | 7 | 397 | | 4 | 9 | 413 | 16 | 1050 | 3 | 233 | 3 | 138 | 4 | 184 | 7 | 435 | | 5 | 8 | 348 | 14 | 907 | 2 | 154 | 3 | 130 | 4 | 184 | 7 | 472 | | 6 | 21 | 947 | 15 | 923 | 1 | 73 | 3 | 126 | 3 | 138 | 7 | 510 | | 7 | 38 | 1680 | 12 | 690 | 2 | 146 | 4 | 167 | 3 | 138 | 6 | 470 | | 8 | 20 | 923 | 7 | 397 | 1 | 72 | 4 | 173 | 3 | 138 | 6 | 486 | | 9 | 21 | 958 | 8 | 456 | 1 | 71 | 5 | 216 | 3 | 138 | 6 | 518 | | 10 | 19 | 862 | 12 | 697 | 1 | 69 | 6 | 259 | 2 | 89 | 6 | 551 | | 11 | 14 | 639 | 11 | 639 | 1 | 64 | 7 | 302 | 3 | 134 | 6 | 599 | | 12 | 13 | 558 | 10 | 575 | 2 | 130 | 6 | 259 | 3 | 134 | 8 | 864 | | 13 | 15 | 656 | 10 | 572 | 2 | 136 | 5 | 216 | 3 | 134 | 11 | 1280 | | 14 | 17 | 734 | 10 | 578 | 8 | 585 | 5 | 216 | 3 | 134 | 25 | 2960 | | 15 | 16 | 730 | 10 | 564 | 16 | 1310 | 4 | 173 | 2 | 89 | 32 | 3840 | | 16 | 17 | 927 | 10 | 553 | 21 | 1800 | 4 | 173 | 2 | 86 | 31 | 3660 | | 17 | 41 | 2830 | 9 | 513 | 12 | 914 | 4 | 178 | 2 | 86 | 20 | 2240 | | 18 | 42 | 2990 | 9 | 554 | 5 | 364 | 4 | 184 | 2 | 86 | 11 | 1160 | | 19 | 17 | 1170 | 18 | 1150 | 14 | 922 | 3 | 138 | 2 | 8 6 | 10 | 1010 | | 20 | 13 | 832 | 10 | 648 | 17 | 1120 | 3 | 138 | 2 | 89 | 10 | 964 | | 21 | 12 | 716 | 7 | 452 | 7 | 433 | 2 | 97 | 2 | 92 | 10 | 888 | | 22 | 19 | 1110 | 9 | 573 | 4 | 220 | 2 | 100 | 2 | 92 | 10 | 815 | | 23 | 15 | 875 | 11 | 737 | 4 | 211 | 2 | 100 | 3 | 138 | 10 | 772 | | 24 | 8 | 464 | 11 | 781 | 2 | 114 | 2 | 100 | 3 | 138 | 12 | 894 | | 25 | 7 | 408 | 10 | 713 | 2 | 131 | 2 | 100 | 4 | 184 | 23 | 1760 | | 26 | 7 | 412 | 9 | 639 | 2 | 135 | 3 | 150 | 4 | 184 | 28 | 2220 | | 27 | 7 | 408 | 8 | 534 | 3 | 202 | 3 | 146 | 4 | 184 | 38 | 3400 | | 28 | 8 | 471 | 6 | 392 | 3 | 194 | 3 | 146 | 5 | 229 | 51 | 5190 | | 29 | . 8 | 473 | 4 | 280 | 3 | 186 | 3 | 146 | 5 | 236 | 64 | 7980 | | 30 | 11 | 647 | 3 | 229 | 3 | 170 | 3 | 146 | | | 50 | 6740 | | 31 | 13 | 769 | | | 3 | 154 | 3 | 146 | | | 30 | 4380 | | TOTAL | | 26373 | | 19860 | | 10701 | | 5009 | | 3974 | | 58106 | ## 05389500 MISSISSIPPI RIVER AT MCGREGOR, IA--CONTINUED ## WATER-QUALITY RECORDS SUSPENDED-SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MEAN
CONCEN-
TRATION
(MG/L) | LOADS
(T/DAY) | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--------------------------------------|---------------------------------|--------------------------------------|---|--------------------------------------|---|--------------------------------------|-----------------------------------| | | A | APRIL | | MAY | J | UNE | J | ULY | AU | GUST | SEP | TEMBER | | 1 | 27 | 4140 | 18 | 1470 | 30 | 1620 | 22 | 665 | 15 | 405 | 28 | 1130 | | 2 | 26 | 4020 | 20 | 1710 | 23 | 1180 | 21 | 646 | 21 | 567 | 30 | 1130 | | 3 | 24 | 3690 | 28 | 2560 | 20 | 918 | 18 | 559 | 25 | 607 | 30 | 1200 | | 4 | 24 | 3600 | 26 | 2410 | 19 | 821 | 12 | 353 | 27 | 656 | 30 | 1190 | | 5 | 33 | 4680 | 20 | 1770 | 17 | 734 | 12 | 315 | 31 | 753 | 29 | 1270 | | 6 | 43 | 5940 | 18 | 1440 | 16 | 691 | 11 | 303 | 28 | 680 | 34 | 1500 | | 7 | 42 | 5640 | 15 | 1070 | 16 | 691 | 11 | 303 | 20 | 513 | 38 | 1620 | | 8 | 39 | 5230 | 15 | 1000 | 15 | 612 | 11 | 306 | 19 | 564 | 27 | 1010 | | 9 | 42 | 5700 | 20 | 1390 | 15 | 583 | 10 | 268 | 35 | 1300 | 24 | 784 | | 10 | 52 | 7300 | 57 | 4160 | 15 | 559 | 11 | 327 | 46 | 1890 | 22 | 683 | | 11 | 65 | 9320 | 108 | 8190 | 14 | 484 | 16 | 527 | 38 | 1560 | 24 | 758 | | 12 | 77 | 11100 | 89 | 7180 | 13 | 435 | 21 | 697 | 25 | 1050 | 43 | 1170 | | 13 | 73 | 10400 | 46 | 3860 | 50 | 1570 | 25 | 884 | 19 | 826 | 33 | 927 | | 14 | 74 | 10400 | 30 | 2590 | 49 | 1570 | 24 | 758 | 26 | 1100 | 23 | 633 | | 15 | 50 | 6710 | 25 | 2230 | 37 | 975 | 21 | 743 | 27 | 1140 | 15 | 364 | | 16 | 37 | 4710 | 21 | 1980 | 30 | 798 | 17 | 542 | 24 | 1000 | 8 | 218 | | 17 | 28 | 3400 | 21 | 2040 | 24 | 680 | 18 | 588 | 22 | 891 | 6 | 180 | | 18 | 24 | 2760 | 21 | 2040 | 23 | 727 | 32 | 1000 | 18 | 632 | 12 | 441 | | 19 | 24 | 2560 | 20 | 1890 | 23 | 683 | 30 | 883 | 17 | 574 | 19 | 929 | | 20 | 23 | 2320 | 20 | 1730 | 22 | 630 | 25 | 742 | 16 | 527 | 27 | 1570 | | 21 | 23 | 2220 | 19 | 1540 | 22 | 748 | 17 | 496 | 28 | 983 | 25 | 1610 | | 22 | 23 | 2150 | 18 | 1360 | 21 | 714 | 16 | 480 | 60 | 2110 | 18 | 1260 | | 23 | 22 | 2080 | 17 | 1150 | 20 | 702 | 20 | 632 | 72 | 3050 | 16 | 1210 | | 24 | 22 | 2090 | 16 | 907 | 20 | 751 | 30 | 964 | 37 | 1830 | 26 | 1870 | | 25 | 22 | 2030 | 16 | 778 | 20 | 697 | 26 | 842 | 19 | 949 | 94 | 5940 | | 26
27
28
29
30
31 | 21
21
20
20
19 | 1790
1770
1640
1590
1510 | 16
23
47
53
45
38 | 648
869
1900
2430
2190
2050 | 21
23
23
22
22 | 731
845
776
683
695 | 25
33
29
23
21
16 | 844
1020
822
621
539
432 | 19
24
31
36
35
32 | 954
1180
1390
1470
1450
1320 |
77
30
20
12
18 | 4100
1400
961
599
919 | | TOTAL |
LOAD FOR Y | 132490
EAR: | 440946 | 68532
TONS. | | 24303 | | 19101 | | 33921 | | 38576 | ## PARTICLE-SIZE DISTRIBUTION OF SUSPENDED SEDIMENT, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | TEMPER-
ATURE
WATER
(DEG C)
(00010) | STREAM-
FLOW,
INSTAN-
TANEOUS
(CFS)
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 MM
(70331) | |----------------|------|---|--|---|---|--| | OCT 1987 | | | | | | | | 07
APR 1988 | 1230 | 13.0 | 13100 | 43 | 1520 | 94 | | 08
JUN | 1305 | 12.5 | 48900 | 40 | 5280 | 96 | | 08
JUL | 1200 | 27.0 | 13500 | 19 | 693 | 92 | | 20
SEP | 1110 | 28.0 | 11200 | 30 | 907 | 86 | | 01 | 1035 | 22.0 | 13100 | 27 | 955 | 98 | ## PARTICLE-SIZE DISTRIBUTION OF SURFACE BED MATERIAL, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | | | BED | BED | $_{\rm BED}$ | BED | BED | BED | BED | BED | BED | |----------|------|---------|---------|---------|---------|--------------|---------|---------|---------|---------|---------|---------| | | | | NUMBER | MAT. | | | STREAM- | OF | SIEVE | | | FLOW, | SAM- | DIAM. | | | INSTAN- | PLING | % FINER | DATE | TIME | TANEOUS | POINTS | THAN | | | (CFS) | (COUNT) | .062 MM | .125 MM | .250 MM | .500 MM | 1.00 MM | 2.00 MM | 4.00 MM | 8.00 MM | 16.0 MM | | | | (00061) | (00063) | (80164) | (80165) | (80166) | (80167) | (80168) | (80169) | (80170) | (80171) | (80172) | | OCT 1987 | | | | | | | | | | | | | | 07 | 1230 | 13100 | 6 | 5 | 9 | 29 | 71 | 82 | 86 | 91 | 99 | 100 | | APR 1988 | | | | | | | | | | | | | | 08 | 1305 | 48900 | 5 | 5 | 13 | 48 | 76 | 86 | 89 | 92 | 95 | 100 | | SEP | | | | | | | | | | | | | | 01 | 1035 | 13100 | 6 | 1 | 3 | 21 | 82 | 97 | 99 | 99 | 100 | | **UPPER WISCONSIN RIVER BASIN** #### 05390500 ANVIL LAKE NEAR EAGLE RIVER, WI #### LAKE-STAGE RECORDS LOCATION.--Lat 45°57'07", long 89°03'26", in NW 1/4 NE 1/4 sec.13, T.40 N., R.11 E., Vilas County, Hydrologic Unit 07070001, 9.6 mi east of Eagle River. DRAINAGE AREA.--4.11 \min^2 . Area of Anvil Lake, 380 acres. PERIOD OF RECORD.--August 1936 to September 1981 (fragmentary), June 1985 to current year. REVISED RECORD. -- WDR WI-80-1: Drainage area. GAGE. --Nonrecording gage. Datum of gage is 90.00 ft above datum assumed by Wisconsin Department of Natural Resources: gage readings have been reduced to elevations above this datum. Prior to Aug. 13, 1950, staff gage 0.3 mi southeast at same datum; Aug. 14 to Sept. 30, 1981, staff gage 0.2 mi east at same datum. Gage read by James Sachse. REMARKS.--Add 90 ft to obtain elevation above datum assumed for this lake by Wisconsin Department of Natural Resources. Lake has no surface outlet. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 7.20 ft, May 3, 7, 17, 21, 24, 28, June 20 and 24, 1943; minimum observed, 2.10 ft July 31, 1964. EXTREMES FOR CURRENT YEAR. -- Maximum gage height observed, 4.03 ft, May 1; minimum observed, 3.07 ft, Sept. 18. #### GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | GAGE
DATE HEIGHT | GAGE
DATE HEIGHT | GAGE
DATE HEIGHT | DATE | GAGE
HEIGHT | |--------|----------------|---------------------|---------------------|---------------------|---------|----------------| | Oct. 3 | 4.00 | May 1 4.03 | June 13 3.50 | July 21 3.21 | Sept. 6 | 3.12 | | 18 | 4.01 | 11 3.99 | 20 3.40 | 30 3.09 | 18 | 3.07 | | Nov. 8 | 3.96 | 29 3.76 | July 3 3.24 | Aug. 6 3.19 | 20 | 3.18 | | | 3.98 | June 5 3.68 | 14 3.19 | 23 3.10 | 23 | 3.16 | ## WATER-QUALITY RECORDS LOCATION.--Lat $45^{\circ}56'39"$, long $89^{\circ}03'44"$, in NE 1/4 SW 1/4 sec.13, T.40 N., R.11 E., Vilas County, Hydrologic Unit 07070001, near center of lake, and 9.2 mi east of Eagle River. PERIOD OF RECORD. -- June 1985 to current year. REMARKS.--Secchi disc readings made by James Sachse. | DATE | SECCHI
DEPTH | |------------------------|-------------------|------------------------|-------------------|-------------------------|-------------------|-------------------------|-------------------|--------------------------------|--------------------------| | Oct. 3
18
May 17 | 2.9
2.9
4.7 | May 29
June 5
13 | 6.4
5.9
5.6 | June 20
July 3
14 | 4.7
3.7
2.5 | July 21
30
Aug. 6 | 2.4
2.8
3.2 | Aug. 23
Sept. 6
18
23 | 2.9
2.4
2.4
2.6 | #### 455426089254700 ALMA LAKE NEAR ST. GERMAIN, WI ## LAKE-STAGE RECORDS LOCATION.--Lat $45^{\circ}54^{\circ}26^{\circ}$, long $89^{\circ}25^{\circ}47^{\circ}$, in NE 1/4 sec.36, T.40 N., R.8 E., Vilas County, Hydrologic Unit 07070001, 3 mi east of St. Germain. PERIOD OF RECORD. -- October 1984 to current year. GAGE .-- Staff gage read by John P. Seibel. Elevation of gage is 1,617 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 12.35 ft, Apr. 11, 12, 1986; minimum observed, 9.68 ft, Sept. 6, 29, 30, 31, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 10.40 ft, May 1, 2, 9, 10; minimum observed, 9.68 ft, July 6, 29-31. | | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | | | | | | | | | |-----------|--|-------|-----|-----|-----|-----|-----|-------|-------|------|-----|-----|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1 | 10.33 | 10.36 | | | | | | 10.40 | 10.18 | 9.78 | | | | | | $\bar{2}$ | 10.32 | 10.36 | | | | | | 10.40 | 10.20 | 9.76 | | | | | | 3 | 10.31 | 10.35 | | | | | | 10.38 | 10.19 | 9.74 | | | | | | 4 | 10.30 | 10.35 | | | | | | 10.38 | 10.18 | 9.72 | | | | | | 5 | 10.29 | 10.35 | | | | | | 10.38 | 10.17 | 9.70 | | | | | | 6 | 10.31 | 10.35 | | | | | | 10.37 | 10.16 | 9.68 | | | | | | 7 | 10.33 | 10.35 | | | | | | 10.36 | 10.15 | 9.69 | | | | | | 8 | 10.33 | 10.34 | | | | | | 10.36 | 10.14 | 9.86 | | | | | | 9 | 10.32 | 10.34 | | | | | | 10.40 | 10.12 | 9.88 | | | | | | 10 | 10.32 | 10.34 | | | | | | 10.40 | 10.10 | 9.88 | | | | | | 11 | 10.32 | 10.33 | | | | | | 10.39 | 10.08 | 9.84 | | | | | | 12 | 10.32 | 10.33 | | | | | | 10.38 | 10.06 | 9.84 | | | | | | 13 | 10.32 | 10.33 | | | | | | 10.38 | 10.04 | 9.82 | | | | | | 14 | 10.32 | 10.33 | | | | | | 10.37 | 10.02 | 9.80 | | | | | | 15 | 10.33 | 10.33 | | | | | | 10.36 | 10.00 | 9.84 | | | | | | 16 | 10.34 | 10.32 | | | | | | 10.35 | 9.98 | 9.84 | | | | | | 17 | 10.37 | 10.34 | | | | | | 10.34 | 9.96 | 9.82 | | | | | | 18 | 10.39 | 10.35 | | | | | | 10.32 | 9.94 | 9.81 | | | | | | 19 | 10.39 | | | | | | | 10.30 | 10.00 | 9.80 | | | | | | 20 | 10.39 | | | | | | | 10.32 | 9.99 | 9.78 | | | | | | 21 | 10.39 | | | | | | | 10.30 | 9.98 | 9.78 | | | | | | 22 | 10.39 | | | | | | | 10.32 | 9.96 | 9.78 | | | | | | 23 | 10.39 | | | | | | | 10.31 | 9.94 | 9.76 | | | | | | 24 | 10.38 | | | | | | | 10.30 | 9.92 | 9.75 | | | | | | 25 | 10.38 | | | | | | | 10.28 | 9.90 | 9.74 | | | | | | 26 | 10.38 | | | | | | | 10.26 | 9.88 | 9.74 | | | | | | 27 | 10.38 | | | | | | | 10.24 | 9.86 | 9.72 | | | | | | 28 | 10.37 | | | | | | | 10.22 | 9.85 | 9.70 | | | | | | 29 | 10.37 | | | | | | | 10.20 | 9.82 | 9.68 | | | | | | 30 | 10.37 | | | | | | | 10.19 | 9.80 | 9.68 | | | | | | 31 | 10.37 | | | | | | | 10.18 | | 9.68 | | | | | | MEAN | 10.35 | | | | | | | 10.33 | 10.02 | 9.77 | | | | | | MAX | 10.39 | | | | | | | 10.40 | 10.20 | 9.88 | | | | | | MIN | 10.29 | | | | | | | 10.18 | 9.80 | 9.68 | | | | | ## WATER-QUALITY RECORDS LOCATION.--Lat $45^{\circ}54'36''$, long $89^{\circ}25'43''$, in NE 1/4 sec.36, T.40 N., R.8 E., Vilas County, Hydrologic Unit 07070001, near center of lake and 3 mi east of St. Germain. PERIOD OF RECORD. -- May 1985 to current year. REMARKS. -- Secchi disc readings made by John P. Seibel. | DATE | SECCHI
DEPTH | |--------|-----------------|-----------------|-----------------|------------------|-----------------|--------------------|-----------------|---------------|-----------------| | Oct. 7 | 2.1 | Nov. 7
May 2 | 2.1 | May 19
June 5 | 5.2
4.6 | June 29
July 12 | 4.3
2.7 | July 19
24 | 2.9
2.7 | ## 455504089260500 MOON LAKE NEAR ST. GERMAIN, WI ## WATER-QUALITY RECORDS LOCATION.--Lat $45^{\circ}55'04"$, long $89^{\circ}26'05"$, in SE 1/4 SE 1/4 sec.25, T.40 N., R.8 E., Vilas County, Hydrologic Unit 07070001, near center of lake, and 3 mi east of St. Germain. PERIOD OF RECORD .-- May 1985 to current year. REMARKS.--Secchi disc readings made by John P. Seibel and John Schunk. | DATE | SECCHI
DEPTH | |---------|-----------------|--------|-----------------|---------|-----------------|--------|-----------------|---------|-----------------| | Oct. 7 | 2.7 | May 19 | 4.6 | June 17 | 5.3 | July 8 | 4.9 | July 24 | 4.7 | | 24 | 2.7 | June 3 | 5.8 | 23 | 5.2 | 12 | 4.4 | 27 | 4.7 | | Nov. 11 | 2.7 | 5 | 4.7 | 29 | 5.6 | 19 | 4.6 | Aug. 10 | 5.3 | | May 2 | 4.3 | 10 | 5.2 | July 1 | 5.0 | 22 | 5.1 | 15 | 5.7 | ## 05391000 WISCONSIN RIVER AT RAINBOW LAKE, NEAR LAKE TOMAHAWK, WI LOCATION.--Lat 45°49'50", long 89°33'08", in NE 1/4 NE 1/4 sec.36, T.39 N., R.7 E., Oneida County, Hydrologic Unit 07070001, on right bank 500 ft downstream from Gilmore Creek, 0.4 mi downstream from Rainbow Lake, and 2.3 mi northeast of Lake Tomahawk. DRAINAGE AREA. -- 757 mi². PERIOD OF RECORD.--July 1936 to current year. Prior to October 1955, published as "at Rainbow Reservoir, near Lake Tomahawk." REVISED RECORDS.--WSP 895: 1937(M). WSP 1508: 1944. WDR WI-83-1: Drainage
area. WDR WI-80-1: Datum. GAGE.--Water-stage recorder. Datum of gage is 1,569.05 ft above National Geodetic Vertical Datum of 1929 (levels by Wisconsin Valley Improvement Co.). REMARKS.--No estimated daily discharges. Record good. Flow regulated by Rainbow Lake and 12 smaller reservoirs upstream from station. AVERAGE DISCHARGE. -- 52 years, 697 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,570 $\rm ft^3/s$, Sept. 5, 1941, gage height, 7.59 ft; minimum, 17 $\rm ft^3/s$, Oct. 10-12, 1940; minimum daily, 35 $\rm ft^3/s$, Apr. 6, 1955. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 733 $\rm ft^3/s$, Feb. 17, 18, gage height, 2.61 ft; minimum daily, 185 $\rm ft^3/s$, Oct. 21. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Oct. 1-26, Nov. 2-26, and Aug. 11 to Sept. 22.) 0.6 176 2.0 515 1.0 261 3.0 889 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---------------------------------|--|--|--------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | 1 | 264 | 315 | 324 | 701 | 646 | 683 | 353 | 314 | 343 | 241 | 256 | 251 | | 2 | 230 | 282 | 324 | 697 | 653 | 700 | 358 | 326 | 325 | 228 | 286 | 273 | | 3 | 213 | 258 | 323 | 698 | 675 | 692 | 365 | 326 | 329 | 228 | 266 | 254 | | 4 | 247 | 233 | 380 | 695 | 705 | 683 | 275 | 322 | 332 | 228 | 237 | 263 | | 5 | 266 | 214 | 423 | 693 | 702 | 678 | 216 | 322 | 332 | 227 | 241 | 275 | | 6 | 253 | 242 | 410 | 691 | 701 | 670 | 220 | 323 | 329 | 227 | 241 | 210 | | 7 | 238 | 274 | 407 | 683 | 698 | 662 | 230 | 323 | 302 | 225 | 231 | 191 | | 8 | 235 | 277 | 409 | 676 | 696 | 658 | 236 | 328 | 283 | 224 | 230 | 231 | | 9 | 252 | 279 | 413 | 676 | 686 | 652 | 239 | 340 | 280 | 249 | 230 | 287 | | 10 | 269 | 281 | 418 | 679 | 680 | 649 | 239 | 343 | 279 | 278 | 228 | 292 | | 11 | 269 | 281 | 541 | 677 | 679 | 645 | 240 | 340 | 276 | 258 | 247 | 309 | | 12 | 271 | 280 | 622 | 674 | 677 | 640 | 241 | 332 | 275 | 225 | 264 | 315 | | 13 | 270 | 276 | 621 | 676 | 677 | 634 | 239 | 324 | 273 | 224 | 264 | 307 | | 14 | 273 | 277 | 617 | 678 | 674 | 630 | 234 | 324 | 274 | 224 | 274 | 298 | | 15 | 277 | 275 | 611 | 677 | 670 | 624 | 279 | 324 | 271 | 228 | 252 | 293 | | 16 | 264 | 275 | 611 | 676 | 670 | 621 | 312 | 321 | 267 | 228 | 225 | 310 | | 17 | 271 | 256 | 613 | 672 | 698 | 617 | 356 | 323 | 267 | 232 | 219 | 324 | | 18 | 244 | 249 | 609 | 671 | 728 | 611 | 379 | 323 | 265 | 235 | 215 | 322 | | 19 | 204 | 247 | 600 | 668 | 723 | 605 | 383 | 323 | 268 | 246 | 215 | 291 | | 20 | 188 | 247 | 602 | 665 | 714 | 600 | 386 | 323 | 269 | 243 | 216 | 223 | | 21 | 185 | 252 | 669 | 666 | 716 | 595 | 385 | 324 | 271 | 242 | 216 | 232 | | 22 | 246 | 233 | 713 | 665 | 708 | 589 | 396 | 337 | 265 | 222 | 239 | 311 | | 23 | 289 | 211 | 713 | 661 | 702 | 642 | 408 | 342 | 265 | 204 | 259 | 348 | | 24 | 294 | 211 | 713 | 662 | 696 | 680 | 408 | 332 | 266 | 217 | 246 | 341 | | 25 | 296 | 231 | 713 | 659 | 692 | 493 | 406 | 318 | 262 | 235 | 227 | 339 | | 26
27
28
29
30
31 | 294
297
306
316
318
313 | 251
278
308
323
325 | 713
710
709
709
712
707 | 658
655
645
639
638
638 | 686
679
674
662 | 363
361
357
349
346
348 | 343
319
301
254
270 | 305
322
335
335
361
372 | 261
262
262
262
262 | 240
255
268
271
269
240 | 242
250
250
251
251
251 | 333
338
345
345
346 | | TOTAL | 8152 | 7941 | 17659 | 20809 | 19967 | 18077 | 9270 | 10207 | 8477 | 7361 | 7519 | 8797 | | MEAN | 263 | 265 | 570 | 671 | 689 | 583 | 309 | 329 | 283 | 237 | 243 | 293 | | MAX | 318 | 325 | 713 | 701 | 728 | 700 | 408 | 372 | 343 | 278 | 286 | 348 | | MIN | 185 | 211 | 323 | 638 | 646 | 346 | 216 | 305 | 261 | 204 | 215 | 191 | CAL YR 1987 TOTAL 150765 MEAN 413 MAX 888 MIN 182 WTR YR 1988 TOTAL 144236 MEAN 394 MAX 728 MIN 185 ## 454554089473400 BEAR LAKE NEAR HAZELHURST, WI #### LAKE-STAGE RECORDS LOCATION.--Lat 45°45'54", long 89°47'34", in SW 1/4 sec. 19, T.38 N., R.6 E., Oneida County, Hydrologic Unit 07070001, 4.5 mi southwest of Hazelhurst. PERIOD OF RECORD .-- October 1984 to current year. GAGE.--Staff gage read by Ruth Van Prooien. Elevation of gage is 1562 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 8.67 ft, Oct. 7 and 9, 1986; minimum observed, 7.50 ft, May 17, 1987. EXTREMES FOR CURRENT YEAR. -- Maximum gage height observed, 8.29 ft, Apr. 10; minimum observed, 7.63 ft, July 17. ## GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | |---------|----------------|---------|----------------|---------|----------------|---------|----------------|---------|----------------| | Oct. 30 | | May 2 | 8.17 | June 15 | 7.76 | July 17 | 7.63 | Aug. 26 | 7.69 | | Apr. 10 | | June 10 | 7.83 | 18 | 7.75 | Aug. 2 | 7.64 | Sept. 3 | 7.77 | | 21 | | 12 | 7.79 | 30 | 7.67 | 12 | 7.66 | 4 | 7.76 | | 30 | | 13 | 7.78 | July 9 | 7.65 | 23 | 7.71 | 21 | 7.81 | #### WATER-QUALITY RECORDS LOCATION.--Lat 45°45'56", long 89°48'04", in SE 1/4 sec. 24, T.38 N., R.5 E., Oneida County, Hydrologic Unit 07070001, near center of lake, and 4.8 mi southwest of Hazelhurst. PERIOD OF RECORD. -- April 1985 to current year. REMARKS. -- Secchi disc readings made by Dale Jalinski. | DATE | SECCHI
DEPTH | |------------------------------|-------------------|-----------------------|-------------------|-------------------------|-------------------|--------------|-----------------|---------------|-----------------| | Oct. 14
Nov. 1
Apr. 24 | 4.3
4.4
4.3 | May 8
25
June 5 | 4.5
4.5
4.7 | June 26
July 9
24 | 2.4
2.6
3.2 | Aug. 6
16 | 2.9
2.9 | Sept. 5
18 | 3.2
4.1 | #### 05393500 SPIRIT RIVER AT SPIRIT FALLS, WI LOCATION.--Lat $45^{\circ}26'58"$, long $89^{\circ}58'47"$, in NW 1/4 sec.10, T.34 N., R.4 E., Lincoln County, Hydrologic Unit 07070001, on right bank 40 ft downstream of bridge 0.2 mi south of Spirit Falls, 0.6 mi upstream from Squaw Creek, and 2.0 mi downstream from Richie Creek. DRAINAGE AREA. -- 81.6 mi². PERIOD OF RECORD. -- April 1942 to current year. REVISED RECORDS.--WSP 1308: 1943(M), 1948-50(M). WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,461.63 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 4, 1982, nonrecording gage 40 ft upstream at same datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. AVERAGE DISCHARGE. -- 46 years, 86.0 ft³/s, 14.31 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,180 ft³/s, Sept. 18, 1942, gage height, 10.00 ft, from rating curve extended above 2,500 ft³/s; minimum observed, 1.0 ft³/s, Aug. 11, 1964, gage height, 0.85 ft. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 800 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|--------|------|-----------------------------------|---------------------| | Mar. 31 | 1500 | ice jam | *5.87 | Apr. 4 | 0300 | *664 | 4.51 | Minimum discharge, 2.8 ft³/s, part of each day July 30, 31, Aug. 1-4, gage height, 1.00 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 3-8, Dec. 12 to Apr. 1.) | 0.9 | 2.0 | 2.0 | 58 | |-----|-----|-----|-----| | 1.0 | 3.2 | 2.5 | 122 | | 1.1 | 4.8 | 3.0 | 215 | | 1.2 | 7.0 | 4.0 | 480 | | 1.4 | 14 | 5.0 | 870 | | 17 | 31 | | | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | |--|--|--|----------------------------------|----------------------------------|--------------------------------|--|--|----------------------------------|-----------------------------------|---|--|--| | 1
2
3
4
5 | 8.7
10
12
11
9.7 | 42
44
58
99
89 | 138
112
94
70
62 | 26
24
24
25
22 | 17
17
16
16
15 | 16
15
15
15
16 | 360
468
566
629
526 | 82
68
57
51
49 | 10
9.9
9.9
9.4
8.4 | 5.1
4.5
4.2
3.7
3.4 | 2.8
2.8
2.8
3.0
3.1 | 4.7
4.5
16
28
19 | | 6
7
8
9
10 | 9.8
13
13
13 | 72
61
66
64
53 | 56
50
50
72
102 | 21
20
18
18
18 | 15
14
14
14
14 | 16
17
17
17
20 | 529
462
345
268
228 | 43
36
31
80
131 | 7.6
7.1
6.6
6.5
6.1 | 3.1
3.0
3.0
4.2
8.4 | 3.8
3.5
4.0
6.1
5.6 | 13
10
8.3
6.9
6.4 | | 11
12
13
14
15 | 12
11
11
10
14 | 48
44
43
40
39 | 94
84
70
62
54 | 18
19
19
20
20 | 14
14
14
15
15 | 23
33
50
47
48 | 187
152
129
110
102 |
103
86
81
68
57 | 5.8
5.4
5.2
5.1
4.4 | 6.1
4.8
4.3
4.3 | 6.0
4.7
5.4
7.7
7.6 | 5.9
5.3
4.6
4.5
4.4 | | 16
17
18
19
20 | 73
101
95
72
57 | 43
90
179
143
102 | 49
45
42
41
41 | 21
21
20
20
19 | 15
15
15
16
16 | 44
42
41
38
37 | 83
74
67
59
51 | 48
41
35
31
27 | 4.9
4.6
4.2
4.9
5.2 | 4.7
6.1
5.5
4.9
4.6 | 6.1
5.0
4.3
3.9
3.7 | 4.4
5.6
5.9
7.1
21 | | 21
22
23
24
25 | 56
60
60
59
54 | 88
73
75
88
79 | 42
42
40
38
37 | 19
19
18
18 | 15
15
16
16
15 | 36
37
41
48
60 | 45
42
44
54
65 | 24
23
21
19
16 | 4.8
4.5
4.6
5.2
4.5 | 4.5
4.7
4.6
4.2
3.9 | 3.6
4.0
9.2
12
8.3 | 22
17
12
10
8.1 | | 26
27
28
29
30
31 | 53
67
66
57
50
45 | 72
64
62
141
190 | 33
30
28
29
29
28 | 17
17
17
16
17
18 | 15
16
16
16 | 500
450
350
300
350
400 | 66
77
138
133
102 | 15
14
13
14
13 | 3.9
3.4
4.5
7.1
6.7 | 3.5
3.2
3.0
2.9
2.9
2.9 | 6.5
6.2
6.5
6.1
5.6
4.9 | 6.6
8.6
9.7
11
14 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1196.2
38.6
101
8.7
.47
.55 | 2351
78.4
190
39
.96
1.07 | 1764
56.9
138
28
.70 | 607
19.6
26
16
.24 | 441
15.2
17
14
.19 | 3139
101
500
15
1.24
1.43 | 6161
205
629
42
2.52
2.81 | 1389
44.8
131
12
.55 | 180.4
6.01
10
3.4
.07 | 132.3
4.27
8.4
2.9
.05
.06 | 164.8
5.32
12
2.8
.07
.08 | 304.5
10.1
28
4.4
.12
.14 | CAL YR 1987 TOTAL 14240.6 MEAN 39.0 MAX 190 MIN 4.2 CFSM .48 IN. 6.49 WTR YR 1988 TOTAL 17830.2 MEAN 48.7 MAX 629 MIN 2.8 CFSM .60 IN. 8.13 #### 05394500 PRAIRIE RIVER NEAR MERRILL, WI LOCATION.--Lat 45°14'09", long 89°38'59", on line between secs.20 and 29, T.32 N., R.7 E., Lincoln County, Hydrologic Unit 07070002, on left bank 40 ft upstream from bridge on County Trunk Highway C, 1.5 mi upstream from Meadow Creek, 4.5 mi northeast of Merrill, and 8.0 mi upstream from mouth. DRAINAGE AREA. -- 184 mi² PERIOD OF RECORD.--January 1914 to September 1931, August 1939 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1915-17(M), 1919-21(M), 1923-31(M), 1942-43(M), 1945(M), 1948-50(M). WDR WI-77-1: Drainage area. WDR WI-79-1: 1972. GAGE.--Water-stage recorder. Datum of gage is 1,297.22 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 9, 1968, nonrecording gage 40 ft downstream at same datum. REMARKS.--Estimated daily discharges: June 16-24, and ice periods listed in table below. Records good except those for estimated daily discharges, which are fair. AVERAGE DISCHARGE. -- 66 years (1914-31, 1939-88), 180 ft³/s, 13.28 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,800 ft³/s, Aug. 31, 1941, gage height, 9.45 ft, from flood marks, based on rating curve extended above 2,200 ft³/s; minimum observed, 34 ft³/s, Oct. 26, 1947, gage height, 1.39 ft. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 710 ft3/s and maximum (*): DATE TIME DISCHARGE GAGE HEIGHT DATE TIME DISCHARGE GAGE HEIGHT (ft^3/s) (ft)Apr. 4 2015 *690 *4.16 Minimum daily, 60 ft³/s, June 18, July 7. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 6, 7, 9, 13-17, Dec. 19 to Mar. 13, Mar. 15, 16, and Mar. 19-21.) 1.8 54 3.0 296 2.0 81 4.0 626 2.5 171 5.0 1,080 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|--|--|--|---|---|----------------------------------|--|---|--|--| | 1 | 82 | 114 | 200 | 86 | 86 | 82 | 465 | 155 | 75 | 70 | 66 | 70 | | 2 | 86 | 127 | 161 | 88 | 82 | 82 | 479 | 142 | 77 | 67 | 67 | 70 | | 3 | 87 | 143 | 138 | 90 | 84 | 78 | 584 | 135 | 82 | 64 | 66 | 143 | | 4 | 88 | 182 | 128 | 90 | 80 | 80 | 675 | 128 | 77 | 62 | 68 | 159 | | 5 | 91 | 182 | 120 | 82 | 76 | 86 | 655 | 122 | 75 | 61 | 76 | 120 | | 6 | 88 | 160 | 110 | 80 | 74 | 80 | 613 | 116 | 75 | 61 | 73 | 103 | | 7 | 95 | 142 | 110 | 76 | 76 | 84 | 564 | 113 | 72 | 60 | 69 | 90 | | 8 | 95 | 144 | 119 | 78 | 80 | 94 | 486 | 113 | 70 | 65 | 98 | 93 | | 9 | 94 | 143 | 140 | 82 | 78 | 110 | 397 | 165 | 70 | 99 | 89 | 109 | | 10 | 92 | 135 | 168 | 80 | 78 | 170 | 330 | 205 | 78 | 107 | 74 | 85 | | 11 | 90 | 128 | 172 | 80 | 78 | 190 | 288 | 206 | 72 | 91 | 69 | 77 | | 12 | 89 | 121 | 170 | 82 | 80 | 150 | 257 | 171 | 67 | 79 | 66 | 74 | | 13 | 88 | 116 | 150 | 84 | 82 | 130 | 218 | 163 | 67 | 72 | 68 | 72 | | 14 | 88 | 114 | 130 | 80 | 76 | 120 | 198 | 155 | 66 | 68 | 80 | 74 | | 15 | 93 | 112 | 120 | 86 | 76 | 110 | 182 | 141 | 71 | 67 | 83 | 77 | | 16 | 115 | 122 | 120 | 90 | 78 | 110 | 165 | 128 | 66 | 120 | 84 | 82 | | 17 | 161 | 217 | 110 | 94 | 80 | 110 | 152 | 119 | 62 | 121 | 71 | 93 | | 18 | 176 | 318 | 106 | 92 | 86 | 107 | 144 | 110 | 60 | 101 | 70 | 87 | | 19 | 159 | 307 | 110 | 96 | 80 | 100 | 138 | 103 | 64 | 87 | 74 | 112 | | 20 | 142 | 226 | 120 | 94 | 76 | 98 | 129 | 99 | 70 | 81 | 71 | 197 | | 21 | 130 | 186 | 120 | 92 | 72 | 98 | 120 | 105 | 66 | 112 | 68 | 205 | | 22 | 125 | 171 | 110 | 88 | 78 | 98 | 112 | 103 | 68 | 160 | 71 | 171 | | 23 | 122 | 174 | 120 | 90 | 76 | 99 | 119 | 95 | 70 | 186 | 92 | 139 | | 24 | 121 | 181 | 120 | 86 | 74 | 114 | 136 | 96 | 66 | 158 | 96 | 117 | | 25 | 119 | 173 | 110 | 84 | 74 | 440 | 153 | 90 | 64 | 121 | 93 | 103 | | 26
27
28
29
30
31 | 123
132
128
123
120
115 | 163
145
151
179
206 | 98
110
110
100
110
94 | 82
80
78
80
88
94 | 78
78
78
80 | 518
383
354
421
443
459 | 156
162
196
196
172 | 89
88
87
86
84
78 | 64
63
78
87
75 | 98
87
77
71
70
67 | 85
84
87
79
78
74 | 95
91
87
87
89 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3457
112
176
82
.61 | 4982
166
318
112
.90
1.01 | 3904
126
200
94
.68
.79 | 2652
85.5
96
76
.46
.54 | 2274
78.4
86
72
.43
.46 | 5598
181
518
78
.98
1.13 | 8641
288
675
112
1.57
1.75 | 3790
122
206
78
.66 | 2117
70.6
87
60
.38
.43 | 2810
90.6
186
60
.49
.57 | 2389
77.1
98
66
.42
.48 | 3171
106
205
70
.57
.64 | CAL YR 1987 TOTAL 45587 MEAN 125 MAX 318 MIN 72 CFSM .68 IN. 9.22 WTR YR 1988 TOTAL 45785 MEAN 125 MAX 675 MIN 60 CFSM .68 IN. 9.26 ## 05395000 WISCONSIN RIVER AT MERRILL, WI LOCATION.--Lat 45°10'41", long 89°40'52", on line between secs.12 and 13, T.31 N., R.6 E., Lincoln County, Hydrologic Unit 07070002, on left bank 300 ft downstream from U.S. Highway 51 bridge at east end of Merrill, and 0.5 mi downstream from Prairie River. DRAINAGE AREA.--2.760 mi². PERIOD OF RECORD. -- November 1902 to current year. REVISED RECORDS.--WSP 1308: 1904-7, 1909-11, 1913. WSP 1508: 1908, 1915-16(M), 1917, 1920-21(M), 1925(M), 1930, 1935-36. WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,228.85 ft above National Geodetic Vertical Datum of 1929. Prior to June 18, 1903, nonrecording gage at different datum. June 18, 1903, to Sept. 10, 1914, nonrecording gage at present datum. REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records good. Flow regulated by 20 reservoirs and 9 powerplants upstream from station. Gage-height telemeter at station. AVERAGE DISCHARGE. -- 85 years, 2,673 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 49,400 ft³/s, Aug. 31, 1941, gage height, 18.26 ft from rating curve extended above 20,000 ft³/s; minimum, about 90 ft³/s, Sept. 26, 1908, gage height, 2.45 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 7,440 $\rm ft^3/s$, Apr. 5, gage height, 7.92 ft; minimum daily, 576 $\rm ft^3/s$, July 4. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 27 to Mar. 24.) | 3.4 | 520 | 6.0 | 3,640 | |-----|-------|-----|-------| | 4.0 | 1.040 | 8.0 | 7,640 | | 5.0 | 2.120 | | | | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|---|--------------------------------------|--|--|------------------------------|--|--------------------------------------|--|---------------------------------|--|--|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 789 | 1110 | 2060 | 1900 | 1900 | 1900 | 4810 | 1750 | 850 | 748 | 747 | 629 | | 2 | 933 | 1240 | 1640 | 1900 | 1900 | 1800 | 4960 | 1640 | 1040 | 674 | 724 | 773 | | 3 | 861 | 1190 |
1650 | 1900 | 1900 | 1800 | 5480 | 1760 | 1030 | 642 | 667 | 1750 | | 4 | 752 | 1690 | 1400 | 1700 | 1800 | 1900 | 5760 | 1520 | 1010 | 576 | 676 | 1130 | | 5 | 934 | 1530 | 1720 | 1500 | 1800 | 1900 | 6570 | 1400 | 1070 | 582 | 690 | 1010 | | 6 | 1080 | 1300 | 1540 | 1600 | 1800 | 1900 | 5870 | 1220 | 954 | 579 | 767 | 923 | | 7 | 869 | 1210 | 1160 | 1800 | 1800 | 1800 | 5480 | 1540 | 957 | 628 | 898 | 966 | | 8 | 742 | 1040 | 1510 | 1800 | 1800 | 2000 | 4970 | 1390 | 894 | 655 | 1050 | 858 | | 9 | 720 | 924 | 1720 | 1800 | 1800 | 2200 | 4320 | 1520 | 682 | 965 | 894 | 852 | | 10 | 870 | 1080 | 1690 | 1800 | 1800 | 2400 | 3820 | 1820 | 917 | 983 | 726 | 845 | | 11 | 863 | 1100 | 1560 | 1700 | 1800 | 2500 | 2770 | 1790 | 958 | 744 | 686 | 705 | | 12 | 797 | 1320 | 1680 | 1900 | 1800 | 2100 | 2730 | 1890 | 886 | 612 | 878 | 697 | | 13 | 732 | 1250 | 1980 | 2000 | 1900 | 1800 | 2470 | 1730 | 777 | 625 | 836 | 703 | | 14 | 762 | 1270 | 1790 | 1800 | 1900 | 1700 | 2480 | 1700 | 722 | 622 | 842 | 662 | | 15 | 1000 | 904 | 1840 | 1800 | 1800 | 1800 | 2060 | 1420 | 611 | 698 | 811 | 630 | | 16 | 1430 | 860 | 1920 | 1900 | 1800 | 2000 | 1910 | 1590 | 660 | 900 | 765 | 769 | | 17 | 1500 | 1710 | 1800 | 1900 | 1900 | 2000 | 2060 | 1370 | 664 | 867 | 760 | 1120 | | 18 | 1210 | 1990 | 1780 | 1800 | 1900 | 1900 | 1960 | 1390 | 633 | 831 | 750 | 985 | | 19 | 1050 | 2310 | 1940 | 1700 | 2000 | 1900 | 1860 | 1370 | 804 | 695 | 700 | 1310 | | 20 | 1220 | 1820 | 1980 | 1900 | 1900 | 1800 | 1710 | 1120 | 752 | 739 | 686 | 1520 | | 21 | 1230 | 1270 | 1910 | 2100 | 1800 | 1700 | 1750 | 1350 | 890 | 781 | 699 | 1810 | | 22 | 1540 | 1160 | 1650 | 2100 | 1800 | 1700 | 1730 | 1170 | 826 | 930 | 758 | 1260 | | 23 | 1230 | 1430 | 1730 | 1900 | 1800 | 1500 | 1810 | 1330 | 659 | 903 | 990 | 1180 | | 24 | 924 | 1490 | 2040 | 1900 | 1900 | 1800 | 1400 | 1330 | 677 | 680 | 803 | 835 | | 25 | 841 | 1450 | 2040 | 1900 | 2000 | 4850 | 1750 | 1250 | 758 | 641 | 748 | 847 | | 26
27
28
29
30
31 | 868
1320
1360
976
1050
999 | 1330
1190
1070
1630
1890 | 2060
2000
2000
1900
2000
2000 | 1800
1900
2000
2100
2100
1900 | 1900
1900
1700
1800 | 5260
5050
3300
4510
4650
4360 | 1790
2010
2250
2250
2040 | 1160
1320
1210
1210
1120
1170 | 635
622
792
746
823 | 594
708
711
649
729
768 | 689
687
801
761
642
624 | 920
1220
988
892
1130 | | TOTAL | 31452 | 40758 | 55690 | 57800 | 53600 | 77780 | 92830 | 44550 | 24299 | 22459 | 23755 | 29919 | | MEAN | 1015 | 1359 | 1796 | 1865 | 1848 | 2509 | 3094 | 1437 | 810 | 724 | 766 | 997 | | MAX | 1540 | 2310 | 2060 | 2100 | 2000 | 5260 | 6570 | 1890 | 1070 | 983 | 1050 | 1810 | | MIN | - 720 | 860 | 1160 | 1500 | 1700 | 1500 | 1400 | 1120 | 611 | 576 | 624 | 629 | CAL YR 1987 TOTAL 532532 MEAN 1459 MAX 2800 MIN 686 WTR YR 1988 TOTAL 554892 MEAN 1516 MAX 6570 MIN 576 **CENTRAL WISCONSIN RIVER BASIN** ### 05397500 EAU CLAIRE RIVER AT KELLY, WI LOCATION.--Lat 44°55'06", long 89°33'00", on line between secs.9 and 10, T.28 N., R.8 E., Marathon County, Hydrologic Unit 07070002, on right bank 50 ft downstream from County Highway SS bridge, 0.7 mi northeast of Kelly, 1.3 mi upstream from Big Sandy Creek, 4.5 mi upstream from mouth, and 5.0 mi southeast of Wausau. DRAINAGE AREA. -- 375 mi². PERIOD OF RECORD. -- January 1914 to November 1926, August 1939 to current year. REVISED RECORDS.--WSP 1508: 1915, 1916-17(M), 1919-26(M), 1940(M), 1945(M), 1950(M). WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,177.88 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 17, 1953, nonrecording gage at same site at datum 1.00 ft higher. REMARKS.--Estimated daily discharges: Ice period listed in tables below. Records good except for ice-affected period, which is fair. AVERAGE DISCHARGE.--61 years, 252 ft³/s, 9.13 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,300 ft³/s, Aug. 21, 1926, gage height, 8.4 ft from graph based on gage readings, from rating curve extended above 6,000 ft³/s; maximum gage height, 9.49 ft Mar. 29, 1988, ice jam; minimum observed, 8.0 ft³/s, July 17, 1944, gage height, 0.17 ft, probably result of temporary regulation. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Mar. 29 | 1400 | (a) *1,200 | (a) *9:49 | | | | | (a) Ice jam. Minimum daily discharge, 34 ft³/s, July 8. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Nov. 21 to Apr. 1.) | | 0ct. 1 | to Mar. 31 | L | Apr. 1 to Sept. 30 | | | | | | | | |-----|--------|------------|-------|--------------------|-----|-----|-------|--|--|--|--| | 0.8 | 54 | 2.0 | 407 | 0.7 | 32 | 2.0 | 371 | | | | | | 1.0 | 81 | 3.0 | 900 | 0.9 | 58 | 3.0 | 797 | | | | | | 1.2 | 120 | 4.0 | 1.400 | 1.2 | 116 | 4.0 | 1.340 | | | | | | 1.5 | 207 | | • | 1.5 | 196 | | • | | | | | #### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | AP R | MAY | JUN | J U L | AUG | SEP | |--|---|---|--|---|---|---|---|--|--|---|--|----------------------------------| | 1 | 64 | 109 | 220 | 100 | 96 | 110 | 1000 | 225 | 70 | 59 | 44 | 61 | | 2 | 66 | 108 | 200 | 100 | 88 | 110 | 782 | 193 | 67 | 54 | 41 | 57 | | 3 | 67 | 122 | 190 | 100 | 88 | 110 | 961 | 172 | 64 | 49 | 40 | 57 | | 4 | 71 | 164 | 180 | 100 | 88 | 110 | 1030 | 156 | 62 | 44 | 40 | 56 | | 5 | 71 | 178 | 180 | 94 | 84 | 120 | 1050 | 144 | 61 | 42 | 41 | 58 | | 6 | 71 | 169 | 180 | 90 | 80 | 130 | 1020 | 136 | 59 | 38 | 44 | 62 | | 7 | 72 | 147 | 180 | 86 | 78 | 150 | 915 | 128 | 56 | 36 | 43 | 60 | | 8 | 86 | 137 | 190 | 88 | 80 | 190 | 792 | 125 | 55 | 34 | 47 | 57 | | 9 | 74 | 132 | 220 | 92 | 82 | 270 | 613 | 198 | 53 | 35 | 52 | 54 | | 10 | 72 | 128 | 240 | 86 | 82 | 340 | 494 | 264 | 53 | 40 | 75 | 51 | | 11 | 71 | 128 | 240 | 90 | 82 | 400 | 424 | 245 | 51 | 46 | 70 | 50 | | 12 | 70 | 117 | 230 | 94 | 82 | 360 | 371 | 207 | 50 | 50 | 69 | 52 | | 13 | 69 | 108 | 210 | 96 | 82 | 320 | 322 | 188 | 47 | 46 | 66 | 52 | | 14 | 69 | 101 | 200 | 90 | 84 | 290 | 290 | 176 | 46 | 47 | 71 | 50 | | 15 | 68 | 100 | 180 | 94 | 86 | 260 | 262 | 160 | 48 | 43 | 75 | 48 | | 16 | 70 | 104 | 170 | 98 | 88 | 240 | 239 | 144 | 46 | 51 | 74 | 51 | | 17 | 91 | 173 | 160 | 100 | 92 | 220 | 218 | 131 | 46 | 162 | 66 | 59 | | 18 | 137 | 367 | 150 | 98 | 98 | 210 | 200 | 121 | 44 | 228 | 61 | 70 | | 19 | 168 | 429 | 140 | 96 | 96 | 200 | 187 | 114 | 46 | 146 | 61 | 83 | | 20 | 139 | 351 | 140 | 96 | 94 | 200 | 172 | 106 | 47 | 104 | 57 | 103 | | 21
22
23
24
25 | 122
115
116
117
119 | 330
350
320
290
240 | 150
150
140
130
120 | 92
88
88
88 | 86
92
94
86
90 | 200
200
220
300
660 | 163
155
162
190
233 | 87
97
93
88
83 | 52
52
53
53
48 | 87
77
79
83
73 | 54
56
74
97
96 | 150
149
130
113
102 | | 26
27
28
29
30
31 | 123
133
139
134
122
115 | 210
190
180
180
200 | 110
120
120
110
110
110 | 86
84
86
86
94
100 | 100
100
100
100 | 1000
800
760
1200
1100
900 | 241
240
295
304
266 | 79
77
75
80
74
71 | 44
42
48
61
61 | 65
60
55
50
46
45 | 83
75
71
70
69
64 | 89
79
71
69
68 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3021
97.5
168
64
.26
.30 | 5862
195
429
100
.52
.58 | 5170
167
240
110
.44 | 2868
92.5
100
84
.25
.28 | 2578
88.9
100
78
.24
.26 | 11680
377
1200
110
1.00 | 13591
453
1050
155
1.21
1.35 | 4237
137
264
71
.36
.42 | 1585
52.8
70
42
.14
.16 | 2074
66.9
228
34
.18
.21 | 1946
62.8
97
40
.17
.19 | 2211
73.7
150
48
.20 | CAL YR 1987 TOTAL 51217 MEAN 140 MAX 459 MIN 57 CFSM .37 IN. 5.08 WTR YR 1988 TOTAL 56823 MEAN 155 MAX 1200 MIN 34 CFSM .41 IN. 5.64 #### 05398000 WISCONSIN RIVER AT ROTHSCHILD, WI LOCATION.--Lat 44°53'09", long 89°38'05", in sec.26, T.28 N., R.7 E., Marathon County, Hydrologic Unit 07070002, on left bank at Rothschild, 0.5 mi downstream from Rothschild Dam, 1.7 mi north of bridge on U.S. Highway 51, 2.0 mi downstream from Eau Claire River, and 5.0 mi upstream from Black Creek. DRAINAGE AREA. -- 4,020 mi². PERIOD OF RECORD. -- October 1944 to current year. REVISED RECORDS.--WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 1,125.86 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1975, at datum 10.00 ft higher. Auxiliary water-stage recorder in Mosinee Pond 8 mi downstream. Prior to July 23, 1964, nonrecording auxiliary gage at same site and datum, read hourly. REMARKS.--Estimated daily discharges: January 1, 2, and ice-affected periods, Jan. 3-20, 22, 23, 25-31, and Feb. 2-23, 25, 27, 28. Records good except for estimated daily discharges, which are
fair. Flow regulated by 20 reservoirs and 12 powerplants upstream from station. AVERAGE DISCHARGE. -- 44 years, 3,533 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 49,200 ft³/s, Apr. 12, 1965, Mar. 31, 1967, gage height, 18.46 ft, datum then in use; minimum daily, 575 ft³/s, June 16, 1988. EXTREMES OUTSIDE THE PERIOD OF RECORD.--Flood of Sept. 1, 1941, reached stage of 22.3 ft, datum then in use, from tailwater data at Rothschild dam, discharge, 75,000 ft³/s from rating curve extended above 45,000 ft³/s. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 14,400 $\rm ft^3/s$, Mar. 26, gage height, 19.63 ft; minimum daily, 575 $\rm ft^3/s$, June 16. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
MEAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|--------------------------------------|--|--|------------------------------|---|--------------------------------------|--|---------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 853
1000
924
876 | 1190
1450
1720
2040 | 3320
2990
2480
1880 | 2000
1900
2000
2100 | 1860
2200
2100
2100 | 1810
1950
1700
2210 | 8700
8150
10000
10900 | 3210
2900
2560
2380 | 1230
997
1050
1140 | 993
849
865
864 | 930
969
748
657 | 887
992
1270
1580 | | 5 | 838 | 2400 | 2170 | 1900 | 2000 | 1830 | 10600 | 2160 | 1250 | 814 | 903 | 1310 | | 6 | 1210 | 1780 | 1990 | 1600 | 2100 | 2380 | 9790 | 1740 | 1520 | 775 | 815 | 1040 | | 7 | 1050 | 1640 | 1990 | 1900 | 2000 | 1890 | 9500 | 1580 | 1060 | 807 | 936 | 1240 | | 8 | 827 | 1590 | 1860 | 2000 | 2000 | 2280 | 7960 | 2060 | 958 | 785 | 1160 | 1050 | | 9 | 924 | 1170 | 2260 | 1900 | 1900 | 4780 | 7100 | 2800 | 714 | 853 | 1130 | 1040 | | 10 | 807 | 1190 | 2880 | 1900 | 1800 | 5000 | 5990 | 2740 | 817 | 1230 | 938 | 990 | | 11 | 880 | 1400 | 2960 | 1800 | 1800 | 5650 | 5090 | 3470 | 954 | 831 | 809 | 957 | | 12 | 1010 | 1360 | 2790 | 1900 | 1900 | 5200 | 4830 | 2870 | 1060 | 830 | 914 | 776 | | 13 | 968 | 1680 | 2970 | 2100 | 1900 | 3950 | 4040 | 2860 | 1060 | 824 | 1120 | 913 | | 14 | 890 | 1340 | 2960 | 2000 | 2000 | 2990 | 3950 | 2700 | 1150 | 821 | 1040 | 747 | | 15 | 877 | 1270 | 2250 | 1900 | 1900 | 2810 | 3610 | 1780 | 726 | 804 | 1010 | 699 | | 16 | 1360 | 1120 | 2660 | 2000 | 1800 | 2820 | 2840 | 2530 | 575 | 1030 | 995 | 906 | | 17 | 1910 | 2120 | 2370 | 2100 | 1900 | 2940 | 2680 | 1730 | 628 | 1090 | 828 | 1380 | | 18 | 1960 | 4230 | 2180 | 2000 | 2000 | 2610 | 2890 | 1890 | 721 | 1200 | 882 | 1140 | | 19 | 1550 | 3730 | 2170 | 2000 | 2000 | 2680 | 2700 | 1840 | 871 | 949 | 865 | 1710 | | 20 | 1370 | 3590 | 2480 | 2000 | 2000 | 2680 | 2400 | 1570 | 825 | 890 | 848 | 1980 | | 21 | 1650 | 2380 | 2560 | 2140 | 2000 | 1740 | 2310 | 1120 | 962 | 1340 | 785 | 2550 | | 22 | 1780 | 1610 | 2400 | 2400 | 1900 | 2140 | 2730 | 1150 | 971 | 1150 | 1080 | 1960 | | 23 | 1700 | 2050 | 2190 | 2000 | 1900 | 2010 | 2240 | 1920 | 842 | 1140 | 1160 | 1520 | | 24 | 1280 | 2590 | 2570 | 1820 | 2000 | 2160 | 2530 | 1450 | 702 | 1180 | 1020 | 1170 | | 25 | 1040 | 2700 | 2570 | 2200 | 2200 | 7870 | 2640 | 1510 | 753 | 928 | 1020 | 1090 | | 26
27
28
29
30
31 | 1160
1490
1810
1560
1130
1270 | 2240
2000
1640
1880
3400 | 2180
1900
2770
2440
2220
2830 | 2100
2000
2200
2300
2300
2000 | 1920
2200
1800
1530 | 13700
10200
8030
9280
10000
9620 | 3180
2880
4070
4220
4110 | 1220
1380
1150
1260
1320
1440 | 790
779
909
883
830 | 816
754
989
966
710
857 | 915
896
853
955
912
784 | 1080
1140
1380
1060
1290 | | TOTAL | 37954 | 60500 | 76240 | 62460 | 56710 | 136910 | 154630 | 62290 | 27727 | 28934 | 28877 | 36847 | | MEAN | 1224 | 2017 | 2459 | 2015 | 1956 | 4416 | 5154 | 2009 | 924 | 933 | 932 | 1228 | | MAX | 1960 | 4230 | 3320 | 2400 | 2200 | 13700 | 10900 | 3470 | 1520 | 1340 | 1160 | 2550 | | MIN | 807 | 1120 | 1860 | 1600 | 1530 | 1700 | 2240 | 1120 | 575 | 710 | 657 | 699 | CAL YR 1987 TOTAL 709787 MEAN 1945 MAX 4830 MIN 725 WTR YR 1988 TOTAL 770079 MEAN 2104 MAX 13700 MIN 575 #### 05399500 BIG EAU PLEINE RIVER NEAR STRATFORD. WI LOCATION.--Lat 44°49'19", long 90°04'46", on line between sec.13, T.27 N., R.3 E., and sec.18, T.27 N., R.4 E., Marathon County, Hydrologic Unit 07070002, on left bank 15 ft upstream from bridge on State Highway 97, 1.0 mi north of Stratford, and 1.4 mi downstream from small tributary. DRAINAGE AREA.--224 mi². PERIOD OF RECORD.--July 1914 to December 1925, April 1937 to current year. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1917, 1920-22, 1926, 1946, 1948, 1950. WSP 1508: 1915-25(M), 1937, 1946(M), 1948(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 1,154.24 ft above National Geodetic Vertical Datum of 1929. July 24, 1914, to Dec. 31, 1925, nonrecording gage at site 0.5 mi upstream at different datum. Apr. 30, 1937, to Sept. 15, 1938, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Apr. 30 to May 13, Sept. 8-14, and ice periods listed in rating table below. Records good except for estimated daily discharges, which are fair. AVERAGE DISCHARGE. -- 62 years (1914-25, 1937-88), 176 ft³/s, 10.67 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 41,000 ft³/s, Sept. 9, 1938, gage height, 24.5 ft, from flood-marks, based on rating curve extended above 24,000 ft³/s; no flow Aug. 17, 1947, Jan. 22 to Feb. 5, 1961. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of June 5, 1914, reached a stage of 20.7 ft, from floodmarks; discharge, $40,000 \text{ ft}^3/\text{s}_1$ former site and datum. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | |---------|---------|-----------------------------------|---------------------|---------|------|-----------------------------------|------------------| | Mar. 25 | Unknown | ice iam | *13.92 | Mar. 26 | | (a) *1,600 | ice jam | (a) Estimated, mean daily discharge. Minimum discharge, 0.94 ft³/s, July 14, 15. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Rate of charge of stage used as factor Nov. 29, Apr. 7, 27; shifting-control method used Sept. 23; stage-discharge relation affected by ice Dec. 5, and Dec. 10 to Mar. 27.) | 2.1 | 1.1 | 2.6 | 17 | 4.0 | 175 | |-----|-----|-----|-----|-----|-------| | 2.2 | 2.6 | 2.8 | 30 | 5.0 | 375 | | 2.3 | 5.0 | 3.0 | 48 | 6.0 | 670 | | 2.4 | 8.0 | 3.5 | 104 | 7.0 | 1,050 | | | | | | 9.0 | | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|---|----------------------------------|--------------------------------|--|--|---|--|--|--|-----------------------------------| | 1 | 9.8 | 37 | 334 | 19 | 16 | 17 | 269 | 170 | 9.8 | 3.4 | 5.4 | 2.5 | | 2 | 12 | 39 | 190 | 17 | 15 | 19 | 256 | 120 | 9.8 | 3.3 | 4.9 | 2.4 | | 3 | 11 | 96 | 143 | 16 | 13 | 21 | 657 | 110 | 10 | 3.8 | 4.2 | 2.4 | | 4 | 12 | 139 | 114 | 15 | 12 | 23 | 573 | 94 | 9.2 | 3.5 | 5.4 | 2.1 | | 5 | 11 | 134 | 94 | 14 | 12 | 27 | 404 | 84 | 9.1 | 3.4 | 4.3 | 1.8 | | 6 | 13 | 93 | 74 | 13 | 12 | 40 | 517 | 78 | 8.8 | 2.8 | 4.2 | 2.3 | | 7 | 15 | 70 | 58 | 13 | 12 | 120 | 430 | 70 | 8.0 | 2.3 | 4.5 | 1.7 | | 8 | 17 | 61 | 52 | 12 | 12 | 700 | 261 | 62 | 8.0 | 2.0 | 5.7 | 1.7 | | 9 | 18 | 61 | 153 | 12 | 12 | 1100 | 187 | 240 | 5.8 | 1.8 | 5.9 | 1.6 | | 10 | 15 | 64 | 310 | 13 | 12 | 1200 | 154 | 220 | 5.4 | 1.7 | 6.5 | 1.5 | | 11
12
13
14
15 | 14
14
13
16
16 | 52
42
38
35
34 | 230
180
140
110
100 | 13
13
14
14
15 | 12
12
12
12
12 | 900
700
500
370
300 | 129
105
89
78
68 | 150
100
76
60
53 | 5.1
5.0
4.7
4.2
3.6 | 1.6
1.5
1.5
1.2 | 10
8.6
7.6
7.5
6.0 | 1.4
1.3
1.4
1.4 | | 16 | 18 | 36 | 88 | 16 | 13 | 230 | 61 | 44 | 3.5 | 1.3 | 4.6 | 1.5 | | 17 | 20 | 154 | 78 | 17 | 13 | 180 | 53 | 37 | 3.4 | 2.6 | 4.8 | 3.2 | | 18 | 61 | 576 | 70 | 17 | 14 | 140 | 48 | 32 | 3.3 | 4.4 | 6.1 | 3.8 | | 19 | 63 | 387 | 62 | 16 | 15 | 120 | 42 | 30 | 3.5 | 5.3 | 6.9 | 10 | | 20 | 43 | 210 | 58 | 16 | 16 | 100 | 36 | 26 | 3.6 | 4.8 | 6.4 | 24 | | 21 | 34 | 125 | 50 | 15 | 15 | 90 | 32 | 23 | 3.5 | 4.1 | 4.5 | 15 | | 22 | 32 | 104 | 45 | 15 | 15 | 80 | 31 | 20 | 3.4 | 3.7 | 4.9 | 13 | | 23 | 37 | 141 | 40 | 14 | 16 | 78 | 53 | 17 | 3.1 | 3.1 | 11 | 9.1 | | 24 | 44 | 306 | 38 | 14 | 16 | 140 | 117 | 15 | 3.1 | 2.8 | 7.9 | 7.4 | | 25 | 56 | 211 | 34 | 14 | 16 | 1500 | 138 | 13 | 2.8 | 3.9 | 6.2 | 5.5 | | 26
27
28
29
30
31 | 57
51
52
50
45
39 | 150
117
103
387
545 | 30
26
24
22
20
20 | 13
13
13
14
16
17 | 16
16
16
16 |
1600
500
399
595
482
320 | 102
243
747
584
290 | 11
11
11
13
13 | 2.6
2.5
3.1
3.5
3.5 | 3.2
2.6
2.2
1.9
1.8
1.3 | 7.0
5.8
4.7
3.6
3.0
2.7 | 4.3
4.4
4.0
4.2
4.4 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 908.8
29.3
63
9.8
.13
.15 | 4547
152
576
34
.68
.76 | 2987
96.4
334
20
.43
.50 | 453
14.6
19
12
.07 | 401
13.8
16
12
.06 | 12591
406
1600
17
1.81
2.09 | 6754
225
747
31
1.01
1.12 | 2015
65.0
240
11
.29
.33 | 154.9
5.16
10
2.5
.02
.03 | 84.0
2.71
5.3
1.2
.01 | 180.8
5.83
11
2.7
.03 | 140.6
4.69
24
1.3
.02 | CAL YR 1987 TOTAL 25922.9 MEAN 71.0 MAX 1000 MIN 7.2 CFSM .32 IN. 4.31 WTR YR 1988 TOTAL 31217.1 MEAN 85.3 MAX 1600 MIN 1.2 CFSM .38 IN. 5.18 #### 05400760 WISCONSIN RIVER AT WISCONSIN RAPIDS, WI LOCATION.--Lat 44°23'41", long 89°49'31", in SW 1/4 sec.8, T.22 N., R.6 E., Wood County, Hydrologic Unit 07070003, at Consolidated Water Power Company, 0.2 mi upstream from U.S. Highway 13 bridge in Wisconsin Rapids. DRAINAGE AREA. -- 5,420 mi². PERIOD OF RECORD. -- May 1914 to March 1950 (published as "near Nekoosa"), October 1957 to current year. REVISED RECORDS. -- WSP 1308: 1915(M). GAGE.--Water-stage recorders on headwater and tailwater. Elevation of powerplant pond is 1,010 ft and datum of powerplant gages is 0.00 ft above National Geodetic Vertical Datum of 1929 (levels by Wisconsin Valley Improvement Co.). May 1914 to March 1950, at site 9.6 mi downstream at different datum. March 1950 to Sept. 30, 1981, at Centralia Powerplant at Nekoosa Papers, Inc., 2.6 mi downstream. March 1950 to Dec. 31, 1973, datum was 887.83 ft above National Geodetic Vertical Datum. Jan. 1, 1974, changed to present datum. REMARKS.--No estimated daily discharges. Records good for discharges greater than 2,500 ft³/s, and fair to poor for discharges less than 2,500 ft³/s. Discharge computed from powerplant records on basis of load-discharge rating of hydroelectric units as developed by manufacturer and tainter-gate ratings based on theoretical formulas. Flow regulated by 20 reservoirs and many powerplants upstream from station. Water diverted periodically from pond of Wisconsin Rapids powerplant into Cranberry Creek, a tributary of Yellow River, for cranberry culture. These diversions, in cubic feet per second, for water year October 1987 to September 1988, were as follows: | Oct. 1-19 | 100 | June 13-30 | 100 | July 15 | 79 | Sept. 2 | 75 | Sept. 20-25 | 100 | |-----------|-----|------------|-----|------------|-----|------------|-----|-------------|-----| | Oct. 20 | 34 | July 1-13 | 100 | July 16-28 | 100 | Sept. 3-18 | 100 | Sept. 26 | 27 | | June 12 | 1 | July 14 | 83 | July 29 | 27 | Sept. 19 | 88 | - | | COOPERATION.--Figures of daily discharges were provided by Consolidated Water Power Company and Wisconsin River Improvement Company. Records were reviewed by the Geological Survey. AVERAGE DISCHARGE.--66 years (1915-49, 1958-88), 4,973 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 70,400 ft³/s, Sept. 12, 1938, gage height, 19.10 ft, from rating curve extended above 58,000 ft³/s; minimum, 26 ft³/s, Sept. 7, 1942; minimum daily, 165 ft³/s, Aug. 12, 1934. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 18,400 ft³/s, Mar. 26; minimum daily, 673 ft³/s, July 4. | | | DISCHARG | E, CUBIC | FEET P | | , WATER YEAI
MEAN VALUES | C OCTOBER | 1 9 87 TO | SEPTEMBER | 1988 | | | |----------------------------------|--|--------------------------------------|--|--|----------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 754 | 1794 | 3262 | 2566 | 2556 | 2848 | 10257 | 5345 | 1700 | 1443 | 1008 | 952 | | 2 | 674 | 1762 | 3179 | 2488 | 2593 | 2330 | 9205 | 3211 | 1993 | 1088 | 1031 | 1112 | | 3 | 995 | 1797 | 3201 | 2472 | 2587 | 2536 | 10196 | 2949 | 2156 | 1263 | 1003 | 1197 | | 4 | 1041 | 2189 | 3166 | 2498 | 2671 | 2548 | 12665 | 3193 | 2163 | 673 | 1049 | 2108 | | 5 | 1011 | 2994 | 2878 | 2406 | 2812 | 2628 | 13324 | 3302 | 2255 | 725 | 983 | 2133 | | 6 | 1027 | 2868 | 2896 | 2449 | 2768 | 2628 | 13333 | 3259 | 2223 | 1008 | 981 | 1566 | | 7 | 1082 | 2377 | 2684 | 2216 | 2708 | 2641 | 12282 | 3196 | 1924 | 1054 | 1046 | 1142 | | 8 | 1255 | 1973 | 2547 | 2022 | 2620 | 3188 | 10889 | 2659 | 1663 | 868 | 1126 | 1177 | | 9 | 1213 | 1746 | 2599 | 2018 | 2759 | 4930 | 9993 | 2952 | 1356 | 813 | 1376 | 1155 | | 10 | 1276 | 1445 | 2506 | 2052 | 2589 | 5521 | 8747 | 3763 | 1242 | 893 | 1189 | 1077 | | 11 | 1188 | 1346 | 3167 | 2067 | 2686 | 7253 | 6851 | 3693 | 1013 | 1067 | 1113 | 961 | | 12 | 1232 | 1336 | 3185 | 2099 | 2718 | 10407 | 5063 | 3524 | 1027 | 1100 | 1067 | 938 | | 13 | 1185 | 1886 | 3009 | 2496 | 2709 | 8143 | 5069 | 3747 | 957 | 1100 | 1041 | 1005 | | 14 | 1160 | 1888 | 3831 | 2550 | 2711 | 4491 | 4815 | 3851 | 1247 | 1016 | 1122 | 974 | | 15 | 1195 | 1836 | 3946 | 2493 | 2720 | 4529 | 4247 | 3716 | 1329 | 1268 | 1143 | 981 | | 16 | 1228 | 2021 | 3838 | 2521 | 2687 | 4791 | 3513 | 3539 | 1215 | 1315 | 1252 | 1072 | | 17 | 2105 | 2910 | 3409 | 2384 | 2741 | 4282 | 3168 | 3494 | 915 | 1284 | 1334 | 962 | | 18 | 2176 | 4936 | 2818 | 2255 | 2704 | 4005 | 3243 | 3342 | 704 | 1363 | 1329 | 1227 | | 19 | 1884 | 4347 | 2766 | 2335 | 2786 | 3967 | 3192 | 3184 | 839 | 1363 | 1257 | 1674 | | 20 | 1714 | 4209 | 2761 | 2435 | 2911 | 3878 | 2668 | 2360 | 813 | 1240 | 1361 | 2768 | | 21 | 1986 | 3900 | 2766 | 2461 | 2965 | 3788 | 2486 | 2144 | 763 | 1284 | 1356 | 2709 | | 22 | 2157 | 2608 | 2846 | 2492 | 3008 | 3712 | 2543 | 1664 | 785 | 1461 | 1428 | 3210 | | 23 | 2107 | 2517 | 2868 | 2499 | 3027 | 3299 | 2519 | 1502 | 763 | 1431 | 1767 | 2571 | | 24 | 2242 | 2685 | 2834 | 2465 | 3023 | 3434 | 2486 | 1411 | 864 | 1362 | 1774 | 2064 | | 25 | 2046 | 3271 | 3012 | 2284 | 2987 | 6980 | 2545 | 1419 | 967 | 1426 | 2008 | 1224 | | 26
27
28
29
30
31 | 2023
1705
2017
2199
2152
1613 | 2991
2773
2751
2593
3513 | 2701
2681
2686
2795
2724
2786 | 2339
2336
2243
2478
2466
2535 | 2973
2941
2888
2741
 | 14339
13197
11754
11060
13014
10796 | 2793
4436
4836
6372
6980 | 1437
1456
1381
1428
1426
1440 | 1112
1242
1224
1403
1387 | 1240
894
870
939
1008
940 | 1570
1015
943
912
830
937 | 1487
1446
1614
1523
1339 | | TOTAL | 47642 | 77262 | 92347 | 73420 | 80589 | 182917 | 190716 | 84987 | 39244 | 34799 | 37351 | 45368 | | MEAN | 1537 | 2575 | 2979 | 2368 | 2779 | 5901 | 6357 | 2742 | 1308 | 1123 | 1205 | 1512 | | MAX | 2240 | 4940 | 3950 | 2570 | 3030 | 14300 | 13300 | 5340 | 2250 | 1460 | 2010 | 3210 | | MIN | 674 | 1340 | 2510 | 2020 | 2560 | 2330 | 2490 | 1380 | 704 | 673 | 830 | 938 | CAL YR 1987 TOTAL 903669 MEAN 2476 MAX 7350 MIN 674 WTR YR 1988 TOTAL 986642 MEAN 2696 MAX 14300 MIN 673 ## 05401050 · TENMILE CREEK NEAR NEKOOSA, WI LOCATION.--Lat 44°15'44", long 89°48'38", in NE 1/4 sec.32, T.21 N., R.6 E., Wood County, Hydrologic Unit 07070003, on left bank upstream from bridge on State Highway 13, 5.8 mi southeast of Nekoosa. DRAINAGE AREA. -- 73.3 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Occasional low-flow measurements, water years 1962-63. October 1963 to September 1979, October 1987 to September 1988. REVISED RECORDS.--WDR WI-77-1: Drainage area. GAGE.--Non-recording gage. Datum of gage is 967.39 ft above National Geodetic Vertical Datum of 1929. Prior to May 13, 1964, nonrecording gage, and May 13, 1964 to Sept. 30, 1979, recording gage at present site and datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods and June through September, which are fair. Approximately 40 mi of drainage ditches and 22 check dams are used to control the water table in the basin. Sprinkler irrigation from ground-water sources affects natural flow of creek. AVERAGE DISCHARGE.--17 years (1964-79, 1988), 59.5 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 456 $\rm ft^3/s$, Mar. 31, 1979, gage height, 6.62 ft; minimum, 9.5 $\rm ft^3/s$, Dec. 16, 1964. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 104 $\rm ft^3/s$, Mar. 10, gage height, 4.75 ft; minimum daily, 17 $\rm ft^3/s$, Aug. 16, 17, 21, 29, 31, and Sept. 1, 2. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifing-control method used June 23 to Sept. 30; stage-discharge relation affected by ice Jan. 1-14 and Feb. 5-15.) | 3.7 | 16 | 4.5 | 76 | |-----|----|-----|-----| | 3.8 | 20 | 5.0 | 136 | | 4.0 | 32 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------------|-----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------| | 1
2
3
4
5 | 33
33
32
32
32 | 37
37
38
38
37 | 57
57
57
55
51 | 38
43
42
40
38 | 35
34
37
35
39 |
32
32
33
35
35 | 86
86
93
101
99 | 76
73
71
67
67 | 50
51
50
49
48 | 25
25
24
24
24 | 21
21
19
19 | 17
17
18
19 | | 6
7
8
9 | 32
32
32
32
31 | 37
38
39
39
39 | 53
57
55
57
57 | 37
36
35
34
34 | 38
38
37
37
37 | 37
41
56
76
89 | 97
92
89
87
85 | 66
65
66
69
70 | 46
46
45
44
44 | 23
22
22
23
25 | 18
18
20
19 | 19
20
21
21
20 | | 11 | 31 | 38 | 59 | 33 | 36 | 94 | 84 | 67 | 43 | 26 | 19 | 20 | | 12 | 32 | 40 | 58 | 32 | 36 | 93 | 82 | 65 | 40 | 25 | 19 | 21 | | 13 | 32 | 39 | 58 | 32 | 36 | 85 | 81 | 64 | 39 | 24 | 20 | 22 | | 14 | 32 | 39 | 57 | 33 | 35 | 81 | 78 | 63 | 38 | 24 | 20 | 23 | | 15 | 32 | 39 | 57 | 35 | 35 | 81 | 76 | 63 | 38 | 25 | 18 | 24 | | 16 | 33 | 39 | 57 | 34 | 33 | 79 | 75 | 61 | 36 | 25 | 17 | 23 | | 17 | 34 | 45 | 51 | 34 | 32 | 78 | 74 | 60 | 34 | 25 | 17 | 24 | | 18 | 33 | 48 | 49 | 34 | 32 | 76 | 73 | 59 | 32 | 24 | 21 | 25 | | 19 | 33 | 51 | 53 | 35 | 32 | 75 | 71 | 59 | 32 | 23 | 20 | 27 | | 20 | 36 | 50 | 55 | 35 | 32 | 73 | 70 | 59 | 31 | 23 | 18 | 29 | | 21 | 34 | 44 | 50 | 34 | 31 | 71 | 69 | 58 | 32 | 23 | 17 | 33 | | 22 | 34 | 51 | 56 | 34 | 32 | 70 | 68 | 57 | 32 | 23 | 20 | 42 | | 23 | 33 | 55 | 55 | 34 | 31 | 71 | 70 | 56 | 32 | 23 | 21 | 37 | | 24 | 34 | 52 | 56 | 35 | 31 | 73 | 71 | 54 | 34 | 23 | 19 | 32 | | 25 | 33 | 52 | 54 | 35 | 31 | 84 | 70 | 54 | 33 | 24 | 18 | 30 | | 26
27
28
29
30
31 | 34
34
34
37
35 | 52
52
52
54
56 | 44
46
52
51
51 | 33
33
34
33
33 | 31
30
31
32 | 88
86
86
90
92
88 | 69
73
76
78
77 | 58
55
54
53
51
50 | 32
27
29
31
27 | 23
23
23
22
22
22 | 18
18
18
17
18 | 29
29
29
30
29 | | TOTAL | 1025 | 1327 | 1675 | 1087 | 986 | 2180 | 2400 | 1910 | 1145 | 733 | 583 | 749 | | MEAN | 33.1 | 44.2 | 54.0 | 35.1 | 34.0 | 70.3 | 80.0 | 61.6 | 38.2 | 23.6 | 18.8 | 25.0 | | MAX | 37 | 56 | 59 | 43 | 39 | 94 | 101 | 76 | 51 | 26 | 21 | 42 | | MIN | 31 | 37 | 44 | 32 | 30 | 32 | 68 | 50 | 27 | 22 | 17 | 17 | WTR YR 1988 TOTAL 15800 MEAN 43.2 MAX 101 MIN 17 # 05401050 TENMILE CREEK NEAR NEKOOSA, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1987 to September 1988. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(FTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | |-----------------------|--|---|--|--|--|--|---|--|---|---|---|---| | OCT 1987
22
DEC | 1205 | 34 | 270 | 7.90 | 5.5 | 3.2 | 10.4 | 736 | 85 | К7 | >1000 | 140 | | 02
FEB 1988 | 1300 | 57 | 317 | 8.00 | 2.5 | 4.1 | 11.8 | 735 | 90 | K14 | 38 | 160 | | 24 | 1215 | 32 | 267 | 7.40 | 2.0 | 3.1 | 12.4 | 740 | 92 | | | 140 | | MAY
10 | 1220 | 69 | 335 | 8.00 | 13.5 | 4.1 | 9.4 | 734 | 94 | 520 | 115 | 170 | | JUN
08 | 1650 | 45 | 286 | 8.30 | 16.0 | 7.9 | 8.6 | 758 | 88 | 270 | 380 | 150 | | AUG
24 | 1725 | 20 | 208 | 8.00 | 16.0 | 3.3 | 8.7 | 755 | 89 | 160 | 260 | 110 | | DATE | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | OCT 1987 | 31 | 32 | 14 | 2.2 | 3 | 0.1 | 2.3 | 138 | 113 | 15 | 6.9 | 0.10 | | DEC
02 | 42 | 38 | 17 | 2.4 | 3 | 0.1 | 1.3 | 141 | 116 | 22 | 7.0 | 0.20 | | FEB 1988
24 | 30 | 33 | 14 | 3.0 | 4 | 0.1 | 9.0 | 130 | 106 | 15 | 13 | 0.20 | | MAY
10 | 42 | 39 | 17 | 2.5 | 3 | 0.1 | 1.1 | 148 | 122 | 30 | 9.0 | 0.20 | | JUN
08 | 29 | 36 | 15 | 2.4 | 3 | 0.1 | 0.90 | 147 | 120 | 18 | 6.3 | 0.30 | | AUG
24 | 17 | 27 | 11 | 2.0 | 4 | 0.1 | 0.60 | 114 | 94 | 16 | 2.8 | 0.10 | | DATE | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | | OCT 1987 | 12 | 159 | 158 | 0.22 | 14.5 | 1.90 | 0.040 | 0.050 | 0.50 | 0.020 | 0.030 | 0.020 | | DEC
02 | 12 | 193 | 188 | 0.26 | 29.7 | 3.20 | 0.040 | 0.100 | 0.80 | 0.020 | <0.010 | <0.010 | | FEB 1988
24 | 12 | 183 | 173 | 0.25 | 15.6 | 1.70 | 0.090 | 0.090 | 0.50 | 0.040 | 0.010 | 0.020 | | MAY
10 | 9.1 | 192 | 184 | 0.26 | 35.8 | 2.50 | 0.040 | 0.050 | 0.80 | 0.020 | <0.010 | <0.010 | | JUN
08 | 11 | 169 | 171 | 0.23 | 20.5 | 1.60 | 0.060 | 0.060 | 1.0 | 0.030 | 0.020 | <0.010 | | AUG
24 | 13 | 133 | 132 | 0.18 | 7.18 | 0.250 | 0.040 | 0.020 | 0.70 | 0.030 | 0.010 | <0.010 | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). ## 05401050 TENMILE CREEK NEAR NEKOOSA, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS
CHARG:
INST
CUBIC
FEE
PER
SECO!
(0006 | E, ALU . INU C DI T SOL (UG ND AS | M, ARS
S- D
VED SO
/L (U
AL) AS | IS-
LVED
G/L
AS) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYI
LIUM
DIS-
SOLVI
(UG/J
AS BI | , CA
ED S
L (
E) A | ADMIUM DIS- SOLVED UG/L AS CD) 01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBAL' DIS- SOLVEI (UG/) AS CO | DIS
D SOI
L (UC
D) AS | VED
LVED
CU) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | |------------------|-------------------|--|---|---|--|--|--|---|---------------------------------------|---|---|---|-------------------------------------|---| | OCT 1987
22 | 1205 | 34 | | <10 | <1 | 16 | <0 | . 5 | <1 | 1 | | <3 | 2 | 250 | | FEB 1988
24 | 1215 | 32 | | 120 | <1 | 14 | <0. | . 5 | <1 | <1 | | <3 | 3 | 210 | | MAY
10 | 1220 | 69 | | <10 | <1 | 16 | <0 | . 5 | <1 | <1 | | <3 | 1 | 310 | | AUG
24 | 1725 | 20 | | <10 | 1 | 18 | <0 | . 5 | <1 | <1 | | <3 | 1 | 720 | | DATE
OCT 1987 | SOI
(UC
AS | IS-
LVED
G/L
PB) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | MERC
DI
SOL
(UG
AS
(718 | URY DE
S- I
VED SO
JL (U
HG) AS | IS-
LVED
G/L
MO) | NICKEL
DIS-
SOLVE
(UG/L
AS NI | , NIV
D SO:
(UG)
AS | JM, 7
IS- I
LVED SC
G/L (U
SE) AS | TRON-
TIUM,
DIS-
DLVED
DG/L
S SR)
1080) | VANA-
DIUM,
DIS-
SOLVED
(UG/L
AS V)
(01085) | ZING
DIS
SOLV
(UG,
AS 2 | S-
VED
/L
ZN) | | 22
FEB 1988 | | <5 | 5 | 100 | < | 0.1 | <10 | | 2 | <1 | 36 | <6 | | 6
 | 24
MAY | | <5 | 8 | 110 | < | 0.1 | <10 | | 2 | <1 | 37 | <6 | | 21 | | 10
AUG | | <5 | 8 | 45 | < | 0.1 | <10 | | 7 | <1 | 42 | <6 | | 24 | | 24 | | <5 | <4 | 100 | | 0.1 | <10 | < | 1 | <1 | 34 | <6 | | 10 | | | | DATE | TI | CHAI
IN:
CUI
FI
ME PI
SE | ST.
SIC
SET
SR
COND | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER
ATURE
WATER
(DEG (| R- M
E S
R P
E) (| EDI-
ENT,
US-
ENDED
MG/L) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | SED
SUSI
SIEVI
DIAN
% FINI
THAN
.062 M | P.
E
M.
ER
N
MM | | | | | 2 | r 1987
22 | 12 | 05 3 | į. | 270 | 5. | 5 | 29 | 2.6 | 2 | 27 | | | | | | 02 | 13 | 00 5 | 7 | 317 | 2. | 5 | 20 | 3.1 | L | 48 | | | | | 2 | 3 1988
24 | 12 | 15 3: | 2 | 267 | 2 . | 0 | 11 | 0.94 | 8 | 33 | | | | | YAM
1
MUL | 10 | 12 | 20 69 | • | 335 | 13. | 5 | 17 | 0.0 | į | 55 | | | | | | 08 | 16 | 50 4 | 5 | 286 | 16. | 0 | 24 | 2.9 | L | 43 | | | | | | 24 | 17 | 25 20 |) | 208 | 16. | 0 | 7 | 0.38 | 8 | 34 | | | ## 05402000 YELLOW RIVER AT BABCOCK, WI LOCATION.--Lat 44°18'05", long 90°07'15", in NW 1/4 sec.14, T.21 N., R.3 E., Wood County, Hydrologic Unit 07070003, on right bank at downstream side of bridge on State Highway 80 at Babcock, 1.9 mi upstream from Hemlock Creek. DRAINAGE AREA. -- 215 mi². PERIOD OF RECORD. -- March 1944 to current year. REVISED RECORDS.--WSP 1308: 1944(M), 1946-47(M), 1949(M). WDR WI-77-1: Drainage area. WDR WI-82-1: 1981 (P). GAGE.--Water-stage recorder. Datum of gage is 954.75 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 28, 1948, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Ice-affected period of Dec. 5, 6, and Dec. 17 to Mar. 21. Records fair. There is a large recreation dam about 5.0 mi upstream. AVERAGE DISCHARGE. -- 44 years, 158 ft3/s, 9.98 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $11,600 \text{ ft}^3/\text{s}$, Apr. 2, 1952, gage height, 17.38 ft; minimum observed, 0.94 ft³/s, Aug. 11, 1985, gage height, 1.84 ft. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|--------------------|--------------|-----------------------------------|---------------------| | Mar. 11 | | (a) 1,300 | ice jam | Mar. 26
Mar. 26 | 1315
1515 | *2,680 | 11.15
*11.24 | (a) Estimated, daily mean discharge. Minimum daily discharge, 2.8 ft³/s, Sept. 11. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|----------------------------------|------------------------------|----------------------------------|----------------------------------|---------------------------------------|--|--|---|-----------------------------------|---|--|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 38
32
38
26
24 | 45
45
44
45
49 | 196
201
167
137
110 | 16
15
14
14
13 | 17
15
14
13 | 17
18
19
21
25 | 468
323
308
486
495 | 350
221
146
105
81 | 11
14
15
14
13 | 4.7
4.4
4.0
3.8
3.5 | 3.7
3.2
3.1
3.3
3.6 | 3.6
3.8
3.9
4.0
4.1 | | 6
7
8
9
10 | 19
14
12
11
14 | 51
56
59
61
58 | 82
64
56
57
103 | 13
13
13
13 | 13
12
12
12
12 | 30
50
160
700
1200 | 427
376
335
274
207 | 64
53
48
57
300 | 13
11
11
11
11 | 3.5
3.6
3.7
4.7
5.7 | 3.4
3.2
4.1
4.4
4.0 | 4.0
3.5
3.3
3.3
3.0 | | 11
12
13
14
15 | 15
15
15
14
15 | 54
53
50
48
46 | 293
262
251
190
150 | 13
13
13
13 | 12
12
11
11 | 1300
900
680
500
330 | 162
133
110
93
78 | 267
150
116
83
63 | 11
9.6
6.8
7.1
7.6 | 5.3
4.7
4.7
4.8
5.5 | 3.9
4.0
4.3
4.3 | 2.8
3.0
3.7
3.9
4.2 | | 16
17
18
19
20 | 16
19
20
18
16 | 47
56
72
115
139 | 117
100
82
66
56 | 15
16
15
15
14 | 11
12
14
17
19 | 220
160
140
120
100 | 68
60
54
47
42 | 50
41
34
30
26 | 7.3
7.4
7.0
6.8
6.5 | 5.7
6.1
6.0
5.6
5.6 | 4.1
3.8
4.0
4.0
3.3 | 4.6
5.8
11
14
16 | | 21
22
23
24
25 | 14
16
15
15
18 | 116
89
79
82
93 | 48
40
34
29
26 | 13
13
12
12
12 | 17
16
15
15 | 96
88
85
99
422 | 40
36
40
46
66 | 24
21
19
16
15 | 6.6
6.5
6.1
5.5
5.1 | 5.9
5.7
4.0
4.2
4.3 | 3.1
3.3
5.8
5.2
4.7 | 15
17
26
28
18 | | 26
27
28
29
30
31 | 20
25
32
35
39
44 | 104
99
90
91
136 | 24
22
20
19
18
17 | 12
12
12
12
13
18 | 15
15
16
16 | 2300
1480
819
729
840
676 | 99
126
363
680
554 | 13
13
13
12
11 | 4.6
4.6
5.0
6.2
5.4 | 4.2
4.6
4.5
4.2
4.0
3.8 | 4.3
4.4
4.7
4.4
4.5
3.8 | 11
6.4
7.8
13
15 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 664
21.4
44
11
.10 | | 3037
98.0
293
17
.46 | 418
13.5
18
12
.06 | 403
13.9
19
11
.06
.07 | 14324
462
2300
17
2.15
2.48 | 6596
220
680
36
1.02
1.14 | 2452
79.1
350
10
.37
.42 | 256.7
8.56
15
4.6
.04 | 145.0
4.68
6.1
3.5
.02
.03 | 124.2
4.01
5.8
3.1
.02 | 262.7
8.76
28
2.8
.04 | CAL YR 1987 TOTAL 28537.1 MEAN 78.2 MAX 1040 MIN 9.1 CFSM .36 IN. 4.94 WTR YR 1988 TOTAL 30854.6 MEAN 84.3 MAX 2300 MIN 2.8 CFSM .39 IN. 5.34 #### 05404000 WISCONSIN RIVER NEAR WISCONSIN DELLS, WI DRAINAGE AREA. -- 8,090 mi². PERIOD OF RECORD. -- October 1934 to current year. REVISED RECORDS.--WSP 1728: 1936(M). WSP 1914: 1951, 1953-55. WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 801.48 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1963, water-stage recorder at same site at datum 5.00 ft higher. REMARKS.--Estimated daily discharges: July 4-14, Aug. 9-18, and ice-affected period, Dec. 31 to Mar. 2. Records good, except those for ice-affected period and June 29 to Aug. 19, which are fair. Flow regulated by 24 reservoirs above station. In 1938, when the maximum of record occurred, there were 22 reservoirs above station, the two large reservoirs, Petenwell and Castle Rock, were not in existence. Diurnal fluctuation is caused by powerplant of Wisconsin Power and Light Co. at Wisconsin Dells. AVERAGE DISCHARGE. -- 54 years, 6,823 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 72,200 $\rm ft^3/s$, Sept. 14, 1938, gage height, 23.83 ft, present datum; minimum daily, 1,060 $\rm ft^3/s$, Aug. 19, 1936. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 13,800 ft³/s, Apr. 10, gage height, 8.39 ft; minimum daily, 1,100 ft³/s Aug. 13. | | | DISCHA | RGE, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--------|-------|--------|------------|----------|---------|--------------------------|---------|---------|-----------|-------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1920 | 2410 | 5940 | 3400 | 4700 | 4600 | 7330 | 6390 | 2070 | 1340 | 1560 | 1390 | | 2 | 2120 | 3230 | 5600 | 3700 | 4400 | 4500 | 7210 | 6510 | 2340 | 1600 | 1320 | 1330 | | 3 | 1970 | 3400 | 5490 | 4700 | 4900 | 4520 | 7170 | 6140 | 2580 | 1690 | 1240 | 1750 | | 3
4 | 2120 | 3430 | 5550 | 4200 | 4900 | 4500 | 6980 | 5130 | 2460 | 1600 | 1230 | 2010 | | 5 | 2000 | 3900 | 5350 | 3700 | 5000 | 4350 | 6980 | 5720 | 2470 | 1400 | 1630 | 2060 | | 6 | 1750 | 4110 | 4560 | 4400 | 5000 | 4850 | 7190 | 6050 | 2440 | 1300 | 1240 | 2020 | | 6
7 | 1960 | 3750 | 4740 | 4200 | 5000 | 5220 | 7000 | 6040 | 2320 | 1300 | 1170 | 2100 | | 8 | 1870 | 3230 | 4950 | 3900 | 5000 | 5450 | 7130 | 6050 | 2150 | 1400 | 1310 | 1570 | | 9 | 1700 | 2980 | 5070 | 3700 | 5000 | 6020 | 9990 | 5940 | 2250 | 1400 | 1500 | 1690 | | 10 | 1800 | 2990 | 4990 | 3700 | 5000 | 7190 | 13100 | 5440 | 2220 | 1600 | 1200 | 1900 | | 11 | 1860 | 2610 | 5470 | 3700 | 5000 | 8070 | 13200 | 5980 | 2110 | 1500 | 1300 | 1820 | | 12 | 1770 | 2350 | 6160 | 3800 | 4900 | 9840 | 9320 | 6000 | 2020 | 1300 | 1200 | 1830 | | 13 | 1860 | 2650 | 4930 | 3900 | 4900 | 11100 | 8250 | 5840 | 2010 | 1200 | 1100 | 1570 | | 14 | 1670 | 3200 | 5100 | 4300 | 5200 | 9090 | 8020 | 5680 | 1550 | 1200 | 1200 | 1400 | | 15 | 2350 | 3330 | 5560 | 4500 | 5600 | 7960 | 7620 | 5210 | 1820 | 1310 | 1300 | 1450 | | 16 | 2540 | 3460 | 5950 | 4600 | 5200 | 8070 | 7240 | 5250 | 1540 | 1740 | 1200 | 1310 | | 17 | 2860 | 3740 | 6050 | 4800 | 5400 | 8050 | 6840 | 5180 | 1410 | 2140 | 1300 | 1340 | | 18 | 4010 | 5070 | 5010 | 4800 | 5600 | 7990 | 6490 | 5240 | 1440 | 2330 | 1600 | 1620 | | 19 | 4050 | 6400 | 5100 | 4700 | 5000 | 7850 | 6460 | 5180 | 1550 | 2310 | 2040 | 2400 | | 20 | 4050 | 5640 | 4690 | 4900 | 4600 | 7860 | 6010 | 4550 | 1310 | 2110 | 2060 | 2340 | | 21 | 4040 | 5440 | 5620 | 4900 | 4200 | 7600 | 4860 | 4400 | 1400
 2160 | 2070 | 3960 | | 22 | 3360 | 4900 | 5400 | 4800 | 5400 | 7450 | 5010 | 4030 | 1600 | 2200 | 2060 | 4880 | | 23 | 3380 | 4080 | 5970 | 4900 | 4200 | 7510 | 4880 | 3610 | 1320 | 2230 | 2430 | 6360 | | 24 | 3380 | 4410 | 6180 | 4900 | 4400 | 7260 | 4290 | 3400 | 1370 | 2180 | 2440 | 6480 | | 25 | 3130 | 4620 | 6280 | 4800 | 4400 | 7390 | 4490 | 3090 | 1420 | 2400 | 2480 | 3700 | | 26 | 3000 | 4760 | 6130 | 3700 | 4900 | 7610 | 4490 | 2690 | 1360 | 2190 | 2180 | 2650 | | 27 | 2580 | 4490 | 6140 | 4500 | 4500 | 8330 | 4980 | 2760 | 1320 | 1880 | 2150 | 2510 | | 28 | 3020 | 4680 | 6000 | 4800 | 4600 | 8050 | 6260 | 2730 | 1570 | 1540 | 1950 | 2440 | | 29 | 3350 | 5100 | 5400 | 4800 | 4600 | 7770 | 5890 | 2590 | 1820 | 1450 | 1820 | 2460 | | 30 | 3290 | 5860 | 4910 | 4900 | | 7660 | 6280 | 2590 | 1540 | 1570 | 1760 | 2360 | | 31 | 3080 | | 4400 | 4800 | | 7500 | | 2580 | | 1520 | 1620 | | | TOTAL | 81840 | 120220 | 168690 | 135400 | 141500 | 221210 | 210960 | 147990 | 54780 | 53090 | 50660 | 72700 | | MEAN | 2640 | 4007 | 5442 | 4368 | 4879 | 7136 | 7032 | 4774 | 1826 | 1713 | 1634 | 2423 | | MAX | 4050 | 6400 | 6280 | 4900 | 5600 | 11100 | 13200 | 6510 | 2580 | 2400 | 2480 | 6480 | | MIN | 1670 | 2350 | 4400 | 3400 | 4200 | 4350 | 4290 | 2580 | 1310 | 1200 | 1100 | 1310 | CAL YR 1987 TOTAL 1539110 MEAN 4217 MAX 9140 MIN 1670 WTR YR 1988 TOTAL 1459040 MEAN 3986 MAX 13200 MIN 1100 **LOWER WISCONSIN RIVER BASIN** ## 433606090060000 REDSTONE LAKE NEAR LA VALLE, WI #### LAKE-STAGE RECORDS LOCATION.--Lat 43°36'06", long 90°06'00", in SE 1/4 sec.14, T.13 N., R.3 E., Sauk County, Hydrologic Unit 07070004, 1.8 mi northeast of LaValle. PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Staff gage read by Tom Meronek. Elevation of gage is 916 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 8.49 ft, Sept. 7, 1985; minimum observed, 7.00 ft, June 18 and 26, 1988. EXTREMES FOR CURRENT YEAR. -- Maximum gage height observed, 7.42 ft, Nov. 29; minimum observed, 7.00 ft, June 18 and 26. ## GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | |-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|--|--|---|--| | Oct. 10
11
18
24
Nov. 3 | 7.12
7.16
7.24
7.22
7.30 | Nov. 15
22
29
Dec. 5
13 | 7.22
7.28
7.42
7.30
7.30 | Apr. 16
May 7
16
22
30 | 7.24
7.20
7.20
7.06
7.12 | June 5
11
18
26
July 8
18 | 7.08
7.06
7.00
7.00
7.06
7.16 | July 30
Aug. 14
28
Sept. 5
11
18 | 7.06
7.10
7.12
7.06
7.06
7.20 | #### WATER-QUALITY RECORDS LOCATION.--Lat $43^{\circ}36^{\circ}27^{\circ}$, long $90^{\circ}05^{\circ}25^{\circ}$, in NE 1/4 sec.14, T.13 N., R.3 E., Sauk County, Hydrologic Unit 07070004, near center of lake, and 2.3 mi northeast of LaValle. PERIOD OF RECORD. -- April 1985 to current year. REMARKS. -- Secchi disc readings made by Tom Meronek. | DATE | SECCHI
DEPTH | |---------------------|-------------------|---------------------|-------------------|-------------------------------|-------------------|--------------------|-------------------|--------------------------|-------------------| | Oct. 10
11
18 | 0.9
1.1
1.5 | Nov. 15
22
29 | 1.2
1.2
1.8 | Apr. 16
May 7
15 | 1.2
2.4
3.4 | June 5
11
18 | 1.5
0.9
0.9 | July 30
Aug. 14
28 | 0.8
0.8
0.9 | | Nov. 3 | 1.5
1.5 | Dec. 5
13 | 3.7
3.7 | 22
30 | 3.7
2.7 | 26
July 8
18 | 0.9
0.9
0.8 | Sept. 5
11
18 | 0.9
0.9
0.8 | #### 05404500 DEVILS LAKE NEAR BARABOO, WI #### LAKE-STAGE RECORDS LOCATION.--Lat 43°25'18", long 89°43'38", in NW 1/4 NE 1/4 sec.24, T.11 N., R.6 E., Sauk County, Hydrologic Unit 07070004, in Devils Lake State Park, 3.5 mi south of Baraboo. DRAINAGE AREA. -- 4.79 mi². Area of Devils Lake, 361 acres. PERIOD OF RECORD.--June 1922 to August 1930, June to August 1932, June 1934 to September 1981 (fragmentary). October 1981 to September 1984, data unpublished in district files. October 1984 to current year. REVISED RECORDS. -- WDR WI-78-1: Drainage area. GAGE. -- Nonrecording gage. Datum of gage is 955.00 ft, National Geodetic Vertical Datum of 1929. REMARKS. -- Lake has no surface outlet. COOPERATION.--Gage readings furnished by Kenneth Lange of Devils Lake State Park. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 12.40 ft, May 31, June 1, 1973; minimum observed, 1.49 ft Feb. 8, 1965. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 9.79 ft, Apr. 28; minimum observed, 7.35 ft, July 11. ## GAGE HEIGHT (FEET ABOVE DATUM), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | GAGE
HEIGHT | |------|----------------------------|------------------------|----------------------|------------------------|----------------------|-------------------------|----------------------|-------------------|----------------------| | | 3 8.78
9 8.78
4 8.70 | Nov. 19
Dec. 2
8 | 8.47
8.57
8.60 | Apr. 19
28
May 6 | 9.73
9.79
9.76 | June 15
20
July 1 | 8.90
8.73
8.51 | Aug. 1
2
23 | 8.12
8.17
8.05 | | Nov. | 6 8.48
2 8.42 | 21
Apr. 4 | 7.80
9.76 | 16
24 | 9.69
9.52 | 11
22 | 7.35
8.35 | Sept. 21 | 7.53 | LOCATION.--43°25'00", long 89°44'00", in NW 1/4 sec.24, T.11 N., R.6 E., Sauk County, Hydrologic Unit 07070004, near center of lake, and 3.6 mi south of Baraboo. PERIOD OF RECORD. -- July 1982 to current year; July 1982 to September 1984 data at Devils Lake State Park office files. REMARKS. -- Secchi disc readings made by Dale Soltis through November 1987; Paul Garrison thereafter. | DATE | SECCHI
DEPTH | DATE DEP | | SECCHI
DEPTH | DATE | SECCHI
DEPTH | DATE | SECCHI
DEPTH | |--------------------------|--------------------------|---|----------|--------------------------|-------------------------------|--------------------------|----------------------|-------------------| | Oct. 6
14
22
28 | 3.0
4.0
5.2
5.8 | Nov. 11 5.8
25 5.9
May 26 7.9
June 8 8.2 | 4 July 7 | 7.6
7.5
7.2
8.0 | Aug. 4
11
18
Sept. 1 | 8.8
6.7
7.0
2.9 | Sept. 15
24
29 | 2.1
2.1
2.2 | TOTAL MEAN MAX MIN IN. **CFSM** . 44 .51 .61 .68 .68 #### WISCONSIN RIVER BASIN ## 05405000 BARABOO RIVER NEAR BARABOO, WI LOCATION.--Lat 43°28'51", long 89°38'09", in NW 1/4 sec.35, T.12 N., R.7 E., Sauk County, Hydrologic Unit 07070004, on left bank 50 ft downstream from highway bridge, 0.3 mi downstream from Rowley Creek and 5.3 mi east of Baraboo. DRAINAGE AREA. -- 609 mi². PERIOD OF RECORD.--December 1913 to March 1922. September 1942 to current year. REVISED RECORDS.--WSP 455: 1915. WSP 505: 1917(M). WSP 1438: 1914-15(M), 1916-17, 1918-20(M), 1944(M), 1949(M). WSP 1914: 1948, 1950, 1956. WDR WI-75-1: 1968. WDR WI-77-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 788.21 ft above National Geodetic Vertical Datum of 1929. Dec. 18, 1913, to Mar. 31, 1922, nonrecording gage at bridge 2.3 mi upstream at datum 7.6 ft higher. Sept. 24, 1942, to June 10, 1963, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: June 21 to July 13 and ice periods listed in rating tables below. Records good except those for estimated daily discharges, which are fair. Apparent occasional regulation at low flow by dams upstream. AVERAGE DISCHARGE. -- 53 years (1915-21, 1943-88), 380 ft³/s, 8.47 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge observed, 7,900 ft³/s, Mar. 26, 1917, gage height, 17.5 ft, estimated, site and datum then in use, from rating curve extended above 6,000 ft³/s; minimum observed, 9.0 ft³/s, Feb. 17, 1944, gage height, 5.08 ft; minimum daily, 26 ft³/s, Oct. 6, 1950. EXTREMES OUTSIDE THE PERIOD OF RECORD.--Flood of Aug. 6, 1935, reached a stage of 15.8 ft from floodmarks, site and datum in use in 1922, discharge, $5,100~\rm{ft}^3/s$. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,220 $\rm ft^3/s$, Mar. 9, gage height, 11.20 ft; minimum daily discharge, 121 $\rm ft^3/s$, June 7 and July 31. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 18-21, Dec. 29 to Feb. 16, and Feb. 21, 25.) | | Oct. 1 t | o Mar. 16 | 5 | Mar. 17 | to Sept. | 30 | |--|------------|-------------|---|------------|-------------|--------------| | | 212
235 | 9.0
11.0 | | 109
205 | 9.0
11.0 | 682
1,160 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES #### JUN JUL AUG SEP DAY OCT NOV DEC JAN FEB MAR APR MAY 327 2.58 q 170 1.3 155 --- 1.09 .68 .51 .30 .30 .34 .34 . 44 CAL YR 1987 TOTAL 133243 MEAN 365 MAX 1410 MIN 194 CFSM .60 IN. 8.14 WTR YR 1988 TOTAL 116154 MEAN 317 MAX 1140 MIN 121 CFSM .52 IN. 7.10 .35 .73 #### 05406500 BLACK EARTH CREEK AT BLACK EARTH, WI DRAINAGE AREA. -- 45.6 mi², of which 2.8 mi² probably is noncontributing. PERIOD OF RECORD. -- February 1954 to current year. REVISED RECORDS. -- WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 812.95 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records good, except those for May to July, which are fair. AVERAGE DISCHARGE. -- 34 years, 33.6 ft³/s, 10.66 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,750 $\rm ft^3/s$, July 3, 1954, gage height, 6.58 ft; minimum, 4.8 $\rm ft^3/s$, Nov. 29, 1958, gage height, 1.39 ft,
result of freezeup. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 200 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------| | Jan. 31 | 1515 | *140 | 2.63 | June 29 | 0615 | (a) | *2.79 | (a) Backwater from weeds. Minimum daily discharge, 24 ft³/s, Sept. 14-16 and 18. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second. (Shifting-control method used Apr. 16 to Aug. 7; stage-discharge relation affected by ice Jan. 4-10.) .6 17 2.0 63 .7 25 2.6 139 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|--|---|---|----------------------------------|---------------------------------------|---------------------------------------|----------------------------------|--------------------------------| | 1 | 31 | 41 | 54 | 40 | 91 | 51 | 46 | 31 | 29 | 32 | 29 | 25 | | 2 | 30 | 37 | 52 | 40 | 68 | 51 | 48 | 30 | 29 | 33 | 29 | 26 | | 3 | 29 | 37 | 49 | 39 | 60 | 45 | 65 | 30 | 35 | 31 | 32 | 27 | | 4 | 29 | 35 | 44 | 38 | 55 | 42 | 60 | 30 | 34 | 30 | 31 | 26 | | 5 | 30 | 34 | 42 | 36 | 51 | 41 | 53 | 30 | 29 | 29 | 31 | 26 | | 6 | 31 | 38 | 40 | 34 | 49 | 43 | 53 | 30 | 29 | 29 | 28 | 26 | | 7 | 31 | 39 | 42 | 34 | 47 | 46 | 48 | 30 | 30 | 31 | 27 | 26 | | 8 | 30 | 44 | 45 | 34 | 45 | 54 | 45 | 33 | 29 | 31 | 33 | 26 | | 9 | 30 | 41 | 73 | 34 | 44 | 50 | 43 | 38 | 28 | 30 | 41 | 26 | | 10 | 32 | 38 | 59 | 34 | 44 | 45 | 43 | 37 | 28 | 35 | 36 | 25 | | 11 | 38 | 37 | 55 | 34 | 43 | 44 | 42 | 38 | 29 | 31 | 32 | 30 | | 12 | 37 | 37 | 51 | 34 | 42 | 44 | 41 | 38 | 28 | 30 | 30 | 27 | | 13 | 34 | 36 | 48 | 34 | 41 | 42 | 41 | 33 | 27 | 34 | 28 | 26 | | 14 | 33 | 36 | 46 | 33 | 41 | 41 | 41 | 32 | 27 | 29 | 29 | 24 | | 15 | 33 | 36 | 46 | 34 | 41 | 40 | 38 | 31 | 38 | 28 | 32 | 24 | | 16 | 35 | 37 | 46 | 35 | 41 | 39 | 38 | 31 | 37 | 47 | 27 | 24 | | 17 | . 39 | 67 | 43 | 37 | 40 | 39 | 37 | 31 | 30 | 35 | 25 | 26 | | 18 | 34 | 54 | 41 | 39 | 39 | 39 | 36 | 29 | 30 | 31 | 27 | 24 | | 19 | 34 | 45 | 43 | 46 | 40 | 38 | 35 | 29 | 28 | 31 | 27 | 29 | | 20 | 33 | 40 | 55 | 56 | 40 | 38 | 35 | 37 | 28 | 31 | 30 | 30 | | 21 | 33 | 37 | 49 | 50 | 38 | 37 | 34 | 35 | 28 | 33 | 28 | 26 | | 22 | 33 | 35 | 48 | 48 | 39 | 37 | 34 | 32 | 32 | 31 | 28 | 41 | | 23 | 33 | 36 | 46 | 45 | 38 | 38 | 42 | 31 | 29 | 30 | 45 | 45 | | 24 | 36 | 36 | 48 | 43 | 37 | 41 | 38 | 30 | 29 | 30 | 30 | 32 | | 25 | 36 | 37 | 51 | 43 | 37 | 57 | 35 | 30 | 28 | 31 | 28 | 28 | | 26
27
28
29
30
31 | 37
38
35
34
34
33 | 36
36
57
68
57 | 49
46
45
45
44
43 | 40
39
38
38
66
129 | 40
44
47
51
 | 49
45
51
67
56
49 | 35
43
40
35
33 | 30
28
28
28
29
29 | 27
39
37
44
33 | 30
31
30
30
30
29 | 27
25
25
25
25
25 | 27
27
27
28
27 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1035
33.4
39
29
.73
.84 | 1244
41.5
68
34
.91
1.01 | 1488
48.0
73
40
1.05
1.21 | 1324
42.7
129
33
.94
1.08 | 1333
46.0
91
37
1.01
1.09 | 1399
45.1
67
37
.99
1.14 | 1257
41.9
65
33
.92
1.03 | 978
31.5
38
28
.69 | 928
30.9
44
27
.68
.76 | 973
31.4
47
28
.69
.79 | 915
29.5
45
25
.65 | 831
27.7
45
24
.61 | CAL YR 1987 TOTAL 14267 MEAN 39.1 MAX 97 MIN 24 CFSM .86 IN. 11.64 WTR YR 1988 TOTAL 13705 MEAN 37.4 MAX 129 MIN 24 CFSM .82 IN. 11.18 ## 05407000 WISCONSIN RIVER AT MUSCODA, WI (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) LOCATION.--Lat 43°11'54", long 90°26'26", in NW 1/4 sec.1, T.8 N., R.1 W., Grant County, Hydrologic Unit 07070005, on left bank at bridge on State Highway 80, 0.5 mi upstream from Eagle Mill Creek and 1.0 mi north of Muscoda. DRAINAGE AREA. -- 10,400 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--December 1902 to December 1903, October 1913 to current year. Monthly discharge only for October and November 1913, published in WSP 1308. Gage-height records collected at same site November 1908 to December 1912 are contained in reports of U. S. Weather Bureau. REVISED RECORDS.--WSP 785: 1921(M). WSP 875: 1921. WSP 1308: 1915(M), 1917-18(M), 1920-21(M), 1924(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 666.77 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 22, 1929, nonrecording gage on bridge 200 ft upstream at same datum. Nov. 22, 1929, to Mar. 15, 1930, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Apr. 8-19 and ice period listed in rating table below. Records good except those for estimated daily discharges, which are fair. Flow regulated by 23 reservoirs and many power-plants upstream from station. In 1938 when the maximum of record occurred, there were 21 reservoirs upstream from station, the two large reservoirs, Petenwell and Castle Rock were not yet in existence. Usually less than 20 ft³/s was diverted out of basin through Portage Canal to Fox River throughout the year. Gage-height telemeter and data-collection platform at station. AVERAGE DISCHARGE.--75 years (1914-88), 8,714 ft³/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 80,800 ft 3 /s, Sept. 16, 1938, gage height, 11.48 ft; minimum discharge, 1,240 ft 3 /s, July 4, 1988, gage height, 0.04 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, $13,200 \text{ ft}^3/\text{s}$, Mar. 14, gage height, 3.51 ft; maximum gage height, 4.14 ft (backwater from ice); minimum discharge, $1,240 \text{ ft}^3/\text{s}$ July 4, gage height, 0.04 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Jan. 1 to Mar. 9.) 0.1 1,420 2.0 7,260 1.0 4,120 4.0 15,300 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|--|--|----------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | 1 | 3610 | 5440 | 8220 | 7600 | 8400 | 6600 | 11100 | 8350 | 4120 | 3300 | 2170 | 2900 | | 2 | 2610 | 5160 | 8210 | 6000 | 8200 | 6800 | 10700 | 8880 | 4000 | 2720 | 2020 | 2250 | | 3 | 3270 | 4640 | 8680 | 4500 | 8000 | 7200 | 10400 | 8880 | 4330 | 1460 | 1690 | 1540 | | 4 | 3310 | 4820 | 8320 | 5000 | 7600 | 7600 | 11200 | 8810 | 3770 | 1660 | 1900 | 1660 | | 5 | 2960 | 5590 | 7720 | 6800 | 8400 | 7600 | 10900 | 8280 | 3590 | 2530 | 2560 | 2430 | | 6 | 3280 | 5580 | 7630 | 6400 | 8400 | 7400 | 10300 | 7340 | 3770 | 2710 | 2280 | 3430 | | 7 | 3700 | 5700 | 7150 | 5600 | 8400 | 7400 | 10700 | 7770 | 4070 | 2470 | 3220 | 2220 | | 8 | 3310 | 5840 | 6810 | 6200 | 8600 | 9200 | 10000 | 8080 | 4130 | 2280 | 2590 | 2790 | | 9 | 2530 | 5820 | 7120 | 6400 | 9600 | 9000 | 11000 | 8270 | 4270 | 1900 | 2390 | 2920 | | 10 | 2610 | 5230 | 7550 | 5800 | 9000 | 10400 | 10000 | 8360 | 3710 | 1800 | 2260 | 2670 | | 11 | 3290 | 4900 | 7690 | 5400 | 8600 | 10200 | 12000 | 8550 | 3240 | 2170 | 2310 | 2150 | | 12 | 2590 | 4720 | 7610 | 5200 | 8600 | 11000 | 13000 | 7690 | 3010 | 2490 | 2170 | 2250 | | 13 | 3230 | 4310 | 7980 | 5800 | 9200 | 12500 | 13000 | 7740 | 3150 | 2300 | 1990 | 2440 | | 14 | 3290 | 4030 | 8620 | 5800 | 9200 | 13000 | 12000 | 8730 | 3320 | 2200 | 2000 | 2350 | | 15 | 2810 | 4290 | 7650 | 5600 | 9000 | 13100 | 11000 | 8110 | 3470 | 1810 | 1820 | 2230 | | 16 | 3420 | 5030 | 7810 | 6000 | 8600 | 11300 | 11000 | 7380 | 3030 | 2280 | 2000 | 1830 | | 17 | 3700 | 5800 | 7750 | 7200 | 8800 | 10400 | 10000 | 7280 | 2680 | 2700 | 1860 | 1650 | | 18 | 4220 | 6540 | 7000 | 6600 | 7400 | 10500 | 10000 | 7210 | 2630 | 2900 | 1760 | 1650 | | 19 | 4890 | 6460 | 6720 | 7000 | 7200 | 10100 | 9200 | 7250 | 2580 | 3060 | 1900 | 1850 | | 20 | 5510 | 7020 | 6800 | 7400 | 7800 | 10200 | 8830 | 7250 | 2300 | 4520 | 2430 | 2720 | | 21 | 5710 | 8800 | 7650 | 7600 | 7200 | 10100 | 8890 | 7070 | 2220 | 4100 | 2480 | 3540 | | 22 | 5470 | 7830 | 7210 | 7200 | 6600 | 9960 | 8330 | 6750 | 2520 | 3850 | 2710 | 4480 | | 23 | 5490 | 7190 | 7690 | 7200 | 6200 | 9860 | 7690 | 6260 | 2230 | 3010 | 3770 | 6500 | | 24 | 5300 | 6700 | 8360 | 7000 | 7400 | 9470 | 7490 | 6000 | 2460 | 3220 | 3890 | 8080 | | 25 | 5160 | 6930 | 8690 | 7200 | 6800 | 10400 | 7200 | 5170 | 2460 | 3670 | 3760 | 8140 | | 26
27
28
29
30
31 | 5140
4940
4540
4420
4710
5070 | 6700
6530
6870
7560
7840 | 8970
8040
7230
7660
8730
8190 | 7200
7200
7400
6800
7000
7400 | 6000
6000
6200
6400
 | 10100
10400
11000
12100
11800
11500 | 6270
7870
7490
8570
8270 | 4980
4380
4590
4660
4620
4250 | 2290
2340
1770
1840
3430 | 3980
3430
3200
3160
2580
1920 |
3420
3380
3640
3190
2730
3290 | 8230
6150
4720
4630
3870 | | TOTAL | 124090 | 179870 | 241460 | 201500 | 227800 | 308190 | 294400 | 218940 | 92730 | 85380 | 79580 | 104270 | | MEAN | 4003 | 5996 | 7789 | 6500 | 7855 | 9942 | 9813 | 7063 | 3091 | 2754 | 2567 | 3476 | | MAX | 5710 | 8800 | 8970 | 7600 | 9600 | 13100 | 13000 | 8880 | 4330 | 4520 | 3890 | 8230 | | MIN | 2530 | 4030 | 6720 | 4500 | 6000 | 6600 | 6270 | 4250 | 1770 | 1460 | 1690 | 1540 | CAL YR 1987 TOTAL 2282790 MEAN 6254 MAX 11200 MIN 2530 WTR YR 1988 TOTAL 2158210 MEAN 5897 MAX 13100 MIN 1460 ## 05407000 WISCONSIN RIVER AT MUSCODA, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964-67, 1971, 1975 to current year. National Stream-Quality Accounting Network data collection begin in October 1974. | DATE | TIME | DISCHARGE INSTALLATION OF THE COLORS | GE, SPI F. CII IC COI ET DUC R ANG | E-
FIC
N-
CT- (S
CE
/CM) UN | PH
TAND-
ARD
ITS)
0400) | TEM
AT
WA
(DE | PER-
URE
TER
G C)
010) | T
B
I
(FT | UR-
ID-
TY | OXY
D
SO
(M | GEN,
DIS-
DEVED
G(L)
300) | BAI
ME'
PRI
SI
(1 | RO-
TRIC
ES-
URE
MM
OF | SOI
(PE
CE
SAT | IS-
LVED
ER-
ENT
FUR-
ION) | COL
FOR
FEC
0.7
UM-
(COL
100
(316 | M,
AL,
MF
S./
ML) | |----------------|-------------------------------------|---|---|--|---|---|------------------------------------|-------------------------------|-------------------------------------|--|--|-------------------------------|---------------------------------------|--|--|--|-------------------------------| | OCT 1987
21 | 0900 | 5740 | | 310 | 8.50 | | 7.0 | | 3.4 | | 11.2 | | 753 | | 93 | | | | DEC
10 | 1015 | 7310 | | 300 | 8.30 | | 2.5 | | 4.5 | | 12.8 | | 743 | | 96 | | 480 | | MAR 1988 | | | | | | | | | | | | | | | | | | | 10
APR | 0930 | 10800 | | 310 | 7.90 | | 2.5 | | 4.3 | | 12.1 | | 741 | | 91 | | | | 19
JUN | 1045 | 9200 | | 255 | 8.50 | | 10.0 | | 5.4 | | 11.7 | | 748 | | 106 | | K1 | | 21
AUG | 1045 | 2190 | | 320 | 8.40 | | 27.0 | | 3.8 | | 8.0 | | 744 | | 103 | | 93 | | 30 | 1130 | 2650 | | 280 | 8.60 | | 20.0 | | 2.0 | | 10.6 | | 747 | | 119 | | 180 | | DATE | TOC
FE
KF
(CO
P
100 | REP-
COCCI
ECAL,
AGAR
OLS.
PER
ML) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARE
WH WAT
TOT FLI
MG/L AS
CACO3
(00902) | DIS
SOI
(MC
AS | S-
LVED
S/L
CA) | DI | UM,
S-
VED
/L
MG) | AS | 3- | SOD:
PERCI
(009: | ENT | SOD
AC
SOR:
TIC
RAT | D-
P-
ON
IO | POTA
SIN
DIS
SOLV
(MG,
AS I | JM,
S-
VED
/L
K) | | | OCT 1987
21 | | 34 | 140 | 15 | 5 31 | | 15 | | | 9.2 | | 12 | | 0.3 | 2 | . 1 | | | DEC 10 | | 810 | 140 | 24 | | | 14 | | 1 | | | 15 | | 0.4 | | . 5 | | | MAR 1988 | | | | | | | | | | | | | | | | | | | 10
APR | | 170 | 130 | 25 | | | 13 | | 1 | | | 16 | | 0.4 | | . 5 | | | 19
JUN | | К3 | 99 | 14 | | | 10 | | | 9.7 | | 17 | | 0.4 | | . 7 | | | 21
AUG | | 36 | 150 | 13 | 3 32 | ? | 16 | • | | 6.7 | | ð | | 0.2 | | . 1 | | | 30 | | 95 | 150 | 2: | 3 32 | 2 | 17 | ' | | 8.1 | | 10 | | 0.3 | 3 | . 2 | | | DATE | BOM
WA
DIS
FI
MG/
HO | ATER
S IT
IELD
/L AS
CO3 | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086 | DIS
SOI
S (MC | FATE
S-
LVED
G/L
SO4)
945) | (MC | E,
VED
CL) | RI
D
SO
(M
AS | UO-
DE,
IS-
LVED
G/L
F)
950) | SILI
DIS
SOL
(MG
AS
SIO | VED
/L
2) | DI
SOL | DUE
80
5. C
S-
VED
(/L) | SOLI
SUM
CONS
TUEN
DI
SOL
(MG
(703 | OF
TI-
TS,
S-
VED
/L) | | | OCT 1987
21 | | 146 | 6 | 12: | 1 1: | 3 | 13 | 3 | | 0.10 | 1 | . 3 | | 169 | | 160 | | | DEC
10 | | 131 | 1 | 11 |) 2 : | 1 | 20 |) | | 0.20 | 4 | . 5 | | 195 | | 174 | | | MAR 1988
10 | | 143 | | 11 | | | 15 | | | 0.20 | . 10 | | | 174 | | 169 | | | APR 19 | | 128 | 3 | 11 | | | 13 | | | 0.20 | | .5 | | 149 | | 137 | | | JUN | | | | | | | | | | | | | | | | | | | 21
AUG | | 165 | 6 | 14 | | | 11 | | | 0.20 | | . 3 | | 168 | | 173 | | | 30 | | 131 | 12 | 12 | 8 1 | 7 | 11 | Ł | | 0.10 | 1 | . 9 | | 164 | | 167 | | | DATE | 1
S(
()
1
)
A(| LIDS,
DIS-
OLVED
TONS
PER
C-FT) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | NITRO
GEN,
NO2+NO
DIS-
SOLVE
(MG/L
AS N)
(00631 | NI'
3 GI
AMMO
TO'
(MO
AS | FRO-
EN,
ONIA
FAL
G/L
N)
610) | GE
AMMO
DI
SOI | S-
LVED
S/L
N) | GEN
MON
ORG
TO
(M
AS | TRO-
,AM-
IA +
ANIC
TAL
G/L
N)
625) | PHO
PHOR
TOT
(MG
AS | OUS
AL
/L
P) | | OUS
S-
VED
S/L
P) | PHOR
PHOR
ORT
DIS
SOLV
(MG/
AS P
(006 | OUS
HO,
-
ED
L
) | | | OCT 1987 | | 0.23 | 2620 | 0.22 | 0 0 | .020 | 0. | .020 | | 0.90 | 0. | 040 | <0. | 010 | <0. | 010 | | | DEC
10 | | 0.27 | 3850 | 0.78 | 0 0 | . 090 | 0. | .090 | | 0.70 | 0. | 060 | 0. | 010 | 0. | 010 | | | MAR 1988
10 | | 0.24 | 5070 | 1.00 | 0 | .160 | 0. | . 160 | | 0.90 | 0. | 080 | 0. | 050 | 0. | 030 | | | APR
19 | | 0.20 | 3700 | 0.55 | | .010 | | .040 | | | | | 0. | 100 | 0. | 020 | | | JUN 21 | | 0.23 | 993 | 0.45 | | .040 | | .010 | | 0.80 | n | 040 | | 030 | | 010 | | | AUG | | | | | | | | | | | | | | 010 | | 010 | | | 30 | | 0.22 | 1170 | 0.14 | · | .010 | U. | .010 | | 1.1 | ٥. | 040 | υ. | 010 | ٠٠. | 0 T O | | K RESULTS BASED ON COUNT OUTSIDE OF THE ACCEPTABLE RANGE (NON-IDEAL COLONY COUNT). ## 05407000 WISCONSIN RIVER AT MUSCODA, WI--CONTINUED | DATE | TIME | DIS
CHARC
INST
CUBI
FEE
PEE
SECC
(0006 | GE, ALU C. INU CC DI CT SOL R (UG DND AS | M, A
S-
VED
/L
AL) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIU
DIS-
SOLVE
(UG/
AS E | D
L
(A) | BERY
LIUM
DIS-
SOLV
(UG/)
AS BI | ,
ED
L
E) | CADMII
DIS
SOLVI
(UG/I
AS CI | -
ED
L
D) | CHRO-
MIUM,
DIS-
SOLVEI
(UG/L
AS CR) | (UG
AS | ED
(L
(CO) | COPP
DIS
SOL
(UG
AS | -
VED
/L
CU) | IRON
DIS
SOLV
(UG/
AS F | ED
L
E) | |----------------|-------------|---|---|---|---|--|-------------------------------|--|--------------------|--|--|---|--|--------------------------|--|-----------------------------------|-------------------------------------|---------------| | OCT 1987 | 0000 | F746 | | 43.0 | | | •• | | _ | | | , | | 40 | | 41 | | 11 | | 21
MAR
1988 | 0900 | 5740 | | <10 | <1 | | 23 | <0 | | | <1 | <: | | <3 | | <1 | | 14 | | 10
APR | 0930 | 10800 | | 20 | <1 | | 26 | <0 | . 5 | | <1 | <: | 1 | <3 | | 2 | | 90 | | 19
AUG | 1045 | 9200 | | 10 | <1 | | 17 | <0 | . 5 | | <1 | <: | 1 | <3 | | 2 | 2 | 20 | | 30 | 1130 | 26 50 | | 10 | <1 | | 22 | <0 | . 5 | | <1 | <: | 1 | <3 | | 2 | | 4 | | DATE | 2
(
(| LEAD,
DIS-
SOLVED
(UG/L
AS PB)
D1049) | LITHIUM
DIS-
SOLVED
(UG/L
AS LI)
(01130) | MANG
NESI
DIS
SOLV
(UG,
AS 1 | E, MER
S- D
VED SO
/L (U
MN) AS | CURY
DIS-
DLVED
G/L
HG)
8 HG) | DEI
DI
SOI
(UC
AS | IS-
LVED
G/L
MO) | DIS
SOI
(UC | LVED
G/L
NI) | SEL
NIU
DI
SOL
(UG
AS
(011 | M,
S-
VED S
/L
SE) | STRON-
TIUM,
DIS-
SOLVED
(UG/L
AS SR)
01080) | D:
SO:
(U(
AS | NA-
UM,
IS-
LVED
G/L
V)
085) | ZING
DIS
SOLV
(UG,
AS | S-
VED
/L
ZN) | | | OCT 1987
21 | | 5 | <4 | | 6 | <0.1 | | <10 | | <1 | | <1 | 48 | | <6 | | 13 | | | MAR 1988
10 | | <5 | <4 | | 23 | <0.1 | | <10 | | <1 | | <1 | 44 | | <6 | | 11 | | | APR
19 | | <5 | <4 | | 6 | <0.1 | | <10 | | 2 | | <1 | 38 | | <6 | | 4 | | | AUG 30 | | <5 | 4 | | 3 | <0.1 | | <10 | | 2 | | <1 | 51 | | <6 | | 11 | | | | : | DAT:
0CT 198
21
DEC
10
MAR 198 | 7
0:
1:
8 | ME
900
015 | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061)
5740
7310 | : | (C
-
(-
(M) | 2 | E
R
C) | | ED
L) | SEDI-
MENT,
DIS-
CHARGE
SUS-
PENDE
(T/DAY
(80155 | SU
SIE
, DI
% FI
D TH
) .062 | AM.
INER
IAN
MM | | | | | | | | APR
19 | | | 9200 | | 255 | | 0 | | 21 | 522 | | 84 | | | | | | | • | JUN 21 | | | 2190 | | 320 | | .0 | | 26 | 154 | | 83 | | | | | | | | AUG 30 | | | 2650 | | 280 | | .0 | | 19 | 136 | | 94 | | | | | ### 05408000 KICKAPOO RIVER AT LA FARGE, WI LOCATION.--Lat 43°34'27", long 90°38'35", on east-west quarter section line in W 1/2 sec.29, T.13 N., R.2 W., Vernon County, Hydrologic Unit 07070006, on left bank 10 ft upstream from bridge on State Highway 82, in La Farge, 0.3 mi upstream from Otter Creek, and 1.3 mi downstream from powerplant. DRAINAGE AREA. -- 266 mi². PERIOD OF RECORD. -- October 1938 to current year. REVISED RECORDS.--WSP 1388: 1951(M), 1954(M). WSP 1438: 1944-45(M), 1946, 1948, 1950(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 781.54 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 4, 1939, nonrecording gage on highway bridge at same datum. REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are poor. Gage-height telemeter at station. AVERAGE DISCHARGE. -- 50 years, 178 ft³/s, 9.09 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,300 $\rm ft^3/s$, July 1, 1978, gage height, 14.92 ft; minimum, 1.8 $\rm ft^3/s$, Mar. 24, 1951; minimum daily, 36 $\rm ft^3/s$, Nov. 3, 1939. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,700 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Mar. 8 | 0945 | (a) 940 | (a) *7.26 | | | | | (a) Backwater from ice. Minimum daily discharge, 73 ${\rm ft}^3/{\rm s}$, Aug. 3. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 16-21, and Dec. 27 to Mar. 14.) 2.0 66 4.0 359 3.0 188 6.0 813 | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|--|---|---|---|----------------------------------|---|----------------------------------|--|----------------------------------|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 129 | 168 | 208 | 130 | 260 | 330 | 200 | 150 | 103 | 102 | 79 | 88 | | 2 | 140 | 178 | 182 | 130 | 230 | 350 | 194 | 144 | 103 | 99 | 75 | 87 | | 3 | 138 | 153 | 175 | 130 | 200 | 300 | 208 | 140 | 103 | 99 | 73 | 86 | | 4 | 129 | 153 | 168 | 130 | 180 | 280 | 205 | 136 | 104 | 99 | 76 | 90 | | 5 | 136 | 141 | 155 | 130 | 160 | 270 | 193 | 138 | 102 | 96 | 89 | 94 | | 6 | 133 | 136 | 162 | 130 | 150 | 320 | 189 | 133 | 101 | 94 | 65 | 92 | | 7 | 126 | 133 | 159 | 120 | 140 | 540 | 183 | 132 | 101 | 93 | 79 | 91 | | 8 | 147 | 143 | 162 | 130 | 130 | 800 | 175 | 139 | 100 | 92 | 100 | 89 | | 9 | 131 | 155 | 189 | 130 | 130 | 520 | 169 | 180 | 99 | 94 | 105 | 87 | | 10 | 132 | 136 | 196 | 130 | 130 | 300 | 165 | 174 | 100 | 118 | 93 | 86 | | 11 | 126 | 138 | 184 | 130 | 130 | 280 | 165 | 152 | 99 | 117 | 87 | 86 | | 12 | 134 | 135 | 185 | 140 | 130 | 260 | 160 | 141 | 98 | 101 | 85 | 86 | | 13 | 132 | 143 | 164 | 140 | 130 | 230 | 157 | 136 | 97 | 95 | 81 | 85 | | 14 | 136 | 140 | 161 | 140 | 130 | 200 | 155 | 132 | 96 | 94 | 81 | 84 | | 15 | 133 | 133 | 151 | 140 | 130 | 192 | 150 | 131 | 93 | 89 | 83 | 84 | | 16 | 137 | 142 | 150 | 140 | 130 | 182 | 148 | 128 | 94 | 99 | 82 | 84 | | 17 | 158 | 224 | 150 | 140 | 140 | 178 | 148 | 128 | 95 | 102 | 78 | 90 | | 18 | 146 | 236 | 140 | 150 | 140 | 173 | 146 | 125 | 96 | 93 | 83 | 109 | | 19 | 144 | 171 | 150 | 150 | 140 | 169 | 143 | 123 | 96 | 88 | 120 | 158 | | 20 | 132 | 158 | 170 | 150 | 130 | 167 | 142 | 122 | 104 | 88 | 94 | 279 | | 21 | 138 | 141 | 190 | 150 | 130 | 161 | 142 | 121 | 97 | 109 | 88 | 149 | | 22 | 137 | 156 | 181 | 150 | 130 | 160 | 140 | 118 | 94 | 102 | 90 | 211 | | 23 | 139 | 154 | 165 | 140 | 130 | 176 | 148 | 117 | 90 | 95 | 146 | 483 | | 24 | 138 | 156 | 162 | 140 | 140 | 191 | 156 | 113 | 92 | 93 | 119 | 169 | | 25 | 134 | 149 | 158 | 140 | 140 | 516 | 147 | 110 | 93 | 101 | 99 | 127 | | 26
27
28
29
30
31 | 141
139
140
138
136
132 | 152
146
182
335
251 | 131
150
150
150
140
140 | 130
130
130
130
170
240 | 150
170
180
220 | 288
219
234
338
246
213 | 143
190
219
170
156 | 111
111
111
108
105
104 | 87
90
91
126
123 | 94
91
88
84
83
81 | 94
92
99
95
91
90 | 115
107
101
101
104 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 4231
136
158
126
.51 | 4938
165
335
133
.62
.69 | 5078
164
208
131
.62
.71 | 4360
141
240
120
.53
.61 | 4430
153
260
130
.57 | 8783
283
800
160
1.07
1.23 | 5006
167
219
140
.63 | 4013
129
180
104
. 49 | 2967
98.9
126
87
.37 | 2973
95.9
118
81
.36
.42 | 2831
91.3
146
73
.34
.40 | 3702
123
483
84
. 46
. 52 | CAL YR 1987 TOTAL 61422 MEAN 168 MAX 864 MIN 92 CFSM .63 IN. 8.59 WTR YR 1988 TOTAL 53312 MEAN 146 MAX 800 MIN 73 CFSM .55 IN. 7.46 ### 05410490 KICKAPOO RIVER AT STEUBEN, WI LOCATION.--Lat 43°10'58", long 90°51'30", in NE 1/4 SW 1/4 sec.9, T.8 N., R.4 W., Crawford County, Hydrologic Unit 07070006, on right bank at upstream corner of town road bridge at Steuben and 18.6 mi upstream from mouth. DRAINAGE AREA. -- 687 mi². PERIOD OF RECORD. -- May 1933 to current year. REVISED RECORDS.--WSP 855: Drainage area. WSP 1438: 1933-38. WDR WI-79-1: 1978(M). GAGE.--Water-stage recorder. Datum of gage is 657.00 ft above National Geodetic Vertical Datum of 1929. May 1933 to Oct. 19, 1938, nonrecording gage at same site at datum 1.7 ft higher. Oct. 20, 1938 to September 1982, recording gage at site 1.2 mi downstream at datum 0.36 ft higher. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. Gage-height telemeter at station. AVERAGE DISCHARGE. -- 55 years, 485 ft³/s, 9.59 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,500 ft³/s, July 3, 1978, gage height, 14.81 ft; minimum observed, 161 ft³/s, Aug. 9, 1936, gage height, 0.76 ft site and datum then in use. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,900 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|---------------------|------|------|-----------------------------------|---------------------| | Mar. 10 | 1100 | *1,160 | *10.14 | | | | | Minimum discharge, 243 ft³/s, Aug. 4, gage height, 5.32 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Oct. 1 to Dec. 16 and Dec. 22-27; stage-discharge relation affected by ice Dec. 17-21 and Dec. 28 to Mar. 7.) | 5.3 | 240 | 9.0 | 886 | |-----|-----|------|-------| | 6.0 | 352 | 10.0 | 1,120 | | 7.0 | 512 | 11.0 | 1,400 | | 8.0 | 688 | | • | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--|--|--|-----------------------------------|--
--|--|----------------------------------|---|---|---| | 1 | 366 | 390 | 594 | 410 | 420 | 500 | 624 | 473 | 344 | 331 | 255 | 265 | | 2 | 380 | 409 | 524 | 410 | 460 | 560 | 589 | 455 | 341 | 311 | 251 | 262 | | 3 | 365 | 439 | 487 | 410 | 450 | 580 | 577 | 441 | 339 | 295 | 248 | 260 | | 4 | 374 | 428 | 462 | 400 | 430 | 540 | 585 | 430 | 333 | 291 | 253 | 261 | | 5 | 380 | 406 | 447 | 390 | 390 | 500 | 584 | 424 | 331 | 288 | 268 | 265 | | 6 | 372 | 395 | 432 | 380 | 370 | 480 | 558 | 419 | 329 | 284 | 270 | 269 | | 7 | 378 | 385 | 428 | 370 | 350 | 540 | 537 | 412 | 326 | 279 | 270 | 269 | | 8 | 375 | 391 | 434 | 370 | 350 | 756 | 527 | 421 | 323 | 275 | 303 | 265 | | 9 | 372 | 392 | 447 | 360 | 340 | 1030 | 509 | 514 | 319 | 272 | 320 | 262 | | 10 | 379 | 393 | 464 | 350 | 340 | 1150 | 497 | 545 | 316 | 297 | 314 | 256 | | 11 | 370 | 394 | 486 | 350 | 340 | 907 | 491 | 517 | 315 | 332 | 296 | 253 | | 12 | 370 | 382 | 483 | 350 | 340 | 747 | 486 | 482 | 315 | 339 | 278 | 253 | | 13 | 369 | 383 | 467 | 350 | 340 | 712 | 478 | 450 | 313 | 317 | 267 | 250 | | 14 | 377 | 382 | 452 | 350 | 340 | 666 | 471 | 431 | 310 | 304 | 264 | 249 | | 15 | 378 | 384 | 436 | 360 | 340 | 600 | 464 | 420 | 306 | 297 | 264 | 246 | | 16 | 384 | 387 | 432 | 370 | 340 | 556 | 456 | 412 | 301 | 294 | 266 | 246 | | 17 | 395 | 429 | 380 | 380 | 350 | 536 | 451 | 407 | 298 | 295 | 261 | 250 | | 18 | 407 | 486 | 330 | 390 | 350 | 525 | 447 | 402 | 302 | 300 | 254 | 260 | | 19 | 408 | 529 | 400 | 390 | 350 | 517 | 442 | 397 | 302 | 291 | 267 | 300 | | 20 | 397 | 480 | 430 | 390 | 340 | 506 | 440 | 392 | 306 | 280 | 310 | 414 | | 21 | 389 · | 432 | 440 | 370 | 340 | 493 | 439 | 388 | 308 | 279 | 303 | 494 | | 22 | 381 | 418 | 439 | 370 | 340 | 476 | 439 | 383 | 307 | 288 | 275 | 504 | | 23 | 385 | 406 | 445 | 360 | 340 | 482 | 447 | 379 | 297 | 300 | 305 | 515 | | 24 | 386 | 416 | 442 | 360 | 340 | 499 | 466 | 372 | 292 | 285 | 337 | 646 | | 25 | 386 | 413 | 433 | 360 | 340 | 621 | 469 | 364 | 292 | 287 | 347 | 594 | | 26
27
28
29
30
31 | 386
386
390
387
386
383 | 411
403
421
481
588 | 427
354
470
440
430
420 | 360
350
340
340
360
390 | 350
370
410
450 | 837
823
658
673
762
709 | 459
474
506
548
517 | 360
359
359
358
355
349 | 289
283
279
289
300 | 311
291
276
269
264
259 | 300
279
279
280
279
271 | 403
359
337
327
325 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 11841
382
408
365
.56 | 12653
422
588
382
.61
.69 | 13755
444
594
330
.65
.74 | 11490
371
410
340
.54
.62 | 10610
366
460
340
.53 | 19941
643
1150
476
.94
1.08 | 14977
499
624
439
.73
.81 | 12870
415
545
349
.60
.70 | 9305
310
344
279
.45 | 9081
293
339
259
. 43
. 49 | 8734
282
347
248
.41
.47 | 9859
329
646
246
.48
.53 | CAL YR 1987 TOTAL 170425 MEAN 467 MAX 1230 MIN 330 CFSM .68 IN. 9.23 WTR YR 1988 TOTAL 145116 MEAN 396 MAX 1150 MIN 246 CFSM .58 IN. 7.86 #### RESERVOIRS IN WISCONSIN RIVER BASIN - The 24 reservoirs listed below are used to stabilize the flow of the Wisconsin and Tomahawk Rivers for power generation and are also used for recreational purposes. The first 21 reservoirs are owned and operated by the Wisconsin Valley Improvement Co., which furnishes the gage heights and capacity tables. Revised capacity tables for all 21 reservoirs were received from the Company in April 1957 and were used to compute month-end usable contents beginning Sept. 30, 1955. Another revised capacity table for Burnt Rollways Reservoir was used to compute month-end usable contents beginning Sept. 30, 1964. Lake Dubay is owned by the Consolidated Water Power Co. Petenwell and Castle Rock are owned and operated by the Wisconsin River Power Co., which furnished the gage heights and capacity tables for those two reservoirs. Month-end contents are computed by the U.S. Geological Survey. The usable capacity of these reservoirs is usually less in summer than in winter because the allowable summer drawdown is limited by the Department of Natural Resources in the interest of riparian property owners. There are occasionally formal or informal changes in capacity and in minimum drawdown levels. Usable capacity figures listed below are for winter regulation. - 05390100 Lac Vieux Desert on Wisconsin River, lat $46^{\circ}07'18''$, long $89^{\circ}09'07''$, in SE 1/4-NW 1/4 sec.17, T.42 N., R.11 E., Vilas County, 4.8 mi northwest of Phelps, used as a reservoir since 1908, has a usable capacity of 652,000,000 ft³. Drainage area, 34.4 mi². - 05390150 Twin Lakes on Twin River, lat $46^{\circ}01^{\circ}20^{\circ}$, long $89^{\circ}10^{\circ}05^{\circ}$, in SW 1/4 NE 1/4 sec.19, T.41 N., R.11 E., Vilas County, 5.0 mi southwest of Phelps, used as a reservoir since 1908, has a usable capacity of 313,000,000 ft³. Drainage area, 26 mi². - 05390200 Buckatabon Lakes on Buckatabon Creek, lat $46^{\circ}01'18"$, long $89^{\circ}18'40"$, in SE 1/4 NE 1/4 sec.24, T.41 N., R.9 E., Vilas County, 3.3 mi southwest of Conover, used as a reservoir since 1908, has a usable capacity of 130,000,000 ft³. Drainage area, 16.9 mi². - 05390250 Sevenmile Lake on Sevenmile Creek, lat $45^{\circ}52'30''$, long $89^{\circ}04'07''$, in SE 1/4 NE 1/4 sec.11, T.39 N., R.11 E., Oneida County, 9.1 mi southeast of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 93,000,000 ft³. Drainage area, 12.1 mi². - 05390300 Lower Ninemile Lake on Ninemile Creek, lat 45°53'37", long 89°07'15", in NE 1/4 NW 1/4 sec.4, T.39 N., R.11 E., Oneida County, 6.6 mi southeast of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 121,000,000 ft³. Drainage area, 28.8 mi². - 05390350 Burnt Rollways Reservoir on Eagle River, lat 45°53'40", long 89°08'28", in NE 1/4 NW 1/4 sec.5, T.39 N., R.11 E., Oneida County, 5.3 mi southeast of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 779,000,000 ft³. This reservoir includes 18 lakes controlled by the same dam. Drainage area, 142 mi². - 05390400 Long Lake on Deerskin River, lat $46^{\circ}02'37''$, long $89^{\circ}02'44''$, in NW 1/4 SE 1/4 sec.7, T.41 N., R.12 E., Vilas County, 2.5 mi southeast of Phelps, used as a reservoir since 1908, has a usable capacity of 400,000,000 ft³. Drainage area, 22.9 mi². - 05390600 Deerskin Lake on Little Deerskin River, lat $45^{\circ}59'07''$, long $89^{\circ}09'40''$, in SE 1/4 sec.31, T.41 N., R.11 E., Vilas County, 6.3 mi northeast of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 22,000,000 ft³. Drainage area, 2.47 mi². - 05390650 Sugar Camp Reservoir on Sugar Camp Creek, lat $45^{\circ}52'19"$, long $89^{\circ}23'40"$, in NE 1/4 sec.17, T.39 N., R.9 E., Oneida County, 7.6 mi southwest of town of Eagle River, used as a reservoir since 1908, has a usable capacity of $471,000,000 \text{ ft}^3$. Drainage area, 48.4 mi^2 . - 05390700 Little St. Germain Lake on Little St. Germain Creek, lat $45^{\circ}53'57''$, long $89^{\circ}27'08''$, in SE 1/4 sec.35, T.40 N., R.8 E., Vilas County, 9.6 mi west of town of Eagle River, used as a reservoir since 1908, has a usable capacity of 79,000,000 ft³. Drainage area, 19 mi². - 05390750 Big St. Germain Lake on St. Germain River, lat $45^{\circ}55^{\circ}10^{\circ}$, long $89^{\circ}31^{\circ}55^{\circ}$, in SE 1/4 sec.30, T.40 N., R.8 E., Vilas County, 5.0 mi south of Sayner, used as a reservoir since 1908, has a usable capacity of 202,000,000 ft³. Drainage area, 73.1 mi². - 05390800 Pickerel Lake on St. Germain River, lat 45°52'22", long 89°31'47", in NE 1/4 sec.18, T.39 N., R.8 E., Oneida County, 5.0 mi northeast of town of Lake Tomahawk, used as a reservoir since 1935, has a usable capacity of 338,000,000 ft³. Drainage area, 86.2 mi². - 05390900 Rainbow Lake on Wisconsin River, lat 45°50'02", long 89°32'42", in SW 1/4 sec.30, T.39 N., R.8 E., Oneida County, 800 ft upstream from U.S. Geological Survey river gaging station, 2.7 mi northeast of town of Lake Tomahawk, used as a reservoir since 1935, has a usable capacity of 2,181,000,000 ft³. Drainage area, 744 mi². - 05391100 South Pelican Lake on Pelican River, lat $45^{\circ}31'37''$, long $89^{\circ}12'24''$, in S 1/2 sec.11, T.35 N., R.10 E., Oneida County, 2.8 mi northwest of town of Pelican Lake, used as a reservoir since 1909, has a usable capacity of 305,000,000 ft³. Drainage area, 19.8 mi². - 05391300 North Pelican Lake (includes Moen Lakes) on North Branch Pelican River, lat 45°38'05", long 89°14'38", in SE 1/4 sec.4, T.36 N., R.10 E., Oneida County, 0.2 mi below Twin Lakes Creek and 8.0 mi east of Rhinelander city limits, used as a reservoir since 1908, has a usable capacity of 218,000,000 ft³. Drainage area, 95 mi². - 05392100 Minocqua Lake on Tomahawk River, lat $45^{\circ}52'35"$, long $89^{\circ}43'38"$, on line between secs.10 and 15, T.39 N., R.6 E., Oneida County, 1.0 mi west of Minocqua, used as a reservoir since 1910, has a usable capacity of 628,000,000 ft³. Drainage area, 72.5 mi². - 05392200 Squirrel Lake on Squirrel River, lat 45°50'37", long 89°54'13", in NE 1/4 sec.30, T.39 N., R.5 E., Oneida County, 9.4 mi west of Minocqua, used as a reservoir since 1908, has a usable capacity of 182,000,000 ft³. Drainage area, 15.2 mi². - 05392300 Willow Reservoir on Tomahawk River, lat $45^{\circ}42'45''$, long $89^{\circ}50'38''$, in NE 1/4 sec.10, T.37 N., R.5 E., Oneida County, 8.8 mi southwest of Hazelhurst, used as a reservoir since 1927, has a usable capacity of 3,302,000,000 ft³. Drainage area,
310 mi². - 05392500 Lake Nokomis on Tomahawk River, lat 45°32'20", long 89°44'48", in NW 1/4 sec.9, T.35 N., R.6 E., Lincoln County, at U.S. Geological Survey river gaging station, 0.5 mi east of Bradley, used as a reservoir since 1912, has a usable capacity of 1,808,000,000 ft³. Drainage area, 544 mi². - 05393600 Spirit River Flowage on Spirit River, lat $45^{\circ}26'18''$, long $89^{\circ}44'30''$, in NE 1/4 sec.16, T.34 N., R.6 E., Lincoln County, 2.0 mj south of Tomahawk, used as a reservoir since 1923, has a usable capacity of 756,000,000 ft³. Drainage area, 158 mi². #### RESERVOIRS IN WISCONSIN RIVER BASIN--CONTINUED - 05399600 Big Eau Pleine Reservoir on Big Eau Pleine River, lat $44^{\circ}43^{\circ}52^{\circ}$, long $89^{\circ}45^{\circ}35^{\circ}$, in SW 1/4 sec.14, T.26 N., R.6 E., Marathon County, 3.0 mi northeast of Dancy, used as a reservoir since 1937, has a capacity of 4,457,000,000 ft³. Drainage area, 363 mi². - 05400295 Lake Dubay on Wisconsin River, lat $44^\circ39^\circ54^{\circ}$, long $89^\circ39^\circ03^{\circ}$, in sec.10, T.25 N., R.7 E., Wood County, 1.5 mi downstream of Little Eau Pleine River and 10.5 mi northwest of Stevens Point, has a usable capacity of 2,117,000,000 ft³. Drainage area, 4,900 mi². - 05401400 Petenwell Flowage on Wisconsin River, lat 44°03'26", long 90°01'18", in SE 1/4 sec.4, T.18 N., R.4 E., Adams County, 5.2 mi upstream from Roche a Cri Creek, 2.4 mi west of Strongs Prairie, and 3.5 mi northeast of Necedah, used as a reservoir since 1950, has a total capacity of 19,880,000,000 ft³. Drainage area, 5,970 mi². - 05403200 Castle Rock Flowage on Wisconsin River, lat 43°51'48", long 89°57'38", in sec.13, T.16 N., R.4 E., Adams County, 4.5 mi upstream from Duck Creek, and 2.0 mi south of Germantown, and 7.0 mi northeast of Mauston, used as a reservoir since 1950, has a total capacity of 7,630,000,000 ft³. Drainage area, 7,056 mi². MONTH-END CONTENTS, IN MILLIONS OF CUBIC FEET, WATER YEAR OCTOBER 1987 to SEPTEMBER 1988 | | LAC VIEUX
DESERT | TWIN I | BUCKATABON
LAKE | SEVENMILE
LAKE | LOWER
NINEMILE
LAKE | BURNT
ROLLWAYS
RESERVOIR | LONG
LAKE | DEERSKIN
LAKE | |--|--|---|---|---|---|---|--|--| | SEPT. 30 OCT. 31 NOV. 30 DEC. 31 JAN. 31 FEB. 29 MAR. 31 APR. 30 MAY 31 JUNE 30 JUNE 30 JULY 31 AUG. 31 SEPT. 30 | 123
171
167
119
54
4
67
145
123
100
54
79 | 67
80
97
87
83
81
114
161
150
112
94
104
126 | 114
113
110
76
50
33
67
106
114
112
112 | 56
65
59
35
12
0
23
54
62
64
60
64 | 101
102
96
44
34
7
57
95
103
96
92
103 | 389
530
511
270
10
58
478
565
460
414
426
562 | 161
152
163
123
69
58
93
241
238
215
193
196
229 | 12
13
14
11
10
9
11
15
16
14
14 | | | SUGAR
CAMP
RESERVOIR | LITTLE
ST. GERMAIN
LAKE | BIG
ST. GERMAIN
LAKE | PICKEREL
LAKE | RAINBOW
LAKE | SOUTH
PELICAN
LAKE | NORTH
PELICAN
LAKE | MINOCQUA
LAKE | | SEPT. 30 OCT. 31 NOV. 30 DEC. 31 JAN. 31 FEB. 29 MAR. 31 APR. 30 MAY 31 JUNE 30 JUNE 30 JULY 31 AUG. 31 SEPT. 30 | 294
322
359
354
252
19
180
340
367
331
307
302
321 | 57
68
67
37
11
14
39
52
36
29
43
50 | 156
157
131
51
14
5
30
131
158
151
158
158 | 263
270
261
215
174
149
198
263
269
256
263
270
272 | 774 1,004 1,651 2,079 1,816 1,140 626 1,142 1,037 743 724 941 1,178 | 79
91
132
161
216
224
271
284
269
216
261
254 | 92
122
100
32
20
15
75
130
135
104
90
108
137 | 277
332
367
224
98
15
115
182
198
159
138
193
255 | | | SQUIRREL
LAKE | WILLOW
RESERVOIR | LAKE
NOKOMIS | SPIRIT
RIVER
FLOWAGE | BIG EAU
PLEINE
RESERVOIR | LAKE
DUBAY | PETENWELL
FLOWAGE | CASTLE
ROCK
FLOWAGE | | SEPT. 30 OCT. 31 NOV. 30 DEC. 31 JAN. 31 FEB. 29 MAR. 31 APR. 30 MAY 31 JUNE 30 JULY 31 AUG. 31 SEPT. 30 | 140
94
118
74
30
7
55
87
93
77
57
64 | 1,162
1,314
1,540
1,916
1,657
1,217
1,177
1,758
1,777
1,534
1,318
1,265
1,310 | 848
1,013
1,448
1,551
1,288
902
942
1,295
1,180
1,019
1,069
906
999 | 253
302
531
638
455
281
590
699
604
390
298
210
268 | 2,410
2,219
2,736
3,078
2,517
1,797
3,747
4,412
4,115
3,503
2,969
2,467
2,190 | 4,138
4,144
4,079
4,128
4,201
3,233
3,846
4,497
4,479
4,213
4,163
4,175
4,166 | 17,756
17,729
17,756
16,892
15,051
13,778
16,226
18,160
17,782
17,720
17,597
17,580
17,676 | 5,890
5,863
5,964
5,456
3,609
4,028
6,262
5,903
5,876
5,818
5,837
5,857 | PECATONICA-SUGAR RIVER BASIN ### 05413449 RATTLESNAKE CREEK NEAR NORTH ANDOVER, WI LOCATION.--Lat $42^{\circ}46'49"$, long $90^{\circ}56'32"$, in SE 1/4 NE 1/4 sec.34, T.4 N., R.5 W., Grant County, Hydrologic Unit 07060003, on right bank 100 ft upstream of Atkinson Road, 2.7 mi southeast of North Andover. DRAINAGE AREA. -- 42.4 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 5, 1987 to current year. GAGE .-- Water-stage recorder. Elevation of gage is 800 ft, from topographic map. REMARKS.--Estimated daily discharges: May 28 to July 5, 1988, and ice periods, Dec. 16-19, 1987, and Dec. 27, 1987, to Feb. 28, 1988. Records good exept for estimated daily discharges, which are fair. EXTREMES FOR CURRENT PERIOD.--June 5 to September 1987: Maximum discharge, 1,060 $\rm ft^3/s$, July 30, gage height, 6.23 ft; minimum daily, 13 $\rm ft^3/s$, June 16, June 27 to July 5, and July 11. Water year 1988: Maximum discharge, 387 ${\rm ft}^3/{\rm s}$, Feb. 28, gage height, 4.49 ft; minimum daily, 9.6 ${\rm ft}^3/{\rm s}$, Sept. 13. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--------------|-----|-----|----------|-----|-----|-----|-----|-----|-----|---------------|-------------|------------| | 1 | | | | | | | | | | 13 | 22 | 18 | | 2 | | | | | | | | | | 13 | 21 | 17 | | 3 | | | | ~ | | | | | | 13 | 21 | 17 | | 4 | | | | ~ | | | | | | 13 | 20 | 17 | | 5 | | | | | | | | | 15 | 13 | 19 | 17 | | , | | | | | | | | | 13 | | | | | 6 | | | | ~ | | | | | 14 | 14 | 18 | 17 | | 7 | | | | | | | | | 14 | 14 | 18 | 17 | | 8 | | | | | | | | | 14 | 14 | 95 | 17 | | 9 | | | - | ~ | | | | | 14 | 14 | 41 | 17 | | 10 | | | | ~ | | | | | 14 | 14 | 24 | 17 | | | | | | | | | | | | | | | | 11 | | | | | | | | | 16 | 13 | 22 | 17 | | 12 | | | | | | | | | 16 | 14 | 20 | 16 | | 13 | | | | | | | | | 15 | 14 | 22 | 18 | | 14 | | | | | | | | | 15 | 52 | 28 | 18 | | 15 | | | | | | | | | 14 | 51 | 23 | 19 | | | | | | | | | | | | | | | | 16 | | | | | | | | | 13 | 19 | 20 | 19 | | 17 | | | | | | | | | 14 | 17 | 19 | 52 | | 18 | | | | | | | | | 14 | 16 | 26 | 25 | | 19 | | | | | | | | | 14 | 17 | 22 | 19 | | 20 | | | | ~ | | | | | 16 | 17 | 19 | 20 | | | | | | | | | | | | | | | | 21 | | | | | | | | | 24 | 16 | 25 | 19 | | 22 | | | | | | | | | 18 | 16 | 21 | 18 | | 23 | | | | | | | | | 14 | 16 | 18 | 17 | | 24 | | | | | | | | | 14 | 27 | 18 | 17 | | 25 | | | | | | | | | 14 | 22 | 19 | 16 | | | | | | | | | | | | | | | | 26 | | | | | | | | | 14 | 18 | 29 | 16 | | 27 | | | | | | | | | 13 | 25 | 27 | 15 | | 28 | | | | | | | | | 13 | 26 | 21 | 15 | | 29 | | | | | | | | | 14 | 21 | 20 | 16 | | 30 | | | | | | | | | 13 | 106 | 19 | 16 | | 31 | | | | | | | | | | 26 | 18 | | | ТОТАТ | | | | | | | | | | 601 | 755 | 559 | | TOTAL | | | | | | | | | | $684 \\ 22.1$ | 755
24.4 | 18.6 | | MEAN | | | | | | | | | | 106 | 24.4
95 | 18.6
52 | | MAX | | | | | | | | | | | 95
18 | 15 | | MIN | | | | | | | | | | 13 | 18 | 13 | ## 05413449 RATTLESNAKE CREEK NEAR NORTH ANDOVER, WI--CONTINUED DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------------|----------------------------|----------------------------------|-----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------|-----------------------------|--------------------------------| | 1
2
3
4
5 | 15
15
15
15
16 | 18
16
16
16
15 | 22
21
21
20
20 | 21
20
20
19
19 | 70
54
45
38
32 | 78
57
39
34
33 | 24
25
26
25
25 | 14
14
13
13 |
12
12
12
12
12 | 11
11
11
11
11 | 11
10
10
19
30 | 10
10
11
14
11 | | 6
7
8
9
10 | 16
15
15
15
14 | 14
15
16
15
14 | 20
20
22
30
24 | 18
18
18
18 | 29
28
27
26
25 | 38
38
43
36
31 | 23
22
22
21
20 | 13
12
18
22
15 | 12
12
12
12
12 | 11
11
11
11
13 | 14
11
13
12
11 | 10
9.9
10
9.8
9.7 | | 11
12
13
14
15 | 14
15
15
15
15 | 14
15
15
15
15 | 24
22
21
21
20 | 18
18
18
17
17 | 24
24
24
24
24 | 31
32
27
27
27 | 19
19
19
19 | 13
13
12
12
13 | 12
12
12
12
12 | 12
12
12
12
12 | 11
11
11
11
10 | 9.7
9.9
9.6
10
9.9 | | 16
17
18
19
20 | 16
17
16
15
14 | 18
38
21
19
18 | 20
20
20
21
27 | 17
17
17
18
24 | 24
24
24
24
23 | 26
26
26
25
25 | 18
18
17
16
17 | 12
12
12
12
13 | 12
12
12
11
11 | 12
12
12
11
11 | 10
9.9
10
11
10 | 10
11
11
31
26 | | 21
22
23
24
25 | 14
14
14
14
14 | 18
18
19
18
19 | 36
23
22
24
24 | 21
20
19
19
18 | 23
23
23
23
23 | 23
22
23
25
37 | 17
17
18
17
16 | 13
13
13
13
13 | 11
11
11
11 | 11
11
11
11 | 10
11
14
12
11 | 14
37
24
14
12 | | 26
27
28
29
30
31 | 15
15
14
14
14
14 | 18
18
31
30
24 | 23
23
23
22
22
21 | 17
17
17
18
90
110 | 30
70
150
136
 | 26
24
31
31
26
25 | 17
20
16
15
15 | 13
13
13
13
12
12 | 11
11
11
11
11 | 11
11
11
11
11 | 10
11
11
10
10 | 11
11
10
11
11 | | TOTAL
MEAN
MAX
MIN | 459
14.8
17
14 | 556
18.5
38
14 | 699
22.5
36
20 | 736
23.7
110
17 | 1114
38.4
150
23 | 992
32.0
78
22 | 581
19.4
26
15 | 412
13.3
22
12 | 348
11.6
12
11 | 350
11.3
13
10 | 365.9
11.8
30
9.9 | 398.5
13.3
37
9.6 | WTR YR 1988 TOTAL 7011.4 MEAN 19.2 MAX 150 MIN 9.6 ### 05413449 RATTLESNAKE CREEK NEAR NORTH ANDOVER, WI--CONTINUED ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1987 to current year. PERIOD OF DAILY RECORD . -- WATER TEMPERATURE: July 1987 to current year. DISSOLVED OXYGEN: July 1987 to current year. INSTRUMENTATION .-- Continuous water temperature and dissolved oxygen recorder since July 17, 1987. REMARKS.--Water-quality analysis by the State Lab of Hygiene. EXTREMES FOR PERIOD OF RECORD. -- WATER TEMPERATURE: Maximum observed, 31.5°C July 15, 1988; minimum observed, 0.0°C Nov. 21, 1987, Dec. 4, 16, 17, 20-21, 26, 31, 1987. DISSOLVED OXYGEN: Maximum observed, 18.3 mg/L Apr. 29, 1988; minimum observed, 0.0 mg/L Sept. 17, 1987. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum observed, 31.5°C July 15; minimum observed, 0.0°C Nov. 21, Dec. 4, 16, 17, 20-21, 26, 31. DISSOLVED OXYGEN: Maximum observed, 18.3 mg/L Apr. 29; minimum observed, 3.4 mg/L June 22. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PH
(STAND-
ARD
UNITS)
(00400) | PH
LAB
(STAND-
ARD
UNITS)
(00403) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(FTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |----------|------|---|---|--|---|---|--|--|--|--|--| | FEB 1988 | | | | | | | | | | | | | 19 | 1030 | 26 | | 8.00 | | 5.6 | | 20 | 6.40 | 0.510 | | | MAR | | | | | | | | | | | | | 01 | 1130 | 52 | 8.00 | 8.00 | | 32 | | 118 | | | | | 01 | 1131 | 52 | 8.00 | 8.00 | | 30 | | 114 | | | | | 01 | 1132 | 52 | 8.10 | | | | | | | 2.00 | | | 01 | 1133 | 52 | 8.10 | | | | | | | 2.00 | | | 01 | 1146 | 54 | 7.80 | 7.80 | | 28 | | 104 | | | | | 01 | 1147 | 54 | 7.70 | | | | | | | 2.00 | | | APR | | | | | | | | _ | | | | | 07 | 1330 | 22 | 8.50 | 8.40 | 12.0 | 2.7 | 13.2 | 7 | 4.70 | 0.020 | 0.110 | | MAY | | | | | | | | | | | 0 000 | | 26 | 1110 | 13 | 8.30 | 8.30 | 18.0 | 4.1 | 12.2 | 9 | 3.50 | 0.030 | 0.200 | | AUG | 0115 | | | 0.00 | | 20 | | 200 | | 0 100 | | | 04 | 2115 | 57 | | 8.20 | | 39 | | 388 | | 0.120 | | | 05 | 0530 | 33 | | 7.50 | | 39 | | 304 | | 2.20 | | | SEP | 1000 | 0.5 | | 0.20 | | 1.5 | | 75 | | 0.060 | | | 19 | 1200 | 25
37 | | 8.30 | | 15
16 | | 212 | | 0.200 | | | 19 | 1340 | 37
37 | | 8.20 | | | | 178 | | 0.200 | | | 19 | 1341 | | | 8.00 | | 31 | | 178
248 | | 0.240 | | | 19 | 1400 | 41 | | 8.20 | | 43 | | 436 | | 0.240 | | | 19 | 1530 | 62 | | 8.20 | | 51 | | | | 2.30 | | | 20 | 0445 | 33 | | 7.90 | | 48 | | 184
114 | | 0.500 | | | 22 | 0800 | 34 | | 8.00 | | 120 | | | | | | | 22 | 0830 | 48 | | 8.20 | | 6 0 | | 258 | | 0.460 | | 215 GRANT RIVER BASIN 05413449 RATTLESNAKE CREEK NEAR NORTH ANDOVER, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | | MTN | MEAN | MAY | MTN | MEAN | MAV 190 | MTN | MEAN | |----------------------------------|--|--|-------------------------------------|-------------------------------------|--|------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|--|--------------------------------------|--| | DAI | HAA | OCTOBER | PIEAN | MAX | MIN
NOVEMBI | MEAN
Er | MAX | MIN
DECEMBER | MEAN | MAX | MIN
JANUARY | | | 1
2
3
4
5 | 15.5
14.5
11.5
13.0
13.5 | 11.5
9.5
7.5
8.5
12.0 | 13.5
11.5
9.5
10.5
12.5 | 10.0
13.0
14.5
13.5
9.5 | 8.5
10.0
12.0
10.0
5.5 | 9.0
11.5
13.5
12.5
7.0 | 4.0
3.0
3.5
1.5 | 3.0
2.5
2.0
.0 | 3.5
3.0
3.0
1.0 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5 | | 6
7
8
9 | 12.0
10.5
9.5
9.0
8.0 | 9.5
8.0
6.0
7.5
6.0 | 11.0
9.0
8.0
8.0
7.5 | 6.0
6.0
8.0
6.5
3.5 | 4.5
4.5
6.0
3.5
2.0 | 5.5
5.5
7.0
5.0
3.0 | 2.5
3.5
6.0
6.5
5.5 | 1.5
2.5
3.5
5.5
4.5 | 2.0
3.0
4.5
6.0
4.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5 | | 11
12
13
14
15 | 7.0
8.0
9.5
10.5
12.0 | 4.0
4.0
5.5
9.0
9.0 | 5.5
6.0
7.5
9.5
10.5 | 4.0
5.0
7.0
6.5
9.0 | 2.0
2.5
4.5
4.5
5.5 | 3.0
4.0
5.5
5.5
7.0 | 6.0
5.0
3.0
2.0
1.0 | 4.5
2.0
2.0
1.0 | 5.5
3.0
2.5
1.5 | .5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | 16
17
18
19
20 | 11.5
11.0
10.0
10.0
8.5 | 11.0
9.0
7.5
8.0
5.5 | 11.5
10.0
9.0
9.0
7.0 | 10.0
10.0
7.0
5.0
4.0 | 9.0
7.5
4.5
4.0 | 9.5
9.0
5.5
4.5
2.0 | 1.0
.5
.5
1.0
1.0 | .0
.5
.5 | .5
.5
.5
.5 | .5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | 21
22
23
24
25 | 6.5
8.0
8.0
8.0
6.5 | 4.0
5.5
6.0
6.0
4.0 | 5.0
6.5
7.0
7.0
5.5 | 1.5
4.5
5.5
5.0
4.5 | .0
1.0
4.5
4.5
3.5 | 1.0
2.5
5.0
5.0
4.0 | 1.0
1.5
2.5
3.5
3.0 | .0
.5
.5
2.5
1.0 | .5
1.0
1.5
3.0
2.5 | .5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | 26
27
28
29
30
31 | 6.0
6.5
6.5
7.5
8.0
8.5 | 4.5
4.5
4.0
5.5
5.0
6.5 | 5.5
5.5
5.5
6.5
7.5 | 5.0
4.5
5.5
6.0
6.0 | 4.0
4.5
4.5
5.5
4.0 | 4.5
4.5
5.0
6.0
5.0 | 1.0
1.0
.5
.5
1.0 | .0
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | MONTH | 15.5 | 4.0 | 8.2 | 14.5 | . 0 | 5.9 | 6.5 | .0 | 1.9 | .5 | .5 | .5 | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .5
.5
.5
.5 | . 5
. 5
. 5
. 5 | .5
.5
.5
.5 | 4.0
4.0
3.5
4.0
5.0 | .5
1.5
1.0
.5 | 2.0
2.5
2.5
2.0
3.0 | 12.0
10.5
11.5
16.0
15.5 | 8.0
9.0
9.0
9.5
12.0 | 10.0
9.5
10.0
12.5
14.0 | 17.5
18.5
18.0
17.0
18.5 | 11.5
12.0
12.0
11.5
12.0 | 14.5
15.0
15.0
14.0
15.0 | | 6
7
8
9
10 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | 7.0
6.5
9.0
7.5
7.5 | 2.5
4.0
6.0
5.0
3.5 | 5.0
5.0
7.0
6.0
5.5 | 13.5
14.0
15.5
15.0
11.5 | 9.5
8.0
10.0
11.5
8.0 |
11.5
11.0
12.5
13.0
9.0 | 19.0
17.5
15.5
13.5
18.5 | 12.0
13.5
13.5
11.5 | 15.5
15.5
14.5
12.0
14.0 | | 11
12
13
14
15 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | 7.5 | 5.0
4.0
1.0
.5 | 7.0
6.0
2.5
1.0 | 13.0
14.0
13.0
12.0
12.0 | 6.0
8.0
9.5
7.5
6.5 | 9.0
11.0
11.5
9.5
9.0 | 19.5
22.0
21.0
20.5
22.5 | 13.5
15.5
15.5
14.0
17.0 | 16.5
18.5
18.0
17.0
19.5 | | 16
17
18
19
20 | .5
.5
.5
1.0 | .5
.5
.5
.5 | .5
.5
.5
.5 | 5.0
5.5
6.5
6.0
7.0 | 1.5
3.0
2.5
3.0
3.0 | 3.0
4.5
4.5
4.5
5.0 | 13.5
15.0
12.5
12.0
12.5 | 7.0
9.5
7.5
6.0
7.5 | 10.0
11.5
10.0
8.5
9.5 | 18.5
19.5
21.0
21.0
22.5 | 14.0
11.5
13.5
15.0
15.5 | 15.5
15.0
17.0
18.0
19.0 | | 21
22
23
24
25 | .5
1.0
1.0
1.0 | .5
.5
.5 | .5
.5
.5
.5 | 7.5
9.5
11.5
9.0
11.5 | 3.5
4.5
8.0
7.5
7.5 | 5.5
7.0
9.5
8.0
9.5 | 9.5
7.0
7.0
11.5
15.5 | 6.5
6.5
5.5
4.5
8.5 | 7.0
6.5
6.5
8.0
12.0 | 23.0
22.5
21.5
21.5
21.0 | 16.5
18.0
18.5
16.0
14.0 | 19.5
20.0
20.0
18.5
17.5 | | 26
27
28
29
30
31 | 1.0
1.0
1.0
1.0 | .5
.5
.5
.5 | .5
.5
.5 | 9.5
8.5
8.5
8.5
10.0 | 4.0
2.5
7.0
6.0
4.0
6.5 | 6.5
5.0
8.0
7.0
7.0 | 13.5
8.0
13.5
16.0
17.0 | 8.0
5.5
5.5
8.5
10.0 | 11.0
7.0
9.0
12.0
13.5 | 22.0
22.5
25.0
25.5
25.5
26.0 | 14.5
17.5
18.5
19.0
19.0 | 18.0
20.0
21.5
22.0
22.5
22.5 | | MONTH | 1.0 | .5 | . 5 | 11.5 | .5 | 5.2 | 17.0 | 4.5 | 10.2 | 26.0 | 10.5 | 17.5 | 216 GRANT RIVER BASIN 05413449 RATTLESNAKE CREEK NEAR NORTH ANDOVER, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | WATER | TEMPERATURE | , DEGREES | CENTIGRA | ADE, WATE | R YEAR (| OCTOBER 1987 | 10 201 | TEMBER 198 | 00 | | |--|---|--|--|---|---|---|--------------|---|--|--------------------------|--------------|--------------| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | ŧ | | 1 | 26.0 | 10 5 | 22.0 | 00 5 | | 00.0 | 20 5 | | 26 5 | | | | | $\frac{1}{2}$ | 25.5 | $\frac{19.5}{20.0}$ | 23.0
22.5 | 23.5
25.0 | 17.0
18.0 | 20.0
21.5 | 29.5
30.0 | 24.0
24.5 | 26.5
27.0 | | | | | 3 | 24.5 | 19.0 | 21.5 | 25.5 | 19.0 | 22.0 | 30.0 | 24.5 | 27.0 | | | | | 4 | 23.5 | 17.0 | 20.5 | 26.5 | 19.5 | 23.0 | 28.5 | 24.5 | 26.5 | | | | | 5 | 24.5 | 17.5 | 21.0 | 27.5 | 21.0 | 24.0 | 28.0 | 23.5 | 25.5 | | | | | 6 | 25.0 | 18.5 | 21.5 | 28.5 | 22.5 | 25.5 | 28.0 | 22.0 | 24.5 | | | | | 7 | 25.5 | 18.5 | 22.0 | 30.0 | 24.0 | 26.5 | 28.0 | 21.5 | 25.0 | | | | | 8
9 | 25.0 | 20.0 | 22.5 | 30.0 | 24.5 | 27.0 | 28.5 | 24.0 | 26.0 | | | | | 10 | 22.0
22.0 | $\frac{16.5}{15.5}$ | 19.5
19.0 | 26.5
26.5 | 23.0
22.5 | 25.0
24.5 | 28.5
28.5 | 24.5
22.0 | 26.0
25.0 | | | | | | | | | | 24.5 | 24.5 | | | | | | | | 11 | 23.0 | 16.0 | 19.5 | 24.5 | 21.0 | 23.0 | | | | | | | | 12
13 | 24.5
26.0 | 18.0
19.5 | 21.0
22.5 | 27.0
29.0 | 20.0
21.5 | 23.0
25.0 | | | | | | | | 14 | 25.5 | 20.5 | 23.0 | 30.5 | 24.5 | 27.0 | | | | | | | | 15 | 26.5 | 21.5 | 23.5 | 31.5 | 25.0 | 28.0 | | | | | | | | 16 | 25.0 | 19.5 | 22.0 | 30.0 | 25.5 | 28.0 | | | | | | | | 17 | 22.5 | 18.5 | 20.5 | 30.0 | 24.0 | 27.0 | | | | | | | | 18 | 25.5 | 19.0 | 22.0 | 28.5 | 24.0 | 26.0 | | | | | | | | 19
20 | 24.0
28.5 | $21.0 \\ 21.0$ | 22.5
24.5 | 26.5
25.5 | 21.5
21.0 | 24.0
23.0 | | | | | | | | 20 | 20.5 | 21.0 | 24.5 | 23.3 | 21.0 | 23.0 | | | | | | | | 21 | 29.5 | 24.0 | 26.5 | 24.0 | 19.5 | 21.5 | | | | | | | | 22
23 | 29.5
27.0 | 24.5
22.5 | 27.0
25.0 | 25.5
26.0 | 18.5
19.5 | 22.0
22.5 | | | | | | | | 24 | 27.0 | 21.5 | 24.5 | 26.0 | 21.0 | 23.5 | | | | 16.5 | 12.5 | 14.5 | | 25 | 29.0 | 23.5 | 26.0 | 27.0 | 21.0 | 24.0 | | | | 17.5 | 12.5 | 15.0 | | 26 | 26.5 | 22.0 | 24.0 | 26.5 | 20.0 | 23.0 | | | | 18.5 | 14.0 | 16.0 | | 27 | 26.0 | 20.0 | 22.5 | 28.0 | 20.5 | 24.0 | | | | 18.5 | 15.5 | 17.0 | | 28 | 26.0 | 20.0 | 23.0 | 28.5 | 22.0 | 25.0 | | | | 16.5 | 14.5 | 15.0 | | 29 | 23.5 | 19.5 | 21.0 | 28.5 | 23.0 | 25.5 | | | | 17.5
18.5 | 14.0
15.0 | 15.5
17.0 | | 30
31 | 23.0 | 16.5 | 19.5 | 29.5
29.0 | 23.5
22.5 | 26.0
25.5 | | | | 18.5 | 13.0 | 17.0 | | | | | | | | | | | | | | | | MONTH | 29.5 | 15.5 | 22.4 | 31.5 | 17.0 | 24.4 | 0 | XYGEN DISSOI | VED (MG/ | L), WATER | YEAR OC | TOBER 19 | 987 TO SEPTE | MBER 19 | 88 | | | | DAY | MAX | | | | MEN | | | | | | MIN | 3077.437 | | | THAN | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | | | TIAX | | | | | MEAN | MAX | | MEAN | MAX | | MEAN | | | IIIX | OCTOBER | | | NOVEMBER | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | MEAN | | 1 | 11.7 | OCTOBER | 9.5 | 10.0 | NOVEMBER
8.7 | 9.5 | 13.3 | DECEMBER | 12.2 | | JANUARY | | | 2 | 11.7
11.8 | OCTOBER
8.0
8.0 | 9.5
9.8 | 10.0
12.0 | NOVEMBER
8.7
8.1 | 9.5
9.6 | 13.3
13.6 | DECEMBER
11.4
12.0 | 12.2
12.6 | | JANUARY | | | | 11.7 | OCTOBER
8.0
8.0
9.7 | 9.5 | 10.0 | NOVEMBER
8.7
8.1
7.2 | 9.5
9.6
8.9 | 13.3 | DECEMBER | 12.2 | | JANUARY | | | 2
3 | 11.7
11.8
12.7 | OCTOBER
8.0
8.0 | 9.5
9.8
10.9
10.6 | 10.0
12.0
11.5 | NOVEMBER
8.7
8.1 | 9.5
9.6 | 13.3 | DECEMBER
11.4
12.0 | 12.2 |
 | JANUARY |
 | | 2
3
4
5 | 11.7
11.8
12.7
12.4
11.9 | 8.0
8.0
9.7
9.0
8.7 | 9.5
9.8
10.9
10.6
9.7 | 10.0
12.0
11.5
11.5
12.8 | 8.7
8.1
7.2
7.8
9.0 | 9.5
9.6
8.9
9.3
10.8 | 13.3 | DECEMBER 11.4 12.0 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5 | 11.7
11.8
12.7
12.4
11.9 | 0CTOBER
8.0
8.0
9.7
9.0
8.7 | 9.5
9.8
10.9
10.6
9.7 | 10.0
12.0
11.5
11.5
12.8 | 8.7
8.1
7.2
7.8
9.0 | 9.5
9.6
8.9
9.3
10.8 | 13.3 | DECEMBER 11.4 12.0 | 12.2
12.6 |

 | JANUARY | | | 2
3
4
5
6
7
8 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2 | 13.3 | 11.4
12.0
 | 12.2 12.6 | ===
===
===
=== | JANUARY | | | 2
3
4
5
6
7
8
9 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2 | 13.3 | 11.4
12.0
 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2 | 13.3 | 11.4
12.0
 | 12.2 12.6 | ===
===
===
=== | JANUARY | | |
2
3
4
5
6
7
8
9
10 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2 | 13.3 13.6 | 11.4
12.0
 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8
9
10 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.0 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.4 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.0
13.4 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.4 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3
11.8
11.7
11.3 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.0 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.4 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.3
11.8
11.7
11.3
10.5 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0
12.7
13.0
13.4
13.2
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.4
11.7
11.7
11.6
11.8
11.5 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3
13.8
13.6
13.7
12.3
13.5 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3
11.8
11.7
11.3
10.5
10.7 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0
12.7
13.0
13.4
13.2
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.7
11.6
11.8
11.5 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0
12.7
13.0
13.4
13.2
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.4
11.7
11.7
11.6
11.8
11.5 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3
13.8
13.6
13.7
12.3
13.5
9.9
12.6
12.8
13.1 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2
8.8
9.4 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3
11.8
11.7
11.3
10.5
10.7 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.4
13.2
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.7
11.6
11.8
11.5 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3
13.6
13.7
12.3
13.5 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2
8.8
8.9 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3
11.8
11.7
11.3
10.5
10.7 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
12.7
13.0
13.4
13.2
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.8
10.9
10.3 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.4
11.7
11.7
11.6
11.8
11.5
9.9
8.7
11.0 | 13.3 13.6 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3
13.8
13.6
13.7
12.3
13.5
9.9
12.6
12.8
13.1 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2
8.8
9.4 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.4
13.2
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.7
11.6
11.8
11.5 | 13.3 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3
13.8
13.6
13.7
12.3
13.5
12.6
12.8
13.1
12.6 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 9.9 10.1 10.6 10.4 9.9 9.5 9.2 8.8 8.9 9.4 9.6 10.5 10.2 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.6
10.8 | 10.0
12.0
11.5
11.5
11.5
12.8
13.3
11.4
10.5
12.0
12.7
13.0
13.2
13.1
10.3
9.7
12.3
12.9
13.7 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
11.4
11.7
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6 | 13.3 13.6 | DECEMBER 11.4 12.0 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.6
13.7
12.6
12.8
13.1
12.6
13.6
13.7 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 9.9 10.1 10.6 10.4 9.9 9.5 9.2 8.8 8.9 9.4 9.6 10.5 10.5 10.0 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6
13.1
12.4
11.1 | 13.3 13.6 | 11.4
12.0
 | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.4
13.3
13.8
13.6
13.7
12.3
13.5
12.6
12.8
13.1
12.6 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2
8.8
8.9
9.4
9.6 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.3
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3 |
10.0
12.0
11.5
11.5
11.5
12.8
13.3
11.4
10.5
12.0
12.7
13.0
13.2
13.1
10.3
9.7
12.3
12.9
13.7 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
11.4
11.7
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6 | 13.3 13.6 | DECEMBER 11.4 12.0 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.6
13.7
12.8
13.6
13.7
12.6
12.8
13.1
12.6
13.7
13.8 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2
8.8
8.9
9.4
9.6 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3
11.7 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.0
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7
14.2
13.4
11.5
12.6
13.4 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6
13.1
12.4
11.1
11.7 | 13.3 13.6 | 11.4
12.0

- | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.6
13.7
12.3
13.5
9.9
12.6
12.8
13.1
12.6
13.7
13.5
13.7 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 9.9 10.1 10.6 10.4 9.9 9.5 9.2 8.8 8.9 9.4 9.6 10.5 10.2 10.0 10.1 10.4 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3
11.8
11.7 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7
14.2
13.1
11.5
12.6
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6
13.1
12.4
11.7
11.7 | 13.3 13.6 | 11.4
12.0 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.6
13.7
12.8
13.6
13.7
12.6
12.8
13.1
12.6
13.7
13.8 | 8.0
8.0
9.7
9.0
8.7
8.9
9.7
10.0
9.9
10.1
10.6
10.4
9.9
9.5
9.2
8.8
8.9
9.4
9.6 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3
11.3 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7
14.2
13.4
11.5
12.6
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.6
11.8
11.5
9.9
8.7
11.7
12.6
13.1
12.4
11.7
12.1 | 13.3 13.6 | 11.4
12.0

- | 12.2
12.6

 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.6
13.7
12.3
13.5
9.9
12.6
12.8
13.1
12.6
13.7
13.5
13.6
13.7
13.5 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 9.9 10.1 10.6 10.4 9.9 9.5 9.2 8.8 8.9 9.4 9.6 10.5 10.0 10.1 10.4 10.4 10.4 10.4 10.4 9.6 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3
11.3
11.7
11.3
11.3
11.7
11.3
11.7
11.3 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7
14.2
13.1
11.5
12.6
13.1
11.5
12.6
13.7 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5
12.4
11.1
11.5
12.4
11.4
11.4
9.9
9.7 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6
13.1
12.1
11.7
12.1 | 13.3 13.6 | 11.4
12.0 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.5
13.6
13.7
12.3
13.5
9.9
12.6
12.8
13.1
12.6
13.7
13.5
13.5
13.5
14.0
13.5 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 9.9 10.1 10.6 10.4 9.9 9.5 9.2 8.8 8.9 9.4 9.6 10.5 10.2 10.0 10.1 10.4 10.4 10.4 10.4 10.4 10.4 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3
11.3
11.7
11.3
11.3
11.7
11.3
11.6
10.9 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7
14.2
13.1
12.6
13.1 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5
12.4
11.1
11.5
12.4
11.3
10.7
11.2
11.4 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6
13.1
11.7
12.1
11.9
11.8
11.5
11.8
11.7 | 13.3 13.6 | 11.4
12.0 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.6
13.7
12.3
13.5
9.9
12.6
12.8
13.1
12.6
13.7
13.5
13.7
13.5
13.7 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 9.9 10.1 10.6 10.4 9.9 9.5 9.2 8.8 8.9 9.4 9.6 10.5 10.0 10.1 10.4 10.4 10.4 10.4 10.4 9.6 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3
11.3
11.7
11.3
11.3
11.7
11.3
11.7
11.3 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7
14.2
13.1
11.5
12.6
13.1
11.5
12.6
13.7 | 8.7
8.1
7.2
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5
12.4
11.1
11.5
12.4
11.4
11.4
9.9
9.7 | 9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6
13.1
12.1
11.7
12.1 | 13.3 13.6 | 11.4
12.0 | 12.2
12.6
 | | JANUARY | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 11.7
11.8
12.7
12.4
11.9
12.2
12.9
13.5
13.5
13.6
13.7
12.3
13.5
9.9
12.6
12.8
13.1
12.6
13.7
13.5
13.5
13.5
14.0
13.5 | 0CTOBER 8.0 8.0 9.7 9.0 8.7 8.9 9.7 10.0 9.9 10.1 10.6 10.4 9.9 9.5 9.2 8.8 8.9 9.4 9.6 10.5 10.2 10.0 10.1 10.4 10.4 10.4 10.4 10.4 10.4 | 9.5
9.8
10.9
10.6
9.7
10.1
10.9
11.2
11.1
11.3
11.8
11.7
11.3
10.5
10.7
9.2
10.6
10.6
10.8
11.7
11.3
11.3
11.7
11.3
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.1
11.3
11.1
11.3
11.1
11.3
11.1
11.3
11.1
11.3
11.4
11.7
11.3
11.5
11.7
11.3
11.6
11.6
11.7
11.3
11.7
11.3
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7
11.3
11.7 | 10.0
12.0
11.5
11.5
12.8
13.3
11.4
10.5
12.7
13.0
13.4
13.2
13.1
10.3
9.7
12.3
12.9
13.7
14.2
13.1
12.6
13.1 | 8.7
8.1
7.8
9.0
10.6
9.1
8.1
9.1
10.3
11.1
10.8
10.8
10.9
10.3
9.5
7.8
9.4
11.1
11.5
12.4
11.1
11.5
12.4
11.3
10.7
11.2
11.4 |
9.5
9.6
8.9
9.3
10.8
11.5
10.4
9.2
10.4
11.7
11.6
11.8
11.5
9.9
8.7
11.0
11.7
12.6
13.1
11.7
12.1
11.9
11.8
11.5
11.8
11.7 | 13.3 13.6 | 11.4
12.0 | 12.2
12.6
 | | JANUARY | | 217 05413449 RATTLESNAKE CREEK NEAR NORTH ANDOVER, WI--CONTINUED OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--|---|---|--------------|---------------------|---|--|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | 13.1 | 9.0 | 10.8 | 17.8 | 7.6 | 11.6 | | 2
3 | | | | | | | 11.4
12.4 | 8.8
8.8 | 9. 8
10.2 | 17.6
17.3 | 7.4
7.3 | $\frac{11.5}{11.3}$ | | 4 | | | | | | | 12.8 | 7.6 | 9.9 | 17.4 | 7.4 | 11.6 | | 5 | | | | | | | 12.6 | 7.4 | 9.1 | 17.1 | 7.2 | 11.2 | | 6 | | | | | | | 12.8 | 7.6 | 9.8 | 16.7 | 6.9 | 10.8 | | 7
8 | | | | | | | $\begin{array}{c} 13.2 \\ 13.3 \end{array}$ | 8.0
7.5 | 10.1
9.8 | 16.6
13.1 | 6.6
6.9 | 10.4
8.7 | | 9
10 | | | | | | | 13.4 | 7.4 | 9.5
9.9 | 8.2 | 6.7
6.6 | 7.5
9.9 | | | | | | | | | 13.1 | 7.7 | | 13.6 | | | | $\begin{array}{c} 11 \\ 12 \end{array}$ | | | | | | | 13.8
14.3 | 8.4
8.1 | 10.6
10.5 | 13.8
13.4 | 6.2
5.6 | 9.3
8.9 | | 13 | | | | | | | 14.3 | 7.9 | 10.2 | 13.5 | 5.5 | 9.0 | | 14
15 | | | | | | | 15.0
15.4 | 8.3
9.2 | 11.1
11.6 | 13.7 13.2 | $\frac{6.2}{6.1}$ | 9.5
8.8 | | 16 | | | | | | | 15.8 | 8.9 | 11.7 | 12.0 | 6.1 | 8.9 | | 17 | | | | | | | 15.8 | 8.7 | 11.3 | 14.0 | 7.1 | 10.5 | | 1 8
19 | | | | | | | 15.9 | 8.7 | 11.7 | $13.6 \\ 12.5$ | 6.4
6.0 | 9.7
9.0 | | 20 | | | | | | | 16.1 | 9.4 | 11.6 | 12.9 | 5.7 | 8.8 | | 21 | | | | | | | 15.8 | 9.5 | 12.0 | 12.8 | 5.6 | 8.7 | | 22
23 | | | | | | | 14.7
15.8 | 10.3
10.6 | $\frac{12.0}{12.5}$ | $\substack{13.2\\13.0}$ | 5.4
5.5 | 8.6
8.8 | | 24 | | | | | | | 17.5 | 9.6 | 13.0 | 14.2 | 6.3 | 9.7 | | 25 | | | | | | | 17.8 | 8.3 | 12.4 | 14.6 | 6.7 | 10.2 | | 26
27 | | | | | | | 13.8
16.3 | 7.9
10.0 | 10.4
12.6 | 14.7
14.5 | 6.6
6.1 | $\frac{10.1}{9.6}$ | | 28 | | | | | | | 18.2 | 9.2 | 13.1 | 14.8 | 5.6 | 9.6 | | 29
30 | | | | 14.5 | 10.6 | 12.7 | 18.3
18.0 | 8.5
8.0 | $12.5 \\ 11.9$ | 14.8
14.8 | $\begin{array}{c} 5.2 \\ 5.0 \end{array}$ | 9.3
9.3 | | 31 | | | | 13.9 | 9.7 | 11.6 | | | | 14.7 | 4.9 | 9.1 | | MONTH | | | | | | | | | | 17.8 | 4.9 | 9.7 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | R | | 1 | 14. 1 | JUNE | 9 0 | 15 6 | JULY | 10.6 | | AUGUST | | | SEPTEMBER | | | 1 2 | 14.1
14.4 | 4.8
4.7 | 8.9
9 0 | 15.6
15.3 | 6.7 | 10.6 | | | | | | | | 2
3 | $\begin{array}{ccc} 14 & 4 \\ 14 & 7 \end{array}$ | 4.8
4.7
5.0 | 9 n
9.3 | $\frac{15.3}{15.2}$ | 6.7
6.2
5.6 | 10.1
9.7 | | | | | | | | 2 | 14 4 | 4.8
4.7 | 9 0 | 15.3 | 6.7 | 10.1 | | | | | |
 | | 2
3
4 | $\frac{14}{14.7}$ 15.1 | 4.8
4.7
5.0
5.6 | 9 0
9.3
9.8 | 15.3
15.2
14.7 | 6.7
6.2
5.6
5.3 | 10.1
9.7
9.3 | | | | | | | | 2
3
4
5
6
7 | 14.7
15.1
15.2
15.1
15.0 | 4.8
4.7
5.0
5.6
5.5 | 9.0
9.3
9.8
9.8
9.5
9.4 | 15.3
15.2
14.7
14.5 | 6.7
6.2
5.6
5.3
4.8
4.7 | 10.1
9.7
9.3
9.0
9.0
8.8 | | | | | | | | 2
3
4
5
6
7
8
9 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0 | 4.8
4.7
5.6
5.5
5.1
4.9
5.4 | 9.0
9.8
9.8
9.5
9.4
9.3
9.4 | 15.3
15.2
14.7
14.5
14.7
14.7
14.8
12.8 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0 | 10.1
9.7
9.3
9.0
9.0
8.8
9.0
8.4 | | | | | | | | 2
3
4
5
6
7
8 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0 | 4.8
4.7
5.6
5.5
5.1
4.9
4.5 | 9 0
9.3
9.8
9.8
9.5
9.4
9.3 | 15.3
15.2
14.7
14.5
14.7
14.7
14.8 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
4.6 | 10.1
9.7
9.3
9.0
9.0
8.8
9.0 | | | | | | | | 2
3
4
5
6
7
8
9
10 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3 | 4.8
5.6
5.5
5.1
4.9
5.4
5.6
5.6 | 9.3
9.8
9.8
9.5
9.4
9.3
9.5 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7 | | | | | | | | 2
3
4
5
6
7
8
9 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3 | 4.8
4.7
5.6
5.5
5.1
4.9
4.5
5.4
5.6 | 9 .0
9 .8
9 .8
9 .5
9 .4
9 .4
9 .5 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6 |
10.1
9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7 | | | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 14 4
14.7
15.1
15.2
15.1
15.0
14.0
14.3
14.6
14.9 | 4.87
5.65
5.19
5.46
5.46
5.28
4.3 | 9.0
9.3
9.8
9.5
9.4
9.5
9.4
9.5
9.4
9.5 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.0
5.5 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7 | | | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3
14.6
14.9
15.0
14.9 | 4.8
4.7
5.6
5.5
5.1
9
4.5
5.6
5.6
5.2
4.3
4.3 | 9.0
9.3
9.8
9.5
9.3
9.3
9.5
9.5
9.1
9.5
9.1 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6
11.1 | 6.7
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.2
5.5
5.0
4.6 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7 | | | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 14 4
14.7
15.1
15.2
15.1
15.0
14.0
14.3
14.6
14.9 | 4.87
5.65
5.19
5.46
5.46
5.28
4.3 | 9.0
9.3
9.8
9.5
9.4
9.5
9.4
9.5
9.4
9.5 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.0
5.5 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7 | | | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3
14.6
14.9
15.0
14.8
15.3
15.3 | 4.87
5.65
5.19
5.4.6
5.28
4.33
4.72
5.9 | 9 0
9 .8
9 .8
9 .8
9 .9 .3
9 .9 .9
9 .9 .9
9 .9 .9
9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.2
5.5
5.0
4.6 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7 | | | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 14 4
14.7
15.1
15.2
15.1
15.0
14.0
14.3
14.6
14.9
14.8
15.3
15.5 | 4.87
5.65
5.19
5.46
5.46
5.28
4.3
4.3
4.7 | 9.3
9.8
9.5
9.5
9.4
9.5
9.4
9.5
9.4
9.1
9.8 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.0
5.5
5.0 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7 | | | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3
14.6
14.9
15.0
14.8
15.3
15.5
16.8
14.9 | 4.87
5.65
5.19
5.46
6.28
4.33
4.29
6.60
4.33
4.55
5.66
5.66
4.66
4.66
4.66
4.66
4.66 | 9 0
9 .8
9 .8
9 .8
9 .5
9 .3
9 .5
9 .3
9 .5
9 .9
9 .9
9 .9
9 .9
9 .9
9 .9
9 .9 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
6.0
5.6
6.0
4.6 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14 4
14.7
15.1
15.2
15.1
15.0
14.0
14.3
14.6
14.9
14.9
14.8
15.5
16.8
14.9
15.1 | 4.5.65
5.195.46
5.2833
7.2906
4.5.55
5.4.833
4.5.954
4.33
3.4.33
3.4.33 | 9.0
9.3
9.8
9.3
9.8
9.3
9.4
9.5
9.4
9.5
9.4
9.5
9.4
9.5
9.4
9.8
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6
9.6 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
4.6
5.0
5.6
6.0
5.5
5.0
4.6 | 9.0
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | |

8.7 |

4.9 |

7.2 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3
14.6
14.9
15.0
14.8
15.3
15.5
16.8
14.9
15.1 | 4.7065
5.19546
5.2833
4.72906
3.8 | 9 0
9 .8
9 .8
9 .8
9 .9 .3
9 .9 .9
9 .9 .9
9 .9 .9
9 .9 .9
9 .9 .9
9 .9 .9 .9
9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.8
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.6
5.0
6.0
5.6
6.2
5.0
4.6 | 9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | | | |

7.2 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3
14.6
14.9
15.0
14.8
15.5
16.8
14.9
15.1 | 4.7065
5.19546
6.2833
7.2906
8.49 | 9.038.8 543.45 945 99.21 99.21 99.21 99.21 8.84 8.60 6.86 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.0
5.5
5.5
4.6 | 9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | |

8.7
9.9
8.0
8.0 |

4.9
7.1
3.9
5.4 |

7.2
8.2
6.3
7.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3
14.6
14.9
14.8
15.3
15.5
16.8
14.9
15.1 | 4.5.5.5.5.5.6.6.2.8.3.3.7.2.9.0.6.8.4.9.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4 | 9.038.8 5.434.5 9484.60.65.6 9484.84 6.06.5.6 9488.6 9488.6 9488.6 9488.6 9488.6 9488.6 9488.6 9488.6 948888.6 9488888.6 9488888.6 9488888.6 9488888.6 9488888.6 9488888.6 94888888.6 94888888.6 9488888888888888888888888888888888888 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
6.0
5.6
6.2
5.0
4.6 | 10.1
9.7
9.3
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | |

8.7
9.9
8.0
9.7
10.3 |

4.9
7.1
3.9
5.4
7.2
7.8 |

7.2
8.2
6.3
7.0
8.3
8.9 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 14 4
14.7
15.1
15.2
15.1
15.0
14.0
14.3
14.6
14.9
15.0
14.9
15.5
16.8
14.9
15.1
14.8
14.1
14.9
15.1 | 4.5.5.5.5.5.4.6.6.2.8.3.3.7.2.9.0.6.8.4.9.4.4.4.4.4.5.5.5.4.3.3.4.4.4.4.4.4.4.4.4 | 9.03
9.88
9.43
9.54
9.34
9.55
9.21
9.64
9.60
8.60
8.60
8.60
8.60
8.60
8.60
8.60
8 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.0
5.5
5.0
4.6 | 9.0
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | | 8.7
9.9
8.0
8.0
9.7 |

4.9
7.1
3.9
5.4
7.2
7.8 | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 14 4
14.7
15.1
15.2
15.1
15.0
15.0
14.0
14.3
14.6
14.9
14.8
15.3
15.5
16.8
14.9
15.1
14.8
14.9
15.1 | 44555 554454 455554 33344 4555554 35554 4574 | 9.038.8 5.434.5 5.421.0 4.84.84 6.06.56 4.88.2 9.18.9 8.18.9 9.18.9
9.18.9 9.18 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
12.8
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.0
5.5
5.5
4.6 | 10.1
9.7
9.3
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | |

8.7
9.9
8.0
9.7
10.3
10.6
11.1
10.5
12.1 |

4.9
7.1
3.9
5.4
7.2
7.8
7.5
7.4
7.6
8.1 |

7.2
8.2
6.3
7.0
8.3
8.9
8.8
8.8
8.8
9.0
9.7 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 14 4
14.7
15.1
15.2
15.1
15.0
14.0
14.3
14.6
14.9
14.8
15.5
16.8
14.9
15.1
14.8
14.1
14.9
15.0 | 4.555.5.4.6.62833.72906.84944.4.55.5.5.4.6.62833.72906.84944.4.55.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.33344.4.555.554.555.554.555.554.555.554.555.554.555. | 9.038.8 54.34.5 54.21.0 4.84.8.4 60.65.6 4.88.9.8 8.6.65.6 4.88.9 9.8 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.9
13.5
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
5.6
6.2
5.5
5.0
4.6 | 9.0
9.0
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | |

8.7
9.9
8.0
8.0
9.7
10.3 |

4.9
7.1
3.9
5.4
7.2
7.8
7.5
7.6 |

7.2
8.2
6.3
7.0
8.3
8.9
8.8
8.9 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 14 4
14.7
15.1
15.2
15.1
15.0
14.0
14.3
14.6
14.9
15.0
14.8
15.3
15.5
14.9
15.1
14.8
14.1
14.9
15.1 | 4.55.55.55.44.6.62.833.72.90.6.84.94.4.45.55.54.33.33.44.4.55.57.29.6.84.94.4.45.55.7.42 | 9.03
9.88
9.38
9.54
9.34
9.55
9.38
9.54
9.54
9.54
9.54
9.54
9.54
9.54
9.54 | 15.3
15.2
14.7
14.5
14.7
14.8
12.8
13.4
12.8
11.6
11.1 | 6.7
6.2
5.6
5.3
4.8
4.7
4.6
5.0
6.0
5.6
6.0
4.6 | 10.1
9.7
9.3
9.0
8.8
9.0
8.4
8.7
9.1
9.3
8.5
7.7
7.2 | | | |

8.7
9.9
8.0
8.0
9.7
10.3
10.6
11.1
10.5
12.1 |

4.9
7.1
3.9
5.4
7.2
7.8
7.5
7.4
7.6
8.1 | | ## 05413449 RATTLESNAKE CREEK NEAR NORTH ANDOVER, WI--CONTINUED PRECIPITATION QUANTITY PERIOD OF RECORD.--July 1987 to current year (during non-freezing periods). GAGE.--Micrologger. REMARKS. -- Records good. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.96 in., Aug. 8, 1987. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.57 in., Sept. 19. | | | RAINE | FALL ACCUM | ULATED | (INCHES), | WATER YEAR
SUM VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------|------|-------|------------|----------|-----------|--------------------------|---------|---------|-----------|--------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .01 | .03 | .00 | | | | . 00 | .01 | .00 | .00 | .00 | .00 | | 2 | .00 | .07 | .00 | | | | .09 | .01 | .00 | .00 | .00 | .00 | | 3 | .01 | .00 | .00 | | | | .00 | .01 | .00 | .00 | .00 | . 97 | | 4 | .00 | .00 | | | | | .00 | .01 | .00 | .00 | . 50 | .15 | | 5 | .00 | .00 | | | | | . 00 | .00 | .00 | .00 | .11 | .00 | | 6 | .00 | .00 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 7 | .00 | .19 | | | | | .00 | .00 | .00 | . 00 | .00 | .00 | | 8 | .00 | .10 | | | | | .00 | 1.06 | .00 | .00 | .73 | .00 | | 9 | .00 | .00 | | | | | .00 | .18 | .00 | . 49 | . 00 | .00 | | 10 | .00 | .00 | | | | | .01 | .00 | .00 | . 37 | .00 | .00 | | 11 | . 00 | .00 | | | | | . 00 | .02 | .00 | .00 | .00 | .00 | | 12 | .00 | .00 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 13 | .00 | .00 | | | | | .07 | .00 | .00 | . 42 | .00 | .00 | | 14 | .03 | .00 | | | | | .00 | .00 | .00 | .01 | .00 | .00 | | 15 | .00 | .18 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 16 | . 42 | .73 | | | | | .00 | .00 | .00 | . 42 | .00 | .11 | | 17 | .00 | .51 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 18 | .00 | .01 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 19 | .00 | .01 | | - | | | .00 | .00 | . 02 | .00 | .00 | 1.57 | | 20 | .02 | .00 | | | | | . 22 | .00 | .00 | .03 | .00 | .01 | | 21 | .00 | .01 | | | | .00 | . 05 | .00 | .00 | .01 | .00 | .30 | | 22 | .00 | .00 | | | | .00 | .06 | .00 | .04 | .00 | . 86 | 1.12 | | 23 | .00 | .01 | | | | .00 | . 15 | .00 | .00 | .00 | .01 | .00 | | 24 | .05 | .05 | | | | . 59 | .00 | .00 | .09 | . 0 2 | .00 | .00 | | 25 | .00 | .14 | | | | . 01 | .00 | .00 | .00 | .00 | .00 | .00 | | 26 | . 06 | .00 | | | | .00 | . 48 | .00 | .00 | .00 | .00 | .00 | | 27 | 00 | 04 | | ~ | | . 00 | . 08 | .00 | . 00 | .00 | . 03 | .00 | | 28 | . 00 | . 89 | | | | . 70 | . 00 | .00 | .13 | .00 | .00 | .00 | | 29 | .00 | .03 | | | | . 00 | .00 | . 00 | .01 | . 00 | . 00 | .07 | | 30 | .00 | .00 | | | | .00 | .00 | .00 | .00 | .00 | .02 | .00 | | 31 | . 52 | | | | | . 00 | | .00 | | .00 | .00 | | | TOTAL | 1.12 | 3.00 | | | | | 1.21 | 1.30 | 0.29 | 1.77 | 2.26 | 4.30 | ## 05413500 GRANT RIVER AT BURTON, WI (NATIONAL STREAM-QUALITY ACCOUNTING NETWWORK STATION) LOCATION.--Lat $42^{\circ}43'13''$, long $90^{\circ}49'09''$, in NW 1/4 sec.23, T.3 N., R.4 W., Grant County, Hydrologic Unit 07060003, on right bank at downstream side of highway bridge at Burton, 5.9 mi northwest of Potosi and 9.5 mi upstream from mouth. DRAINAGE AREA. -- 269 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1934 to current year. Published as "near Burton" October 1934 to September 1947. Records published for both sites March to September 1947. October 1934, monthly discharge only, published in WSP 1308. REVISED RECORDS.--WSP 1308: 1935-37(M), 1941(M), 1945-46(M), 1949(M). WSP 1728: 1942(M) WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 606.43 ft above National Geodetic Vertical Datum of 1929. Oct. 17, 1934, to Sept. 30, 1947, nonrecording gage at site 6 mi upstream at datum 33.18 ft higher. Mar. 18, 1947, to July 27, 1949, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Ice
periods listed in rating tables below. Records good except for ice-affected periods, which are fair. AVERAGE DISCHARGE.--54 years, 168 ft³/s, 8.48 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 25,000 ft³/s, July 16, 1950, gage height, 24.82 ft, from, rating curve extended above 18,000 ft³/s on basis of slope-area measurement of peak flow; minimum, 21 ft³/s, Mar. 4, 1954, result of freezeup. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 2,400 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Jan. 31 | | (a) *830 | (a) *11.74 | | | | | (a) Backwater from ice. Minimum discharge, 82 ft³/s, Sept. 13-16, gage height, 4.61 ft. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 17-23 and Dec. 28 to Mar. 5.) | 0ct | . 1 to Ma | ar. 1 (240 | 0) | Mar. | 2 (0015) | to Sept. | 30 | |-----|-----------|------------|-----|------|----------|----------|-----| | 4.9 | 112 | 6.0 | 213 | 4.6 | | 6.0 | | | 5.0 | 120 | 7.0 | 322 | 5.0 | 120 | 8.0 | 442 | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|----------------------------------|---|---|---|---|---|---|---|--|----------------------------------|--| | 1
2
3
4
5 | 124
122
118
119
121 | 133
128
121
119
115 | 165
158
155
148
144 | 150
150
140
140
130 | 520
360
300
250
210 | 520
420
330
250
200 | 186
185
193
186
181 | 151
151
151
149
150 | 123
124
122
120
121 | 104
104
103
103
100 | 93
92
89
89
166 | 85
84
84
94 | | 6 | 120 | 112 | 142 | 130 | 190 | 210 | 177 | 151 | 120 | 100 | 115 | 87 | | 7 | 118 | 114 | 142 | 120 | 180 | 261 | 169 | 151 | 119 | 99 | 97 | 86 | | 8 | 117 | 122 | 144 | 120 | 180 | 286 | 167 | 150 | 119 | 98 | 101 | 85 | | 9 | 116 | 119 | 171 | 110 | 170 | 287 | 166 | 215 | 117 | 98 | 107 | 84 | | 10 | 115 | 115 | 167 | 110 | 170 | 232 | 163 | 179 | 115 | 106 | 97 | 84 | | 11 | 114 | 114 | 159 | 110 | 160 | 216 | 163 | 158 | 114 | 111 | 94 | 83 | | 12 | 115 | 115 | 159 | 110 | 160 | 215 | 162 | 153 | 115 | 104 | 93 | 84 | | 13 | 117 | 116 | 150 | 110 | 160 | 201 | 161 | 150 | 114 | 102 | 90 | 82 | | 14 | 117 | 115 | 145 | 110 | 160 | 184 | 161 | 146 | 112 | 104 | 91 | 82 | | 15 | 117 | 115 | 146 | 110 | 150 | 182 | 158 | 147 | 111 | 101 | 91 | 82 | | 16 | 119 | 123 | 140 | 110 | 150 | 179 | 157 | 143 | 110 | 108 | 89 | 82 | | 17 | 130 | 215 | 140 | 110 | 150 | 176 | 157 | 143 | 108 | 111 | 87 | 86 | | 18 | 122 | 186 | 140 | 110 | 150 | 174 | 157 | 143 | 109 | 102 | 86 | 85 | | 19 | 117 | 148 | 150 | 130 | 150 | 172 | 156 | 140 | 110 | 101 | 88 | 106 | | 20 | 116 | 139 | 190 | 160 | 140 | 171 | 158 | 139 | 110 | 99 | 88 | 181 | | 21 | 115 | 133 | 170 | 150 | 140 | 166 | 160 | 138 | 109 | 100 | 87 | 114 | | 22 | 115 | 134 | 160 | 130 | 140 | 164 | 160 | 137 | 106 | 99 | 90 | 178 | | 23 | 115 | 136 | 150 | 120 | 140 | 167 | 165 | 135 | 106 | 98 | 117 | 305 | | 24 | 115 | 133 | 150 | 120 | 140 | 168 | 165 | 134 | 105 | 97 | 105 | 124 | | 25 | 114 | 132 | 157 | 110 | 140 | 222 | 159 | 130 | 107 | 97 | 91 | 103 | | 26
27
28
29
30
31 | 114
117
115
114
114
114 | 132
128
156
242
180 | 147
141
170
180
170
160 | 110
110
120
130
200
740 | 160
280
300
500 | 190
175
190
233
202
191 | 159
183
168
159
155 | 130
130
130
129
127
125 | 105
103
102
104
106 | 97
95
94
94
95
94 | 88
88
86
86
86 | 97
94
91
92
93 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3636
117
130
114
.44 | 4090
136
242
112
.51 | 4810
155
190
140
.58
.67 | 4510
145
740
110
.54
.62 | 6000
207
520
140
.77
.83 | 6934
224
520
164
.83
.96 | 4996
167
193
155
.62
.69 | 4505
145
215
125
.54
.62 | 3366
112
124
102
.42
.47 | 3118
101
111
94
.37
.43 | 2955
95.3
166
86
.35 | 3111
104
305
82
.39
.43 | CAL YR 1987 TOTAL 52610 MEAN 144 MAX 887 MIN 100 CFSM .54 IN. 7.28 WTR YR 1988 TOTAL 52031 MEAN 142 MAX 740 MIN 82 CFSM .53 IN. 7.20 ## 05413500 GRANT RIVER AT BURTON, WI--CONTINUED (NATIONAL STREAM-QUALITY ACCOUNTING NETWORK STATION) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--Water years 1964-67, 1977 to current year. National Stream-Quality Accounting Network data collection began in October 1986. PERIOD OF DAILY RECORD.--SUSPENDED-SEDIMENT DISCHARGE: Water years 1977-82, October 1983 to current year. REMARKS.--Sediment records for periods of no ice cover during considerable discharge (greater than 300 ft³/s) are good because sampling and analysis effort were concentrated on high-discharge periods. Records for most remaining periods are fair because of infrequent (about twice per week) sampling. Records for high-flow periods during ice cover (Dec. 28 through Mar. 5) are poor. Monthly load values are good. EXTREMES FOR PERIOD OF DAILY RECORD.-SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum daily mean, 6,450 mg/L, June 17, 1978; minimum daily mean, 7 mg/L, on many days. Maximum observed, 13,600 mg/L, July 13, 1979; minimum observed, 7 mg/L, Mar. 2, 1978. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 95,300 tons, June 17, 1978; minimum daily, 1.5 tons, Mar. 1, 2, 1978. EXTREMES FOR CURRENT YEAR.-SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,500 mg/L, Jan. 31, minimum daily mean, 20 mg/L, Apr. 18. Maximum observed, 2,100 mg/L, Aug. 5; minimum observed, 19 mg/L, Apr. 18. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 3,000 tons, Jan. 31; minimum daily, 7.8 tons, Nov. 16. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |----------|------|---|---|----------|------|---|---| | OCT 1987 | | | | JUN 1988 | | | | | 01 | 0750 | 124 | 90 | 01 | 0905 | 123 | 150 | | 05 | 1750 | 122 | 68 | 03 | 1945 | 122 | 158 | | 06 | 1415 | 120 | 34 | 06 | 0900 | 120 | 113 | | 06 | 1430 | 120 | 35 | 09 | 0910 | 117 | 167 | | | | | | | | | | | 08 | 0750 | 117 | 53 | 13 | 0745 | 115 | 137 | | 10 | 0825 | 115 | 158 | 16 | 0810 | 110 | 127 | | 21 | 1330 | 115 | 29 | 20 | 1000 | 111 | 110 | | NOV | | | | 20 | 1001 | 111 | 104 | | 02 | 0845 | 129 | 90 | 22 | 1005 | 107 | 66 | | 16 | 1150 | 122 | 25 | 22 | 1350 | 102 | 61 | | 16 | 1200 | 122 | 19 | 22 | 1415 | 105 | 78 | | 30 | 1445 | 177 | 54 | 28 | 0815 | 102 | 138 | | DEC | | | | 30 | 0730 | 106 | 168 | | 09 | 0900 | 160 | 72 | JUL | | | | | JAN 1988 | | | , - | 05 | 0855 | 100 | 147 | | 04 | 1430 | 140 | 40 | 07 | 0845 | 99 | 170 | | FEB | 1430 | 140 | 40 | 11 | 0845 | 113 | 167 | | 15 | 1145 | 150 | 55 | 14 | 0820 | 105 | 179 | | MAR | 1145 | 130 | 33 | 18 | 1925 | 101 | 200 | | | 0030 | 210 | 0.7 | | | | | | 11 | 0930 | 218 | 97 | 21 | 1920 | 102 | 189 | | 12 | 0840 | 218 | 156 | 26 | 1920 | 96 | 173 | | 17 | 1530 | 177 | 79 | 29 | 1925 | 93 | 168 | | 21 | 1330 | 166 | 223 | AUG | | | | | 25 | 1325 | 247 | 80 | 01 | 1845 | 92 | 142 | | 28 | 1600 | 193 | 92 | 04 | 0820 | 88 | 175 | | 31 | 1125 | 192 | 86 | 05 | 1030 | 241 | 718 | | 31 | 1310 | 192 | 77 | 05 | 1039 | 246 | 2100 | | APR | | | | 09 | 0805 | 111 | 173 | | 04 | 1455 | 186 | 104 | 12 | 0730 | 93 | 189 | | 07 | 0745 | 186 | 86 | 15 | 0800 | 91 | 164 | | 11 | 0745 | 186 | 71 | 18 | 0815 | 85 | 148 | | 14 | 0810 | 186 | 66 | 22 | 0845 | 86 | 137 | | 18 | 1350 | 156 | 19 | 25 | 0910 | 91 | 115 | | 20 | 1000 | 156 | 24 | 29 | 1105 | 86 | 90 | | 21 | 0750 | 156 | 48 | SEP | 1103 | 00 | ,, | | 25 | | | | | 0015 | 85 | 119 | | | 0750 | 158 | 37 | 01 | 0815 | | | | 28 | 0825 | 169 | 66 | 02 | 1000 | 84 | 88 | | MAY | | | | 02 | 1001 | 84 | 70 | | 02 | 0755 | 151 | 38 | 06 | 1420 | 86 | 53 | | 05 | 0755 | 149 | 51 | 09 | 0740 | 85 | 115 | | 09 | 0750 | 223 | 195 | 12 | 1245 | 85 | 52 | | 12 | 0755 | 153 | 146 | 13 | 0845 | 83 | 8 5 | | 16 | 0855 | 143 | 204 | 16 | 0735 | 82 | 104 | | 19 | 0830 | 141 | 177 | 19 | 1325 | 106 | 107 | | 23 | 0840 | 135 | 167 | 22 | 0900 | 116 | 3 57 | | 26 | 0900 | 129 | 175 | 26 | 0855 | 97 | 99 | | 20 | 0,00 | | 1.5 | 29 | 0800 | 91 | 99 | | | | | | 23 | | | | 05413500 GRANT RIVER AT BURTON, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER
ATURE
WATER
(DEG C | E B
R I
C) (FT | UR-
ID-
TY
U)
076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) |
BARO-
METRIC
PRES-
SURE
(MM
OF
HG)
(00025) | OXYGEN,
DIS-
SOLVED
(PER-
CENT
SATUR-
ATION)
(00301) | COLI-
FORM,
FECAL,
0.7
UM-MF
(COLS./
100 ML)
(31625) | |----------------|---|--|--|--|---|--|--|---|--|---|--| | OCT 1987
21 | 1330 | 115 | 640 | 8.50 | 6. | . 5 | 4.0 | 12.5 | 757 | 103 | | | DEC
09 | 0900 | 160 | 660 | 8.40 | 5. | .0 1 | 3 | 11.4 | 740 | 92 | 2100 | | MAR 1988
11 | 0930 | 218 | 715 | 8.40 | 4. | .0 1 | 8 | 12.0 | 739 | 95 | | | APR
20 | 1000 | 156 | 630 | 8.30 | 9. | . 0 | 2.7 | 10.6 | 737 | 95 | 47 | | JUN
20 | 1000 | 111 | 615 | 8.20 | 22. | | | 7.6 | 749 | 89 | 510 | | SEP
02 | 1000 | 84 | 610 | 8.30 | 19. | | | 7.8 | 750 | 87 | 550 | | 02 | 1000 | 04 | 610 | 6.30 | 19. | .5 2 | 1 | 7.0 | 730 | 07 | 330 | | DATE | STREP-
TOCOCCI
FECAL,
KF AGAR
(COLS.
PER
100 ML)
(31673) | HARD-
NESS
TOTAL
(MG/L
AS
CACO3)
(00900) | HARD-
NESS
NONCARB
WH WAT
TOT FLD
MG/L AS
CACO3
(00902) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE
SIUM
DIS-
SOLVE
(MG/I
AS MG | M, SOD
- DI
ED SOL
- (M
G) AS | | SODIUM
PERCENT
(00932) | SODIUM
AD-
SORP-
TION
RATIO
(00931) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | BICAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
HCO3
(00453) | | OCT 1987 | 26 | 350 | 99 | 80 | 37 | | 7.6 | 4 | 0.2 | 2.9 | 346 | | DEC 09 | 7800 | 350 | 50 | 83 | 35 | | 8.1 | 5 | 0.2 | 2.8 | 366 | | MAR 1988
11 | 350 | 340 | 47 | 79 | 34 | | 7.6 | 5 | 0.2 | 2.8 | 371 | | APR
20 | 220 | 330 | 42 | 71 | 36 | | 7.3 | 5 | 0.2 | 1.7 | 335 | | JUN
20 | 260 | 320 | 38 | 70 | 36 | | 7.4 | 5 | 0.2 | 1.8 | 344 | | SEP
02 | 1100 | 340 | 53 | 73 | 38 | | 7.8 | 5 | 0.2 | 2.2 | 344 | | DATE | CAR-
BONATE
WATER
DIS IT
FIELD
MG/L AS
CO3
(00452) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
MG/L AS
CACO3
(39086) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVI
(MG/I
AS F) | , DI
- SO
ED (M
L A
) SI | ICA,
S-
DLVED
IG/L
S
O2) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(MG/L)
(70300) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
(70303) | SOLIDS,
DIS-
SOLVED
(TONS
PER
DAY)
(70302) | | OCT 1987 | 14 | 308 | 24 | 16 | 0.1 | 10 | 9.2 | 360 | 344 | 0.49 | 112 | | DEC
09 | 8 | 301 | 25 | 18 | 0.3 | 30 1 | .3 | 377 | 385 | 0.51 | 163 | | MAR 1988
11 | 11 | 323 | 24 | 16 | 0.2 | 20 1 | .2 | 365 | 370 | 0.50 | 215 | | APR
20 | | 274 | 28 | 15 | 0.2 | 20 | 4.7 | 343 | 334 | 0.47 | 144 | | JUN
20 | | 282 | 24 | 15 | 0.2 | 20 | 9.5 | 355 | 345 | 0.48 | 106 | | SEP
02 | 6 | 292 | 26 | 15 | 0.3 | 10 1 | .1 | 355 | 357 | 0.48 | 80.5 | | DAT | GE
NO2+
DI
SOI | -NO3 GE
S- AMMC
VED TOT
I/L (MC
N) AS | TRO- GE
EN, AMMO
DNIA DI | NIA MONI
S- ORGA
VED TOI
//L (MC
N) AS | AM- IA + I ANIC PI FAL T G/L (N) | PHOS-
HOROUS
FOTAL
(MG/L
AS P)
00665) | PHOS
PHORO
DIS
SOLV
(MG,
AS I | S- PHODOUS OR' S- DIS VED SOL' /L (MG, P) AS I | S- MEI
VED SU:
/L PEI | SI
DI- SII
NT, DI
S- % FI
NDED TI
G/L) .063 | ED.
USP.
EVE
IAM.
INER
HAN
2 MM
331) | | OCT 198 | | 20 0. | 020 0. | 030 <0 | 0.20 | 0.090 | 0.0 | 070 0 | . 070 | 29 | 67 | | DEC
09 | | 10 0. | 130 0. | 170 | 0.80 | 0.250 | 0.3 | 130 0 | .110 | 72 | 77 | | MAR 198
11 | | 40 0. | 080 0. | 090 | 0.70 | 0.140 | 0.3 | 120 0 | .090 | 97 | 86 | | APR
20 | | | | | | | | | | 24 | 88 | | JUN
 | 2. | 30 0. | 040 0. | 020 | 0.80 | 0.150 | 0.3 | 110 0 | . 100 | 110 | 98 | | SEP
02 | 2. | 70 0. | 030 0. | 040 | 0.60 | 0.250 | 0.3 | 140 0 | . 130 | 88 | 91 | ## 05413500 GRANT RIVER AT BURTON, WI--CONTINUED | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | ARSENIC
DIS-
SOLVED
(UG/L
AS AS)
(01000) | BARIUM,
DIS-
SOLVED
(UG/L
AS BA)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(UG/L
AS BE)
(01010) | CADMIUM
DIS-
SOLVED
(UG/L
AS CD)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(UG/L
AS CR)
(01030) | COBALT,
DIS-
SOLVED
(UG/L
AS CO)
(01035) | COPPER,
DIS-
SOLVED
(UG/L
AS CU)
(01040) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | |----------------------------|------|---|--|---|---|---|---|--|---|---|---| | OCT 1987
21
MAR 1988 | 1330 | 115 | <10 | <1 | 66 | <0.5 | <1 | <1 | <3 | <1 | 7 | | 11 | 0930 | 218 | <10 | <1 | 62 | <0.5 | <1 | <1 | <3 | 1 | 3 | | APR
20 | 1000 | 156 | <10 | <1 | 58 | <0.5 | <1 | <1 | <3 | <1 | 10 | | SEP
02 | 1000 | 84 | <10 | 1 | 68 | <0.5 | 3 | <1 | <3 | 1 | 4 | | | | | HIUM NE | | CURY DE | LYB-
NUM, NIC | KEL, NI | UM, T | IUM, DI | | NC, | | | | | MANGA- | | MOLYB- | | SELE- | STRON- | VANA- | | |----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------| | | LEAD, | LITHIUM | NESE, | MERCURY | DENUM, | NICKEL, | NIUM, | TIUM, | DIUM, | ZINC, | | | DIS- | | SOLVED | DATE | (UG/L | | AS PB) | AS LI) | AS MN) | AS HG) | AS MO) | AS NI) | AS SE) | AS SR) | AS V) | AS ZN) | | | (01049) | (01130) | (01056) | (71890) | (01060) | (01065) | (01145) | (01080) | (01085) | (01090) | | OCT 1987 | | | | | | | | | | | | 21 | 18 | 6 | 45 | <0.1 | <10 | <1 | <1 | 78 | <6 | 7 | | MAR 1988 | | | | | | | | | | | | 11 | <5 | 9 | 43 | <0.1 | <10 | 2 | <1 | 79 | <6 | <3 | | APR | | | | | | | | | | | | 20 | 6 | 8 | 83 | <0.1 | <10 | 2 | <1 | 74 | <6 | 5 | | SEP | | | | | | | | | | | | 02 | <5 | 5 | 18 | <0.1 | <10 | <1 | <1 | 78 | <6 | 6 | | | | | | | | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------|------|---|--|---| | OCT 1987 | | | | | | 06 | 1415 | 120 | 650 | 11.5 | | 21 | 1330 | 115 | 640 | 6.5 | | NOV | | | | | | 16 | 1155 | 123 | 620 | 9.0 | | DEC | | | | | | 09 | 0900 | 160 | 660 | 5.0 | | JAN 1988 | 1101 | 100 | 705 | 0.0 | | 04
FEB | 1424 | 132 | 725 | 0.0 | | 15 | 1140 | 157 | 670 | 0.0 | | MAR | 1140 | 137 | 070 | 0.0 | | 11 | 0930 | 218 | 715 | 4.0 | | 31 | 1315 | 198 | 625 | 9.0 | | APR | | | | | | 20 | 1000 | 156 | 630 | 9.0 | | MAY | | | | | | 10 | 1530 | 177 | 590 | 17.0 | | JUN | | | | | | 20 | 1000 | 111 | 615 | 22.0 | | 22 | 1350 | 102 | 590 | 28.5 | | AUG
05 | 1405 | 269 | 584 | 25.5 | | SEP | 1403 | 209 | 364 | 23.3 | | 02 | 1000 | 84 | 610 | 19.5 | | 12 | 1245 | 85 | 600 | 20.0 | | | | | | | SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 05413500 GRANT RIVER AT BURTON, WI--CONTINUED | DAY | MEAN
CONCEN-
TRATION
(MG/L) | LOAD
(TONS/
DAY) | |----------------------------------|--------------------------------------|----------------------------------|--|----------------------------------|--------------------------------------|----------------------------------|--|-------------------------------------|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------| | | ОСТОВ | ER | NOVEMB | ER | DECEMBE | R | JANUARY | • | FEBRUAR | ĽΥ | MARCH | | | 1
2
3
4
5 | 88
83
78
74
68 | 30
28
25
24
22 | 83
88
82
74
68 | 30
30
27
24
21 | 55
57
59
61
63 | 25
24
25
24
25 | 60
50
40
40
40 | 24
20
15
15 | 900
500
350
200
100 | 1260
486
284
135
57 | 900
600
400
200
100 | 1260
680
356
135
54 | | 6
7
8
9
10 | 41
44
60
101
149 | 13
14
19
32
46 | 62
56
52
47
43 | 19
17
17
15
13 | 65
68
70
72
72 | 25
26
27
33
32 | 40
40
41
41
41 | 14
13
13
12
12 | 80
60
52
52
53 | 41
29
25
24
24 | 100
100
100
100
100 |
57
70
77
77
63 | | 11
12
13
14
15 | 133
115
99
85
73 | 41
36
31
27
23 | 39
36
33
30
27 | 12
11
10
9.2
8.4 | 72
72
71
71
71 | 31
31
29
28
28 | 42
42
42
43
43 | 12
13
13
13
13 | 53
54
54
54
55 | 23
23
23
24
22 | 106
147
135
119
104 | 62
86
73
59
51 | | 16
17
18
19
20 | 63
54
46
40
34 | 20
19
15
13
11 | 24
73
64
49
48 | 7.8
46
33
20
18 | 71
71
71
100
110 | 27
27
27
40
56 | 43
44
44
60
100 | 13
13
13
21
43 | 53
51
49
47
45 | 21
21
20
19
17 | 92
81
70
61
54 | 44
38
33
29
25 | | 21
22
23
24
25 | 30
32
35
39
43 | 9.4
9.9
11
12
13 | 47
46
45
44
43 | 17
17
16
16
15 | 100
80
70
70
70 | 46
35
28
28
30 | 80
60
46
46
47 | 32
21
15
15 | 43
41
40
38
37 | 16
16
15
14
14 | 47
41
36
32
79 | 21
18
16
15
49 | | 26
27
28
29
30
31 | 47
52
57
63
69
76 | 14
16
18
19
21
23 | 42
41
52
95
59 | 15
14
23
63
28 | 70
70
70
70
70
70 | 28
27
32
34
32
30 | 47
47
48
48
250
1500 | 14
14
15
17
135
3000 | 35
350
500
900
 | 15
265
405
1210 | 105
99
93
90
88
114 | 54
47
48
57
48
59 | | TOTAI, | | 655.3 | | 612.4 | | 940 | | 3611 | | 4548 | er er er | 3761 | | | APRI | L | MAY | | JUNE | | JULY | | AUGUS | Т | SEPTEME | 3ER | | 1
2
3
4
5 | 138
126
115
105
98 | 69
63
60
53
48 | 43
39
42
47
50 | 17
16
17
19
20 | 151
154
157
145
127 | 50
51
52
47
41 | 163
159
155
151
150 | 46
44
43
42
40 | 145
150
163
174
504 | 36
37
39
42
288 | 107
73
66
61
57 | 25
17
15
16
15 | | 6
7
8
9
10 | 91
85
81
78
74 | 43
39
37
35
33 | 47
43
51
227
223 | 19
18
21
137
108 | 117
131
149
164
158 | 38
42
48
52
49 | 160
169
169
168
168 | 43
45
45
44
48 | 237
212
190
175
179 | 74
55
52
51
47 | 55
69
92
113
113 | 13
16
21
26
26 | | 11
12
13
14
15 | 71
69
67
62
47 | 31
30
29
27
20 | 177
150
161
175
190 | 76
62
65
69
75 | 150
143
137
133
130 | 46
44
42
40
39 | 168
171
175
179
184 | 50
48
48
50
50 | 184
187
179
170
163 | 47
47
44
42
40 | 112
107
88
92
99 | 25
24
20
20
22 | | 16
17
18
19
20 | 35
26
20
22
28 | 15
11
8.6
9.1 | 201
193
184
177
174 | 78
75
71
67
65 | 127
122
118
114
103 | 38
36
35
34
31 | 189
193
198
197
194 | 55
5 8
54
54
52 | 158
153
148
145
142 | 38
36
34
34
34 | 101
88
76
109
224 | 22
20
18
32
110 | | 21
22
23
24
25 | 46
45
42
39
38 | 20
19
18
17
16 | 171
169
167
170
172 | 64
63
61
61 | 82
73
85
94
104 | 24
21
24
27
30 | 190
187
183
180
177 | 51
50
49
47
46 | 139
136
128
121
114 | 33
33
40
34
28 | 182
466
424
171
128 | 56
291
411
58
36 | | 26
27
28
29
30
31 | 46
56
64
56
49 | 20
28
29
24
21 | 174
170
165
161
157
153 | 61
60
58
56
54
51 | 115
127
140
155
167 | 32
35
39
44
48 | 174
172
170
169
162
153 | 46
44
43
43
41
39 | 108
102
96
92
100
110 | 26
24
23
21
23
25 | 101
99
99
98
91 | 26
25
24
24
23 | | TOTAL | | 884.7 | | 1745 | | 1179 | 153 | 1458 | | 1427 | | 1477 | | | | | | | | | | | | | | | TOTAL LOAD FOR YEAR: 22298 TONS. ### PLATTE RIVER BASIN #### 05414000 PLATTE RIVER NEAR ROCKVILLE, WI LOCATION.--Lat 42°43'52", long 90°38'25", in SW 1/4 sec.17, T.3 N., R.2 W., Grant County, Hydrologic Unit 07060003, on right bank just downstream from bridge on County Trunk Highway B, 0.8 mi upstream from Blakely Branch, 2.2 mi east of Rockville, 4.5 mi northeast of Potosi, and 15.2 mi upstream from mouth. DRAINAGE AREA.--142 mi². PERIOD OF RECORD.--October 1934 to current year. Monthly discharge only for October and November 1934, published in WSP 1308. REVISED RECORDS.--WSP 1438: 1935-36, 1937(M), 1939(M), 1941-43, 1946(M). WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 642.50 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1941, nonrecording gage at site 1.3 mi upstream at datum 12.55 ft higher. Oct. 1, 1941, to June 29, 1949, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. AVERAGE DISCHARGE. -- 54 years, 99.9 ft³/s, 9.55 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 43,500 $\rm ft^3/s$, July 16, 1950, gage height, 17.26 ft, from rating curve extended above 7,000 $\rm ft^3/s$ on basis of slope-area measurement of peak flow; no flow Nov. 24, 1950. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,100 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Jan. 31 | | (a) *380 | (a) *5.66 | | | | | (a) Backwater from ice. Minimum daily discharge, 43 ft³/s, Sept. 2, 11, 12. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Oct. 17 to Dec. 14 and Dec. 20-26; stage-discharge relation affected by ice Dec. 15-19 and Dec. 27 to Mar. 3.) 3.5 35 4.0 104 3.7 60 4.5 213 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | PIE | PAIN ANTOR | , | | | | | | |--|----------------------------------|---|---|---|--|---|--|----------------------------------|--|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 67
65
63
64
66 | 88
74
68
65
61 | 102
97
94
89
86 | 56
74
68
66
64 | 230
170
130
120
110 | 190
170
150
131
125 | 133
129
130
126
120 | 90
88
87
86
85 | 63
65
64
64
62 | 56
57
55
54
54 | 45
44
46
62
121 | 44
43
45
45
45 | | 6
7
8
9
10 | 65
64
62
63
62 | 58
60
65
62
58 | 86
86
87
105
99 | 62
60
58
58
56 | 110
110
110
110
110 | 130
156
187
175
144 | 116
111
109
105
103 | 84
83
85
94
89 | 62
62
61
59
59 | 54
52
51
51
60 | 69
57
60
63
54 | 47
45
45
45
44 | | 11
12
13
14
15 | 61
62
63
63
63 | 58
59
59
59
58 | 99
100
94
90
90 | 56
54
54
54
54 | 100
100
100
100
100 | 135
134
120
111
110 | 102
100
100
99
96 | 82
81
81
79
79 | 59
60
60
57
55 | 59
55
53
56
56 | 56
52
49
49
47 | 43
43
44
44 | | 16
17
18
19
20 | 66
73
66
63
61 | 68
125
103
87
81 | 84
84
86
92
113 | 54
56
56
60
76 | 98
96
94
92
88 | 108
106
103
102
101 | 95
95
95
93
95 | 75
75
73
73
72 | 55
56
58
58
57 | 66
64
63
59
57 | 49
48
45
47
47 | 44
50
49
67
74 | | 21
22
23
24
25 | 61
60
61
61
60 | 75
74
75
72
71 | 98
96
92
89
92 | 70
64
62
60
58 | 86
84
82
80
80 | 98
98
99
103
141 | 95
95
100
98
93 | 72
71
71
70
69 | 57
55
54
54
58 | 58
55
55
53
54 | 45
50
71
56
48 | 58
126
118
69
59 | | 26
27
28
29
30
31 | 61
63
60
60
60
63 | 71
69
95
129
109 | 86
82
80
90
84
70 | 56
56
54
60
80
320 | 80
90
120
140
 | 119
110
120
175
151
140 | 95
110
101
94
90 | 69
70
70
68
67
65 | 56
54
53
59
58 | 54
50
50
46
46
46 | 47
46
48
46
46
45 | 56
56
56
52
52 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1952
63.0
73
60
.44 | 2256
75.2
129
58
.53
.59 | 2822
91.0
113
70
.64
.74 | 2136
68.9
320
54
.49
.56 | 3110
107
230
80
.76
.81 | 4042
130
190
98
.92
1.06 | 3123
104
133
90
.73
.82 | 2403
77.5
94
65
.55 | 1754
58.5
65
53
.41
.46 | 1699
54.8
66
46
.39
.45 |
1658
53.5
121
44
.38
.43 | 1652
55.1
126
43
.39
.43 | CAL YR 1987 TOTAL 29669 MEAN 81.3 MAX 246 MIN 42 CFSM .57 IN. 7.77 WTR YR 1988 TOTAL 28607 MEAN 78.2 MAX 320 MIN 43 CFSM .55 IN. 7.49 #### 05414213 LITTLE PLATTE RIVER NEAR PLATTEVILLE, WI LOCATION.--Lat 42°43'23", long 90°31'41", in NE 1/4 NE 1/4 sec.19, T.3 N., R.1 W., Grant County, Hydrologic Unit 07060003, on left bank 150 ft upstream from Stumptown Road, 2.6 mi southwest of Post Office in Platteville. DRAINAGE AREA. -- 79.7 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 11, 1987 to current year. GAGE. -- Water-stage recorder. Elevation of gage is 760 ft, from topographic map. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. EXTREMES FOR CURRENT PERIOD.--June 11 to September 1987: Maximum discahrge, 175 ft³/s, July 31, gage height, 8.10 ft; maximum gage height, 8.10 ft, July 31 and Aug. 8; minimum, 24 ft³/s, July 8, gage height, 7.07 ft. Water year 1988: Maximum discharge, 472 $\rm ft^3/s$, Sept. 22, gage height, 8.90 ft; maximum gage height, 9.08 ft, Jan. 31 (backwater from ice); minimum daily, 17 $\rm ft^3/s$, July 31 to Aug. 3, Aug. 11, 13, 15-21, and Sept. 2, 3, 6, 9-11, 13-15. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-----|-----|-----|-----|-----|----------|----------|------|------|------| | 1 | | | | | | | | | | 31 | 40 | 29 | | 2 | | | | | | | | | | 30 | 35 | 29 | | 3 | | | | | | | | | | 33 | 33 | 28 | | ŭ | | | | | | | | | | 30 | 32 | 28 | | 5 | | | | | | | | | | 30 | 31 | 28 | | • | | | | | | | | | | 50 | 31 | 20 | | 6 | | | | | | | | | | 30 | 32 | 28 | | 7 | | | | | | | | | | 30 | 32 | 28 | | 8 | | | | | | | | | | 25 | 121 | 41 | | 9 | | | | | | | | | | 33 | 60 | 30 | | 1Ó | | | | | | | | | | 29 | 40 | 29 | | 10 | | | | | | | | | | 23 | 40 | 2,7 | | 11 | | | | | | | | | 38 | 29 | 37 | 30 | | 12 | | | | | | | | | 38 | 28 | 35 | 30 | | 13 | | | | | | | | - | 35 | 27 | 34 | 32 | | 14 | | | | | | | | | 35 | 27 | 33 | 32 | | 15 | | | | | | | | | 35
34 | 35 | 29 | 33 | | 13 | | | | | | | | | 34 | 33 | 29 | 33 | | 16 | | | | | | | | | 35 | 31 | 30 | 33 | | 17 | | | | | | | | | 35
35 | 33 | 32 | 34 | | 18 | | | | | | | | | 35
35 | 33 | 32 | 34 | | | | | | | | | | | | | 32 | 31 | | 19 | | | | | | | | | 38 | 33 | 33 | 31 | | 20 | | | | | | | | | 40 | 33 | 33 | 31 | | 0.1 | | | | | | | | | 20 | 2.2 | 35 | 21 | | 21 | | | | | | | | | 38 | 33 | | 31 | | 22 | | | | | | | | | 37 | 30 | 31 | 30 | | 23 | | | | | | | | | 35 | 28 | 28 | 30 | | 24 | | | | | | | | | 34 | 28 | 27 | 29 | | 25 | | | | | | | | | 37 | 29 | 29 | 29 | | 2.5 | | | | | | | | | | 0.1 | | 0.0 | | 26 | | | | | | | | | 35 | 31 | 51 | 29 | | 27 | | | | | | | | | 32 | 38 | 42 | 29 | | 28 | | | | | | | | | 32 | 36 | 34 | 29 | | 29 | | | | | | | | | 33 | 32 | 34 | 29 | | 30 | | | | | | | | | 32 | 49 | 31 | 28 | | 31 | | | | | | | | | | 112 | 30 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | 1056 | 1156 | 911 | | MEAN | | | | | | | | | | 34.1 | 37.3 | 30.4 | | MAX | | | | | | | | | | 112 | 121 | 41 | | MIN | | | | | | | | | | 25 | 27 | 28 | | CFSM | | | | | | | | | | .43 | . 47 | . 38 | | IN. | | | | | | | | | | . 49 | . 54 | . 43 | | | | | | | | | | | | | | | ## PLATTE RIVER BASIN ## 05414213 LITTLE PLATTE RIVER NEAR PLATTEVILLE, WI--CONTINUED RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used June 24 to Aug. 16, 1988 and Sept. 14-18, 27-30, 1988; stage-discharge relation affected by ice Dec. 17-19, 1987, and Dec. 27, 1987 to Feb. 25, 1988.) 6.9 15 7.7 79 7.1 24 8.0 146 7.4 45 8.5 294 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | M | LAN VALUE: | 5 | | | | | | |--|---------------------------------------|---------------------------------------|----------------------------------|-----------------------------------|----------------------------------|--|--|----------------------------------|---------------------------------------|--------------------------------|---------------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 28
28
27
28
28 | 35
30
28
27
26 | 39
36
37
35
34 | 36
36
36
36
35 | 130
90
74
68
64 | 156
121
81
71
68 | 64
65
69
63
61 | 39
38
37
37
37 | 29
29
28
28
28 | 26
26
26
25
25 | 17
17
17
18
23 | 18
17
17
18
18 | | 6
7
8
9
10 | 28
27
27
27
26 | 26
27
28
27
26 | 34
34
36
50
42 | 34
34
34
33
33 | 62
62
60
60
58 | 72
82
94
85
75 | 61
57
56
54
50 | 36
35
42
50
41 | 28
28
28
27
27 | 25
25
24
24
28 | 18
18
19
19 | 17
18
18
17
17 | | 11
12
13
14
15 | 26
27
27
27
27 | 26
27
27
27
27 | 41
39
37
36
43 | 33
33
32
32
32 | 58
58
56
56
56 | 71
71
63
59
60 | 50
48
47
47
43 | 37
36
35
33
34 | 27
28
27
27
28 | 25
23
22
23
22 | 17
18
17
18
17 | 17
18
17
17
17 | | 16
17
18
19
20 | 29
30
28
27
27 | 33
63
39
34
32 | 34
33
32
38
52 | 32
32
32
34
44 | 54
54
54
54
54 | 58
56
55
54
54 | 43
44
42
40
44 | 32
33
34
34
33 | 28
28
29
29
30 | 75
28
21
20
19 | 17
17
17
17
17 | 19
19
19
40
31 | | 21
22
23
24
25 | 27
27
27
27
26 | 30
31
31
30
31 | 45
42
40
41
43 | 40
35
33
32
31 | 54
54
46
42
48 | 53
48
44
51
71 | 42
43
50
43
42 | 33
32
31
30
30 | 29
30
28
28
29 | 19
19
19
19
20 | 17
20
30
20
19 | 22
124
40
24
21 | | 26
27
28
29
30
31 | 27
28
26
27
26
27 | 30
30
52
53
42 | 39
39
38
38
37
37 | 31
30
30
30
45
170 | 58
88
129
193 | 55
50
63
91
74
68 | 44
53
46
41
40 | 30
30
30
29
30
30 | 27
27
27
34
27 | 19
18
18
18
18 | 18
18
18
18
18 | 20
20
19
19
19 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 844
27.2
30
26
.34
.39 | 975
32.5
63
26
.41
.46 | 1201
38.7
52
32
.49 | 1190
38.4
170
30
.48 | 1994
68.8
193
42
.86 | 2174
70.1
156
44
.88
1.01 | 1492
49.7
69
40
.62
.70 | 1068
34.5
50
29
.43 | 847
28.2
34
27
.35
.40 | 736
23.7
75
17
.30 | 570
18.4
30
17
.23
.27 | 717
23.9
124
17
.30 | WTR YR 1988 TOTAL 13808 MEAN 37.7 MAX 193 MIN 17 CFSM .47 IN. 6.44 ### 05414213 LITTLE PLATTE RIVER NEAR PLATTEVILLE, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1987 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1987 to current year. DISSOLVED OXYGEN: July 1987 to current year. INSTRUMENTATION .-- Continuous water temperature and dissolved oxygen recorder since July 1987. REMARKS.--Water-quality analysis by the State Lab of Hygiene. EXTREMES FOR PERIOD OF RECORD . -- WATER TEMPERATURE: Maximum observed, 32.0°C July 15, 1988; minimum observed, 0.0°C on many days during the 1988 water year. DISSOLVED OXYGEN: Maximum observed, 18.8 mg/L May 5, 1988; minimum observed, 3.1 mg/L July 8-9, 1988. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum observed, 32.0° C July 15; minimum observed, 0.0° C on many days. DISSOLVED OXYGEN: Maximum observed, 18.8 mg/L May 5; minimum observed, 3.1 mg/L July 8-9. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PH
(STAND-
ARD
UNITS)
(00400) | PH
LAB
(STAND-
ARD
UNITS)
(00403) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(FTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |---|--------------|---|---|--|---|---|--|--|--|--|--| | NOV 1987 | | | | | | | | | | | | | 17
18 | 0300
0920 | 65
38 | | 8.10
8.10 | | 61
36 | | 424
98 | | 0.150
1.40 | | | JAN 1988 | | | | | | | | | | | | | 31 | 0515 | 341 | | 7.60 | | 110 | | 560
636 | | 1.90
1.70 | | | 31
31 | 1130
2000 | 435
590 | | 7.80
7.80 | | 100
80 | | 316 | | 1.10 | | | FEB | | | | | | | | | | | | | $\begin{array}{c} 01\ldots \\ 22\ldots
\end{array}$ | 0445
1015 | 353
59 | | 7.90
8.20 | | 41
8.2 | | 130
38 | 7.60 | 0.840
0.150 | | | 27 | 1430 | 86 | 8.10 | 8.10 | | 27 | | 77 | | | | | 27 | 1431 | 86 | 8.10 | | | | | | | 1.40 | | | 27
27 | 1440
1441 | 85
85 | 8.10
8.10 | 8.10
8.10 | | 28
27 | | 87
86 | | | | | 27 | 1441 | 84 | 8.10 | 0.10 | | | | | | 1.40 | | | 27 | 1446 | 84 | 8.10 | | | | | | | 1.30 | | | 28 | 1700 | 141 | | 7.90 | | 32 | | 158 | | 1.30 | | | 28 | 1800 | 208 | | 7.80 | | 37 | | 740 | | 1.50 | | | 29
MAR | 1800 | 217 | | 7.80 | | 78 | | 652 | | 1.40 | | | 01 | 1300 | 104 | 8.20 | 8.00 | | 72 | | 296 | | | | | 01 | 1301 | 104 | 8.00 | 7.90 | | 76 | 8.2 | 288 | | | | | 01 | 1302 | 104 | 8.10 | | | | | | | 1.10 | | | 01 | 1303 | 104 | 8.10 | | | | | | | 1.10 | | | 01 | 1304 | 103 | 7.90 | | | | | | | 1.10 | | | APR
06 | 1345 | 63 | 8.60 | 8.50 | 14.0 | 6.8 | 12.0 | 29 | 5.90 | 0.050 | 3.02 | | MAY | 1343 | 03 | 8.00 | 8.30 | 14.0 | 0.6 | 12.0 | 29 | 3.90 | 0.030 | 3.02 | | 26 | 1535 | 30 | 8.50 | 8.70 | 19.0 | 3.0 | 13.2 | 11 | 5.10 | 0.030 | 0.300 | | JUN
29 | 0245 | 73 | | 8.20 | 21.0 | 20 | 6.3 | 136 | | <0.020 | | | JUL | 0243 | , 3 | | 0.20 | 21.0 | 20 | 0.5 | 150 | | 10.020 | | | 16 | 0700 | 262 | | 8.10 | | 31 | | 288 | | <0.100 | | | 16 | 0715 | 265 | | 8.00 | | 70 | | 1230 | | 0.400 | | | 16 | 0930 | 113 | | 7.70 | | 70 | | 2400 | | 0.600
1.60 | | | 16
AUG | 2315 | 51 | | 7.70 | | 57 | | 768 | | 1.60 | | | 23 | 0145 | 40 | | 8.20 | | 37 | | 212 | | 0.050 | | | SEP | | | | | | | | | | | | | 19 | 0530 | 55 | | 8.20 | | 30 | | 296 | | <0.020 | | | 19 | 1415 | 90 | | 8.20 | | 24 | | 244 | | 0.040
0.280 | | | 22
22 | 0800
0845 | 57
33 2 | | 7.80
7.70 | | 260
350 | | 3150
2070 | | 0.280 | | | 22 | 0945 | 472 | | 7.70 | | 210 | | 1160 | | 0.390 | | | 22 | 1130 | 258 | | 7.60 | | 260 | | 930 | | 0.670 | | | 22 | 1606 | 135 | | 7.50 | | 170 | | 570 | | 1.10 | | | 22 | 1607 | 135 | | 7.60 | | 160 | | 520 | | 1.20 | | | 22
22 | 1610
2330 | 134
71 | | 7.60
7.70 | | 160
150 | | 450
490 | | 1.30
0.800 | | | 22 | 2330 | / 1 | | 7.70 | | 130 | | 490 | | 0.000 | | PLATTE RIVER BASIN 05414213 LITTLE PLATTE RIVER NEAR PLATTEVILLE, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN
OCTOBER | MEAN | MAX | MIN
NOVEMBER | MEAN | MAX | MIN
DECEMBER | MEAN
R | MAX | MIN
JANUARY | MEAN | |----------------------------------|--|--|--|--|--|--|--------------------------------------|----------------------------------|--------------------------------------|--|--|--| | 1
2
3
4
5 | 14.0
12.0
13.5
14.5 | 8.5
6.0
6.5
10.5 | 11.0
9.0
10.0
12.0 | 10.0
13.0
15.0
14.5
9.5 | 8.5
10.0
11.0
9.5
5.0 | 9.5
11.5
13.0
12.5
7.5 | 4.5
3.0
3.5
2.0
2.0 | 3.0
2.5
1.0
.0 | 4.0
2.5
2.5
1.0
1.0 | .0 | . 0
. 0
. 0
. 0 | .0.0.0 | | 6
7
8
9
10 | 12.0
10.5
10.0
10.0
8.5 | 9.0
7.0
4.5
6.5
6.0 | 10.5
9.0
7.5
8.0
7.5 | 6.5
6.5
8.5
6.5
4.5 | 3.5
4.0
6.5
3.5 | 5.5
5.0
7.5
5.5
3.0 | 2.5
3.5
6.0
6.5
5.5 | .5
2.0
3.5
5.5
4.0 | 1.5
3.0
4.5
6.0
4.5 | .0
.0
.0 | .0
.0
.0 | .0
.0
.0 | | 11
12
13
14
15 | 8.5
10.0
11.5
10.5
13.0 | 3.0
3.0
4.5
8.5
9.5 | 6.0
6.5
8.0
9.5
11.0 | 5.0
6.0
6.5
7.5
9.5 | 1.0
1.5
3.5
3.0
5.5 | 3.0
4.0
5.0
5.5
7.5 | 6.5
4.5
2.5
2.0 | 4.0
2.0
1.5
1.0 | 5.0
3.0
2.0
1.5 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | | 16
17
18
19
20 | 12.0
11.0
11.5
11.0
9.0 | 11.0
8.5
6.5
7.5
5.5 | 11.5
10.0
9.0
9.5
6.5 | 10.5
10.5
7.5
6.5
4.0 | 9.0
7.5
5.0
4.0
1.0 | 10.0
9.5
6.5
5.0
2.5 | 1.0
.0
.0
1.0 | .0
.0
.0
.0 | .0
.0
.5
.5 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | | 21
22
23
24
25 | 8.0
9.0
7.5
8.0
7.5 | 3.5
5.0
5.5
5.5
2.5 | 5.5
7.0
6.5
6.5
5.0 | 2.5
4.5
5.5
5.0
5.0 | .5
.5
4.5
4.5
3.5 | 1.0
2.5
5.0
4.5
4.0 | 1.0
2.0
2.0
3.0
3.0 | .0
.5
.5
1.0 | .5
1.0
1.0
2.0
2.5 | .0
.0
.0 | . 0
. 0 | .0
.0
.0 | | 26
27
28
29
30
31 | 6.5
7.5
7.0
8.0
9.5
9.0 | 3.5
3.5
2.5
4.5
4.0
5.5 | 5.0
5.5
5.0
6.5
6.5
7.5 | 5.0
4.5
6.0
6.5
6.0 | 4.0
4.0
4.5
5.5
4.5 | 4.5
4.5
5.0
6.0
5.5 | 1.0
.0
.0
.0
.0 | .0
.0
.0
.0 | .5
.0
.0
.0 | .0
.0
.0
.0 | . 0
. 0
. 0
. 0 | .0
.0
.0
.0 | | MONTH | | | | 15.0 | .5 | 6.0 | 6.5 | . 0 | 1.6 | .5 | . 0 | .0 | | | | FERRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | 2.5
2.5
4.0
5.0
6.0 | .0
.0
1.0
.0 | 1.0
1.0
2.0
2.5
3.0 | 11.0
10.0
10.5
16.0
17.5 | 7.0
8.0
8.5
9.0
11.5 | 9.0
9.0
9.5
12.0
14.0 | 19.5
19.5
19.5
18.5
20.0 | 10.5
11.5
11.5
11.0
11.5 | 14.5
15.5
15.0
14.5
15.5 | | 6
7
8
9
10 | .0 | .0.0.0 | .0
.0
.0 | 7.5
7.5
9.5
7.0
8.5 | 2.0
3.5
6.0
4.5
3.0 | 4.5
5.5
7.5
6.0
5.5 | 14.5
15.0
16.0
17.0
12.5 | 9.5
7.5
9.5
10.5
8.5 | 12.0
11.0
12.5
13.5
10.0 | 21.0
18.5
18.5
14.0
19.5 | 11.5
13.0
14.0
12.0
10.5 | 16.0
16.0
16.0
13.0
15.0 | | 11
12
13
14
15 | .0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0 | 9.0
7.5
4.5
2.5
2.5 | 4.5
4.5
1.0
.0 | 6.5
6.5
2.5
1.0 | 14.0
15.5
15.0
13.5
13.0 | 6.5
7.5
8.5
7.5
6.0 | 10.0
11.0
11.5
10.0
9.5 | 21.5
23.5
22.0
21.5
24.0 | 13.0
15.0
15.5
13.5
17.0 | 17.0
19.0
19.0
17.5
20.0 | | 16
17
18
19
20 | .5
.5
.5
.5 | .0
.0
.0
.0 | .0
.0
.0
.0 | 6.0
6.0
8.0
7.5
7.0 | 1.0
3.0
2.0
2.0
2.5 | 3.5
4.5
4.5
4.5
4.5 | 14.5
15.5
13.5
13.5
12.0 | 6.0
8.0
6.5
5.0
6.5 | 10.0
11.5
10.0
8.5
9.0 | 18.5
21.0
22.5
23.5
24.5 | 14.5
12.0
13.0
14.5
15.0 | 16.0
16.5
18.0
19.0
19.5 | | 21
22
23
24
25 | .0
.5
.5
.5 | .0
.0
.0
.0 | .0
.0
.0 | 8.0
11.0
12.5
10.5
13.0 | 2.0
3.5
7.5
7.5
8.0 | 5.0
7.0
10.0
8.5
10.0 | 8.5
7.0
7.5
13.5
17.5 | 5.5
6.0
6.0
4.5
8.0 | 7.0
6.5
6.5
9.0
12.5 | 25.0
24.0
23.0
22.5
22.0 | 16.0
17.5
17.0
15.5
13.0 | 20.5
20.5
20.0
18.5
17.5 | | 26
27
28
29
30
31 | 1.0
2.0
2.0
2.5 | .0
.0
.0
.0 | .5
1.0
1.0
1.0 | 9.5
9.5
8.5
8.5
10.0
11.5 | 4.0
2.5
7.0
6.0
4.0
5.5 | 7.0
6.0
7.5
7.0
7.0
8.5 | 13.5
8.0
14.0
17.5
18.5 | 8.0
6.0
4.5
7.5
9.5 | 11.0
6.5
9.0
12.5
14.0 | 22.5
23.5
25.5
25.5
26.5
27.0 | 13.0
16.5
17.5
17.5
18.5
18.5 | 18.0
20.0
21.5
21.5
22.5
23.0 | | MONTH | 2.5 | .0 | .1 | 13.0 | .0 | 5.2 | 18.5 | 4.5 | 10.3 | 27.0 | 10.5 | 17.9 | 229 05414213 LITTLE PLATTE RIVER NEAR PLATTEVILLE, WI--CONTINUED | | | WATER TEM | PERATURE, | DEGREES | CENTIGRAL | DE, WATER | YEAR OCTO | OBER 1987 | TO SEPTE | MBER 1988 | | | |---|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | | | 1
2
3
4
5 | 27.5
26.5
25.0
25.0
25.5 | 19.0
20.0
18.0
16.5
17.0 | 23.0
23.0
21.5
20.5
21.5 | 24.0
26.0
26.5
27.0
28.0 | 16.5
18.0
18.5
19.0
20.0 | 20.5
22.0
22.5
23.0
24.5 | 30.0
30.5
30.5
30.5
28.5 | 23.0
24.0
24.0
24.0
23.5 | 26.5
27.0
27.0
26.5
25.5 | 23.0
24.5
22.5
20.0
17.5 | 17.0
18.0
18.5
17.0
13.5 | 20.0
21.0
21.0
18.5
16.0 | | 6
7
8
9
10 | 26.5
27.0
26.0
23.0
23.5 | 18.0
18.0
20.0
16.0
15.0 | 22.0
22.5
22.5
19.5
19.5 | 29.0
29.5
29.0
27.5
26.0 | 21.5
22.0
22.5
21.5
22.0 | 25.5
26.0
26.0
25.0
24.0 | 28.0
28.0
29.0
28.5
27.5 | 20.0
20.0
23.0
23.5
20.5 | 24.0
24.0
25.5
25.5
24.5 | 19.0
19.0
20.5
20.5
20.5 | 11.5
12.0
14.5
14.0
13.5 | 15.5
16.0
17.5
17.5 | | 11
12
13
14
15 | 24.5
25.5
26.5
27.0
27.5 |
15.5
17.0
18.5
20.0
21.5 | 20.0
21.5
22.5
23.5
24.5 | 25.0
27.0
29.0
30.5
32.0 | 20.0
19.0
21.0
24.0
24.0 | 23.0
23.0
25.0
27.0
28.0 | 30.0
29.5
27.5
30.5
31.5 | 22.5
23.5
23.5
24.0
24.5 | 26.0
26.5
25.5
27.0
28.0 | 22.5
24.0
21.5
20.5
19.0 | 15.5
18.0
17.5
14.0
15.5 | 19.0
21.0
19.5
18.0
17.5 | | 16
17
18
19
20 | 26.0
22.5
26.0
23.5
30.0 | 19.0
18.5
19.0
20.5
20.5 | 22.5
20.5
22.0
22.0
25.0 | 28.5
30.5
28.0
28.5
25.0 | 23.5
23.5
24.5
21.5
22.0 | 26.0
27.0
26.5
25.0
23.5 | 31.5
31.5
27.5
25.5
26.0 | 24.5
25.0
24.5
22.0
19.0 | 28.5
28.5
26.0
23.5
22.5 | 18.5
23.5
23.0
21.5
17.0 | 16.0
16.5
19.5
17.0
14.0 | 17.0
20.0
21.0
20.0
15.5 | | 21
22
23
24
25 | 29.5
30.5
27.5
27.0
30.0 | 23.0
24.0
22.0
21.0
23.0 | 26.5
27.0
25.0
24.0
26.0 | 25.0
27.5
28.0
27.0
27.5 | 20.0
18.5
19.5
20.5
21.0 | 22.5
23.0
23.5
24.0
24.0 | 25.0
22.5
25.0
24.5
23.5 | 19.5
20.0
19.5
18.5
17.5 | 22.5
20.5
22.0
21.5
20.5 | 17.5
19.0
19.0
18.5
19.0 | 12.0
16.0
15.5
12.5 | 15.0
17.5
17.5
15.5
16.0 | | 26
27
28
29
30
31 | 27.0
26.5
26.5
22.5
24.0 | 21.0
18.5
19.5
19.0
15.5 | 24.0
23.0
23.0
20.0
19.5 | 27.0
28.0
28.0
27.5
29.0
28.5 | 19.5
19.5
20.0
20.5
22.0
20.5 | 23.0
23.5
24.0
24.5
25.5
24.5 | 23.0
21.0
21.0
21.5
22.5
23.0 | 16.0
18.0
14.5
15.0
16.5
16.0 | 20.0
19.5
18.0
18.5
19.5
20.0 | 19.5
20.0
17.0
19.5
20.0 | 14.0
15.0
14.5
14.0
15.0 | 17.0
17.5
15.5
16.5
17.5 | | MONTH | 30.5 | 15.0 | 22.6 | 32.0 | 16.5 | 24.4 | 31.5 | 14.5 | 23.9 | 24.5 | 11.5 | 17.8 | | | | | | | | | | | | | | | | | | OX | YGEN DISS | OLVED (M | G/I) WATE | TR VEAR O | CTOBER 198 | 37 TO SEPT | EMBER 19 | 88 | | | | DAY | MAX | | | | | | | 37 TO SEPT | | | MIN | MEAN | | DAY | MAX | OX
MIN
OCTOBER | YGEN DISS
MEAN | OLVED (M | G/L), WATE
MIN
NOVEMBER | MEAN | CTOBER 198 | 37 TO SEPT
MIN
DECEMBER | MEAN | 88
MAX | MIN
JANUARY | MEAN | | 1 | MAX | MIN | MEAN | MAX | MIN
NOVEMBER | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | | | | | MIN
OCTOBER | MEAN | MAX | MIN
NOVEMBER | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | | | 1
2 | | MIN
OCTOBER
 | MEAN | MAX | MIN
NOVEMBER | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4 | | MIN OCTOBER | MEAN | MAX | MIN NOVEMBER | MEAN | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5 | | MIN
OCTOBER

 | MEAN | MAX | MIN NOVEMBER | MEAN | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 | MIN NOVEMBER 9.8 10.0 | MEAN 8 10.8 11.6 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY |

 | | 1
2
3
4
5
6
7
8
9 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 | MIN NOVEMBER 9.8 10.0 | MEAN 8 10.8 11.6 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 10.8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | ====================================== | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | MIN OCTOBER | MEAN | MAX | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | MIN OCTOBER | MEAN | MAX | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | MIN OCTOBER | MEAN | MAX | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1 2 3 4 5 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 26 27 28 29 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN 8 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | MIN OCTOBER | MEAN | MAX 12.8 13.9 14.3 | MIN NOVEMBER 9.8 10.0 11.2 | MEAN R 10.8 11.6 12.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | ## PLATTE RIVER BASIN ## 05414213 LITTLE PLATTE RIVER NEAR PLATTEVILLE, WI--CONTINUED OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |--|---|---|---|--|--|---|--|--|--|-------------------------|------------|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | | | | | | | 18.4 | 8.1 | 12.2 | | 3 | | | | | | | | | | $\substack{18.2\\18.4}$ | 7.9
7.9 | 11.9
11.9 | | 4
5 | | | | | | | | | | 18.3
18.8 | 8.1
7.5 | $\begin{smallmatrix}12.0\\12.0\end{smallmatrix}$ | | 6 | | | | | | | | | | 18.4 | 7.0 | 11.6 | | 7
8 | | | | | | | 11.6
11.4 | 7.9
7.8 | 9.3
9.2 | 16.6
14.6 | 7.1
7.1 | 10.6
9.3 | | 9 | | | | | | | 11.4 | 7.8 | 9.0 | 10.4 | 7.4 | 8.8 | | 10 | | | | | | | 11.3 | 8.1 | 9.7 | 13.0 | 7.3 | 9.7 | | 11
12 | | | | | | | 12.2
12.7 | 8.7
8.5 | $\begin{smallmatrix}10.1\\10.2\end{smallmatrix}$ | 12.0
10.9 | 6.9
6.6 | 9.1
8.4 | | 13 | | | | | | | 13.0 | 8.6 | 10.1 | 10.8 | 6.5 | 8.1 | | 14
15 | | | | | | | 13.5
14.2 | 8.8
9.5 | 10.8
11.3 | 10.0
9.7 | 6.4
6.4 | 8.0
7.6 | | 16 | | | | | | | 14.6 | 9.1 | 11.4 | 9.6 | 6.6 | 8.3 | | 17
18 | | | | | | | 14.6
15.2 | 9.2
9.4 | $\substack{11.2\\11.7}$ | $\frac{11.3}{11.2}$ | 7.4
7.1 | 9.2
8.9 | | 19 | | | | | | | 15.3 | 9.7 | 11.5 | 11.4 | 6.9 | 8.9 | | 20 | | | | | | | 15.6 | 9.8 | 11.8 | 11.0 | 6.7 | 8.5 | | 21
22 | | | | | | | 15.8
15.0 | 9.8
10.7 | 12.4
12.2 | 11.2
11.0 | 6.5
6.5 | 8.5
8.4 | | 23 | | | | 15.1 | 9.4 | 11.5 | 15.2 | 10.7 | 12.4 | 11.6 | 6.7 | 8.6 | | 24
25 | | | | 12.5
10.0 | 8.9
7.1 | 10.2
8.8 | 17.7
17.8 | 9.5
8. 0 | $\begin{array}{c} 13.2 \\ 12.3 \end{array}$ | 12.1
12.8 |
7.1
7.5 | 9.1
9.6 | | 26 | | | | 13.3 | 8.0 | 10.8 | 13.6 | 8.0 | 10.6 | 13.3 | 7.3 | 9.8 | | 27 | | | | 13.8 | 10.0 | 11.8 | 15.0 | 9.9 | 12.4 | 13.3 | 7.1 | 9.5 | | 28
29 | | | | | | | $18.4 \\ 18.2$ | 9.0
7.9 | $13.2 \\ 12.2$ | 13.5
13.4 | 6.6
6.4 | $9.3 \\ 9.2$ | | 30
31 | | | | | | | 18.6 | 8.0 | 12.0 | 13.7
13.9 | 6.2
6.1 | 9.2
9.1 | | | | | | | | | | | | | | | | MONTH | | | | | | | | | | 18.8 | 6.1 | 9.5 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | t | | 1 | 13.5 | 6.0 | 9.0 | 14.3 | 5.2 | 9.2 | 11.2 | 5.0 | 7.2 | | | | | 1
2
3 | 13.5
13.9
14.0 | | 9.0
9.2
9.2 | 14.3
14.5
15.4 | | 9.2
8.9
9.0 | 11.2
11.0
10.9 | | 7.2
7.2
7.1 | | | | | 2
3
4 | 13.9
14.0
14.0 | 6.0
6.0
6.2
6.3 | 9.2
9.2
9.3 | 14.5
15.4
15.7 | 5.2
4.8
4.9
4.7 | 8.9
9.0
8.9 | 11.0
10.9
10.7 | 5.0
5.0
4.9
4.9 | 7.2
7.1
6.7 | | | | | 2
3
4
5 | 13.9
14.0
14.0
13.9 | 6.0
6.0
6.2
6.3
5.9 | 9.2
9.2
9.3
9.1 | 14.5
15.4
15.7
15.6 | 5.2
4.8
4.9
4.7
4.5 | 8.9
9.0
8.9
9.1 | 11.0
10.9
10.7
10.9 | 5.0
5.0
4.9
4.9
5.5 | 7.2
7.1
6.7
7.8 | | | | | 2
3
4 | 13.9
14.0
14.0 | 6.0
6.0
6.2
6.3 | 9.2
9.2
9.3 | 14.5
15.4
15.7 | 5.2
4.8
4.9
4.7 | 8.9
9.0
8.9 | 11.0
10.9
10.7 | 5.0
5.0
4.9
4.9 | 7.2
7.1
6.7 | | | | | 2
3
4
5
6
7
8 | 13.9
14.0
14.0
13.9
13.5
13.3
13.2 | 6.0
6.0
6.2
6.3
5.9
5.6
5.2 | 9.2
9.2
9.3
9.1
8.7
8.5
8.5 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.4 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6 | | | | | 2
3
4
5
6
7 | 13.9
14.0
14.0
13.9 | 6.0
6.0
6.2
6.3
5.9 | 9.2
9.2
9.3
9.1
8.7
8.5 | 14.5
15.4
15.7
15.6
15.7
14.9 | 5.2
4.8
4.9
4.7
4.5 | 8.9
9.0
8.9
9.1
8.8
8.2 | 11.0
10.9
10.7
10.9 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6 | 7.2
7.1
6.7
7.8
9.3
10.4 | | | | | 2
3
4
5
6
7
8
9 | 13.9
14.0
14.0
13.9
13.5
13.3
13.2
13.2 | 6.0
6.2
6.3
5.9
5.6
5.2
5.2
6.0 | 9.2
9.2
9.3
9.1
8.7
8.5
8.5 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7 | 5.0
5.0
4.9
5.5
7.1
7.6
8.7 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3 |

 | |

 | | 2
3
4
5
6
7
8
9
10 | 13.9
14.0
13.9
13.5
13.2
13.2
13.5
13.5 | 6.0
6.2
6.3
5.9
5.6
5.2
5.2
6.0
6.4 | 9.2
9.2
9.3
9.1
8.7
8.5
8.5
8.9
9.3 | 14.5
15.4
15.7
15.6
15.7
14.6
13.5
12.1
11.9
13.0 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4 | 8.9
9.0
8.9
9.1
8.8
8.2
7.4
6.6 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | ====
====
====
====
==== | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.9
14.0
14.0
13.9
13.5
13.2
13.2
13.5
13.6
13.6
13.7 | 6.0
6.2
6.3
5.9
5.6
5.2
6.0
6.4
6.0
5.6
5.2 | 9.2
9.2
9.3
9.1
8.7
8.5
8.9
9.3
9.1
8.7
8.7 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4
4.0
4.3
4.0
3.8 | 8.9
9.0
8.9
9.1
8.8
8.2
7.4
6.6
7.2
7.7
7.5
7.2 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | ====
====
====
====
====
==== | | 2
3
4
5
6
7
8
9
10 | 13.9
14.0
13.9
13.5
13.2
13.2
13.5
13.5
13.6
13.6 | 6.0
6.2
6.3
5.9
5.6
5.2
5.2
6.0
6.4
6.0
5.3 | 9.2
9.2
9.3
9.1
8.7
8.5
8.5
8.9
9.3
9.1
8.9 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
6.6
7.2
7.7 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | ====
====
====
====
==== | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 13.9
14.0
14.0
13.9
13.5
13.2
13.2
13.5
13.5
13.6
13.6
13.7 | 6.0
6.2
6.3
5.9
5.6
5.2
6.0
6.4
6.0
5.3
5.2
5.1 | 9.2
9.2
9.3
9.1
8.7
8.5
8.9
9.3
9.1
8.7
8.7
8.7 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4
4.0
4.3
4.0
3.8
3.7 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.2
7.7
7.5
7.2
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 13.9
14.0
13.9
13.5
13.2
13.2
13.5
13.6
13.6
13.7
13.6 | 6.0
6.2
6.3
5.9
5.6
5.2
5.0
6.4
6.0
5.6
5.3
5.2
5.1 | 9.2
9.2
9.3
9.1
8.7
8.5
8.5
8.9
9.1
8.7
8.4
8.6
8.9 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4
4.0
4.3
4.0
3.8
3.7 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.2
7.7
7.5
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7
 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 13.9
14.0
13.9
13.5
13.3
13.2
13.5
13.5
13.6
13.6
13.7
13.6 | 6.0
6.2
6.3
5.9
5.6
5.2
6.0
6.4
6.0
5.63
5.2
5.1
5.2
5.4 | 9.2
9.3
9.1
8.7
8.5
8.9
9.3
9.1
8.7
8.7
8.4
8.6
9.0
8.1 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4
4.0
4.3
4.0
3.8
3.7 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
6.6
7.2
7.7
7.5
7.2
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.7
8.7

5.0
6.8 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 13.9
14.0
13.9
13.5
13.3
13.2
13.5
13.6
13.6
13.7
13.6
13.7
13.6 | 6.0
6.2
6.3
5.9
5.6
5.2
5.0
6.4
6.6
5.3
5.1
5.2
5.4
5.4
4.6 | 9.2
9.2
9.3
9.1
8.7
8.5
8.5
8.9
9.3
9.1
8.7
8.4
8.6
8.9
9.0
8.1
8.6 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.4
4.0
4.3
4.0
3.8
3.7 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.2
7.7
7.5
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7

5.0
6.8

 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 13.9
14.0
13.9
13.5
13.2
13.2
13.5
13.6
13.7
13.6
13.7
13.6
13.7 | 6.0
6.2
6.3
5.9
5.6
5.2
6.4
6.6
5.3
5.1
5.4
5.4
5.4
4.5 | 9.2
9.3
9.1
8.7
8.5
8.9
9.3
9.1
8.7
8.7
8.7
8.6
8.9
9.0
8.1
8.6 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4
4.0
4.3
4.0
3.8
3.7 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.2
7.7
7.5
7.2
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7

5.0
6.8

 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 |
13.9
14.0
13.9
13.5
13.3
13.2
13.5
13.6
13.6
13.7
13.6
13.7
14.4
12.5
14.0 | 6.0
6.2
6.3
5.9
5.2
6.4
6.6
5.3
5.1
5.4
5.4
5.4
4.5
5.4
4.5 | 9.2
9.3
9.1
8.7
8.5
8.5
8.9
9.3
9.1
8.7
8.4
8.9
9.0
8.6
8.2
7.8.5 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1

9.3
9.3
9.3 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.4
4.0
4.3
4.0
3.7

5.2
5.4
5.9
5.7 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.7
7.5
7.1

6.8
7.0
7.4
7.6 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7

5.0
6.8

 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 13.9
14.0
13.9
13.5
13.2
13.2
13.5
13.6
13.7
13.6
13.7
13.6
13.7 | 6.0
6.2
6.3
5.9
5.6
5.2
6.4
6.6
5.3
5.1
5.4
5.4
5.4
4.5 | 9.2
9.3
9.1
8.7
8.5
8.9
9.3
9.1
8.7
8.7
8.7
8.6
8.9
9.0
8.1
8.6 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.1
3.4
4.0
4.3
4.0
3.8
3.7 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.2
7.7
7.5
7.2
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7

5.0
6.8

 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 13.9 14.0 13.9 13.5 13.3 13.2 13.5 13.6 13.7 13.6 13.7 13.6 13.7 14.4 12.5 14.0 13.6 13.7 14.4 12.5 14.0 | 6.0
6.2
6.3
5.6
5.2
6.4
6.6
5.3
5.2
5.4
4.5
5.4
4.5
5.4
4.5
4.5
4.6
4.6 | 9.2
9.3
9.1
8.7
8.5
8.9
9.1
8.7
8.4
8.6
8.9
9.1
8.6
8.2
7.7
8.2
8.1 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1

9.3
9.7
10.6
10.8
10.9 | 5.2
4.8
4.9
4.7
4.5
4.2
3.8
3.1
3.4
4.0
4.3
4.0
3.8
3.7
 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
6.6
7.2
7.7
7.5
7.2
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7

5.0
6.8

 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 13.9 14.0 13.9 13.5 13.3 13.2 13.5 13.6 13.7 13.6 13.7 13.6 13.7 13.0 14.4 12.5 14.0 13.6 13.7 14.1 14.1 13.9 | 6.0
6.2
6.3
5.9
5.6
5.2
6.4
6.6
5.3
5.2
6.4
6.6
5.3
5.2
5.4
4.5
5.4
4.5
4.6
4.5
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6
4.6 | 9.2
9.2
9.3
9.1
8.7
8.5
8.9
9.3
9.1
8.7
8.7
8.4
8.6
9.0
8.1
8.5
8.2
7.7
8.2
8.7 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.3
13.1

9.3
9.3
9.7
10.6
10.8
10.9 | 5.2
4.8
4.9
4.7
4.5
4.2
3.1
3.1
4.0
4.3
4.0
3.8
3.7
 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.2
7.7
7.5
7.2
7.1 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.7
8.7

5.0
6.8

 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
21
22
23
24
25
25
26
27
27
27
27
27
27
27
27
27
27
27
27
27 | 13.9 14.0 13.9 13.5 13.3 13.2 13.5 13.6 13.7 13.6 13.7 13.6 13.7 14.4 12.5 14.0 13.6 13.7 14.1 14.1 13.9 | 6.0
6.2
6.2
5.9
5.2
5.2
6.4
6.6
5.3
5.1
5.4
4.5
5.4
4.5
5.4
4.5
5.4 | 9.2
9.3
9.1
8.5
8.5
9.3
9.9
8.7
8.4
8.9
9.1
8.6
8.2
7.5
8.2
8.1
8.7
9.3
9.3 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1

9.3
9.7
10.6
10.8
10.9
11.5
11.6
11.9
11.6
11.9 | 5.2
4.8
4.9
4.7
4.5
4.2
3.1
3.1
4.0
3.7
5.4
5.5
5.6
6
5.5
5.5
5.5 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.7
7.5
7.1

6.8
7.7
7.5
7.5
7.5
7.5
7.8
7.8
7.8
7.8 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.7
8.7
8.7
 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | 8.2
8.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 13.9 14.0 13.9 13.5 13.3 13.2 13.5 13.6 13.6 13.7 13.6 13.7 14.4 12.5 14.0 13.6 13.7 14.1 14.1 13.9 | 6.00
6.23
5.22
6.04
6.55
5.22
6.04
6.63
5.32
1.24
4.4
4.55
5.35
4.4
4.55
5.35 | 9.2
9.3
9.1
8.7
8.5
8.9
9.3
9.1
8.7
8.7
8.7
8.6
8.9
9.1
8.7
8.5
8.9
9.3 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.1

9.3
9.3
9.7
10.6
10.8
10.9
11.5
11.9 | 5.2
4.8
4.9
4.7
4.5
4.2
3.1
3.1
4.0
3.3
4.3
3.7
5.4
5.7
5.6
6.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6
5.6 | 8.9
9.0
8.9
9.1
8.8
8.2
7.8
7.4
6.6
7.2
7.7
7.5
7.2
7.1

6.8
7.0
7.5
7.5
7.5
7.8
7.8 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.7
8.7
8.7

5.0
6.8

 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | 9.4 | | 8.2
8.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
20
20
20
20
20
20
20
20
20
20
20
20 | 13.9 14.0 13.9 13.5 13.3 13.2 13.5 13.6 13.7 13.6 13.7 13.6 13.7 13.6 13.7 14.1 12.5 14.1 13.9 14.4 14.6 15.1 11.8 14.0 | 6.00
6.02
6.03
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
5.06
6.06
6 | 9.2
9.2
9.3
9.1
8.5
8.5
9.3
9.1
8.7
8.4
8.9
9.3
8.7
8.6
8.9
9.3
8.7
8.6
8.9
9.3
8.7
8.6
8.9
9.3
8.7
8.7
8.7
8.7
8.7
9.3
8.7
9.3
8.7
9.3
8.7
9.3
8.7
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3 | 14.5
15.4
15.7
15.6
15.7
14.9
14.6
13.5
12.1
11.9
13.0
13.3
13.3
13.3
13.1

9.3
9.3
9.7
10.6
10.8
10.9
11.5
11.9
11.9 | 5.2
4.8
4.9
4.7
5.2
3.1
4.0
3.3
4.3
3.7
 | 8.9
9.0
8.9
9.1
8.8
7.4
6.6
7.2
7.5
7.2
7.1

6.8
7.6
7.5
7.5
7.5
7.5
7.5
7.5
7.6
7.6
7.6
7.7 | 11.0
10.9
10.7
10.9
13.0
14.4
14.3
12.7
11.4 | 5.0
5.0
4.9
4.9
5.5
7.1
7.6
8.4
8.7
8.7
 | 7.2
7.1
6.7
7.8
9.3
10.4
10.6
10.3
9.8 | | | 8.2
8.4 | ## PLATTE RIVER BASIN ## 05414213 LITTLE PLATTE RIVER NEAR PLATTEVILLE, WI--CONTINUED ## PRECIPITATION QUANTITY PERIOD OF RECORD.--July 1987 to current year (during non-freezing periods). GAGE.--Micrologger. TOTAL 1.34 3.42 REMARKS. -- Records good. EXTREMES FOR PERIOD OF RECORD. -- Maximum daily rainfall, 2.22 in., Sept. 22, 1988. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.22 in., Sept. 22. | | | RAI | NFALL ACCU | MULATED | (INCHES), | WATER YEAR
SUM VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-----|------|------|------------|---------|-----------|--------------------------|---------|---------|-----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .02 | .14 | .00 | | | | .01 | .00 | .00 | .00 | .00 | .00 | | 2 | .00 | .03 | .00 | | | | . 26 | .00 | .00 | .00 | .00 | .00 | | 3 | .00 | .00 | . 18 | | ~ | | .03 | .00 | .00 | .00 | .00 | .00 | | 4 | .00 | .01 | .00 | | ~ | | .00 | .00 | .00 | .00 | . 47 | .01 | | 5 | .00 | .00 | | | | | .02 | .00 | .00 | .00 | . 13 | .00 | | 6 | .00 | .00 | | | | | .03 | .00 | .00 | .00 | .00 | .00 | | 7 | .00 | .12 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 8 | .01 | . 07 | | | | | .00 | . 42 | .00 | .00 | .54 | .00 | | 9 | .00 | .01 | | | ~ | | .00 | . 20 | . 00 | .19 | .00 | .00 | | 10 | .00 | .04 | | | | | .01 | .00 | .00 | .29 | .00 | .00 | | 11 | .00 | .06 | | | | | .00 | .02 | .00 | .00 | .00 | .00 | | 12 | .00 | .00 | | | ~ | | .00 | .00 | . 00 | .00 | .00 | .02 | | 13 | .00 | .00 | | | ~ | | . 09 | .00 | .00 | .00 | .00 | .00 | | 14 | .02 | .00 | | |
 | .00 | . 00 | .00 | .09 | .00 | .00 | | 15 | . 00 | .09 | | | | | .01 | .00 | .00 | .00 | .00 | .00 | | 16 | . 45 | .86 | | | ~ | | .00 | .00 | .00 | 1.81 | .00 | . 27 | | 17 | .00 | .60 | | | ~ | | .00 | .00 | . 00 | .00 | .00 | .01 | | 18 | .01 | .02 | | | | | .00 | .00 | .00 | .04 | . 00 | .12 | | 19 | .00 | .00 | | | | | . 00 | .00 | .04 | . 00 | .00 | 1.69 | | 20 | .02 | .00 | | | | | . 24 | .00 | .00 | .00 | .00 | . 06 | | 21 | .01 | .00 | | | | | .05 | .00 | .00 | .00 | .00 | . 30 | | 22 | .00 | .00 | | | | .00 | . 44 | .00 | .03 | .00 | . 89 | 2.22 | | 23 | .00 | .02 | | | | .00 | .08 | .00 | .00 | .00 | .01 | .01 | | 24 | . 13 | .12 | | | | . 87 | .00 | .00 | . 07 | . 05 | .00 | .01 | | 25 | . 01 | . 07 | | | | .01 | .00 | .00 | .00 | .01 | .00 | .00 | | 26 | .10 | .00 | | | | .00 | . 45 | .00 | .00 | .00 | .00 | .00 | | 27 | .00 | .10 | | | | .01 | . 20 | .00 | .00 | .00 | .00 | .00 | | 28 | .00 | 1.01 | | | | .82 | .00 | .00 | .35 | .00 | .00 | .00 | | 29 | .01 | .04 | | | | . 07 | .01 | .00 | .06 | .00 | .01 | .00 | | 30 | .00 | .01 | | | | .00 | .00 | .00 | .00 | .00 | .01 | .00 | | 31 | . 55 | | | | | .00 | | .00 | | .00 | .00 | | 1.93 0.64 0.55 2.48 2.06 4.72 ### 05414800 SINSINAWA RIVER NEAR HAZEL GREEN, WI LOCATION.--Lat 42°32'02", long 90°28'53", in NW 1/4 NW 1/4 sec.27, T.1 N., R.1 W., Grant County, Hydrologic Unit 07060005, on left bank 75 ft upstream from the Highway 11 bridge and 2.5 mi west of Hazel Green. DRAINAGE AREA. -- 24.9 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 23, 1987 to current year. GAGE. -- Water-stage recorder. Elevation of gage is 790 ft, from topographic map. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. EXTREMES FOR CURRENT PERIOD.--June 23 to September 1987: Maximum discharge, 61 $\rm ft^3/s$, Aug. 26, gage height, 3.27 ft; minimum, 10 $\rm ft^3/s$, July 20-24, 26, Aug. 2-7, 24, Sept. 10, 12-14, 25-26, 28-30, gage height, 2.47 $\rm ft$. Water year 1988: Maximum discharge, 187 ${\rm ft}^3/{\rm s}$, Feb. 26, gage height, 4.22 ft; maximum gage height, 5.90 ft, Jan. 30 (backwater from ice); minimum daily,. 6.9 ${\rm ft}^3/{\rm s}$, Sept. 10, 13-15. ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|-------| | 1 | | | | | | | | | | 12 | 11 | 11 | | 2 | | | | | | | | | | 12 | 10 | 11 | | 3 | | | | | | | | | | 12 | 11 | 11 | | 4 | | | | | | | | | | 12 | 11 | 11 | | 5 | | | | | | | | | | 12 | 10 | 11 | | • | | | | | | | | | | 12 | 10 | | | 6 | | | | | | | | | | 12 | 10 | 11 | | 7 | | | | | | | | | | 12 | 10 | 11 | | 8 | | | | | | | | | | 12 | 30 | 11 | | 9 | | | | | | | | | | 12 | 13 | 11 | | 10 | | | | | | | | | | 11 | 11 | 10 | | 10 | | | | | | | | | | 11 | | 10 | | 11 | | | | | | | | | | 11 | 11 | 11 | | 12 | | | | | | | | | | 11 | 11 | 11 | | 13 | | | | | | | | | | 11 | 11 | 11 | | 14 | | | | | | | | | | 11 | 11 | 10 | | 15 | | | | | | | | | | 13 | 11 | 11 | | 13 | | | | | | | | | | 13 | 11 | 11 | | 16 | | | | | | | | | | | 10 | 11 | | | | | | | | | | | | 11 | 12 | 11 | | 17 | | | | | | | | | | 11 | 12 | 13 | | 18 | | | | | | | | | | 11 | 17 | 11 | | 19 | | | | | | | | | | 11 | 11 | 11 | | 20 | | | | | | | | | | 10 | 11 | 11 | | | | | | | | | | | | | | | | 21 | | | | | | | | | | 10 | 13 | 11 | | 22 | | | | | | | | | | 10 | 11 | 11 | | 23 | | | | | | | | | 12 | 10 | 11 | 11 | | 24 | | | | | | | | | 12 | 10 | 10 | 11 | | 25 | | | | | | | | | 13 | 11 | 11 | 10 | | | | | | | | | | | | | | | | 26 | | | | | | | | | 12 | 10 | 39 | 10 | | 27 | | | | | | | | | 12 | 11 | 16 | 11 | | 28 | | | | | | | | | 12 | 11 | 13 | 10 | | 29 | | | | | | | | | 12 | 11 | 12 | 10 | | 30 | | | | | | | | | 12 | 17 | 12 | 10 | | 31 | | | | | | | | | | 12 | 11 | | | | | | | | | | | | | | | | | TOTAL | | | | | | | | | | 353 | 404 | 325 | | MEAN | | | | | | | | | | 11.4 | 13.0 | 10.8 | | MAX | | | | | | | | | | 17 | 39 | 13 | | MIN | | | | | | | | | | 10 | 10 | 10 | | CFSM | | | | | | | | | | . 46 | .52 | . 44 | | IN. | | | | | | | | | | .53 | .60 | . 49 | | | | | | | | | | | | | | - 1,5 | ## 05414800 SINSINAWA RIVER NEAR HAZEL GREEN, WI--CONTINUED RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 16-19, 1987, Dec. 26, 1987 to Feb. 17, 1988, and Feb. 21-23, 1988.) | 2.3 | 5.7 | 2.9 | 3 | |-----|-----|-----|----| | 2.4 | 8.2 | 3.0 | 39 | | 2.5 | 11 | 3.2 | 5. | | 2.6 | 15 | 3.4 | 7 | | 2.7 | 20 | 3.6 | 9 | | 2.8 | 26 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | MI | SAN VALUES | • | | | | | | |--|--|--|----------------------------------|----------------------------------|--------------------------------|----------------------------------|---------------------------------------|--|--|--|--|-----------------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 10
10
9.8
10 | 12
11
11
11
10 | 13
12
12
11
11 | 11
11
11
11
11 | 22
20
16
16
15 | 20
18
16
15
15 | 17
18
19
17
17 | 12
11
11
11
11 | 11
11
10
10 | 9.3
9.2
9.2
8.8
8.7 | 7.8
7.8
7.6
7.8
8.6 | 7.1
7.1
7.1
7.1
7.1 | | 6
7
8
9
10 | 10
10
10
10
9.8 | 10
10
11
10
9.8 | 12
12
13
18
14 | 11
11
11
11
11 | 15
14
14
14
14 | 16
16
17
16
15 | 16
15
15
14
14 | 11
11
12
12
11 | 11
11
11
10
10 | 8.6
8.4
8.3
8.3
9.2 | 7.6
7.6
8.2
8.0
7.6 | 7.0
7.1
7.0
7.0
6.9 | | 11
12
13
14
15 | 10
10
10
10
11 | 10
10
11
10
10 | 14
13
12
12
10 | 12
12
12
12
13 | 14
14
14
14
14 | 15
16
14
14
14 | 14
14
14
13
13 | 10
11
10
10 | 11
11
11
11
11 | 8.5
8.3
8.3
8.3
8.2 | 7.6
7.6
7.5
7.6
7.4 | 7.0
7.1
6.9
6.9 | | 16
17
18
19
20 | 12
11
10
10 | 12
23
12
12
11 | 11
11
11
13
18 | 13
13
14
16
20 | 14
14
14
15
14 | 14
14
14
14
14 | 13
13
13
13
13 | 9.8
10
9.9
10 | 11
11
12
12
12 | 11
8.5
9.3
8.9
8.2 | 7.3
7.3
7.2
7.4
7.2 | 7.3
8.1
7.4
10
8.1 | | 21
22
23
24
25 | 9.9
10
10
10 | 11
11
11
11 | 14
14
13
15
14 | 15
13
12
12
11 | 14
14
13
13 | 14
14
14
16
19 | 13
13
15
13
12 | 10
10
10
9.9 | 11
11
10
10 | 8.1
7.9
7.9
8.1
8.7 | 7.1
8.7
12
7.5
7.3 | 7.5
12
8.4
7.6
7.6 | | 26
27
28
29
30
31 | 11
11
10
11
10 | 11
11
23
16
13 | 12
11
11
11
11
10 | 12
13
13
13
80
50 | 48
32
36
26 | 15
14
24
30
20
18 | 13
14
13
12
12 | 10
10
10
10
10 | 9.7
9.7
9.8
10
9.6 | 7.9
7.8
7.9
7.9
7.9 | 7.2
7.4
7.3
7.0
7.2
7.1 | 7.6
7.6
7.4
7.5
7.6 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 316.5
10.2
12
9.8
.41
.47 | 355.8
11.9
23
9.8
.48
.53 | 389
12.5
18
10
.50 | 491
15.8
80
11
.64 | 510
17.6
48
13
.71 | 505
16.3
30
14
.65 | 425
14.2
19
12
.57
.63 | 324.6
10.5
12
9.8
.42
.48 | 319.8
10.7
12
9.6
.43
.48 | 263.4
8.50
11
7.8
.34
.39 | 238.5
7.69
12
7.0
.31
.36 | 227.0
7.57
12
6.9
.30 | WTR YR 1988 TOTAL 4365.6 MEAN 11.9 MAX 80 MIN 6.9 CFSM .48 IN. 6.52 ### 05414800 SINSINAWA RNEAR HAZEL GREEN, WI--CONTINUED #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- July 1987 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: July 1987 to current year. DISSOLVED OXYGEN: July 1987 to current year. INSTRUMENTATION. -- Continuous water temperature and dissolved oxygen recorder since July 1987. REMARKS.--Water-quality analysis by the State Lab of Hygiene. EXTREMES FOR PERIOD OF RECORD. -- WATER TEMPERATURE: Maximum observed, 31.0°C Aug. 15-16, 1988; minimum observed, 0.00°C on many days during the 1988 water year. DISSOLVED OXYGEN: Maximum observed, 17.5 mg/L Apr. 29, 1988; minimum observed, 1.4 mg/L Aug. 23, 1988. EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum observed, 31.0°C Aug. 15-16; minimum observed, 0.00°C on many days. DISSOLVED OXYGEN: Maximum observed, 17.5 mg/L Apr. 29; minimum observed, 1.4 mg/L Aug. 23. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PH
(STAND-
ARD
UNITS)
(00400) | PH
LAB
(STAND-
ARD
UNITS)
(00403) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(FTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |-------------|-------|---|---
--|---|---|--|--|--|--|--| | NOV 1987 | | | | | | | | | | | | | 17 | 0100 | 19 | | 8.10 | | 41 | | 130 | | 0.330 | | | 17 | .0200 | 27 | | 8.10 | | 46 | | 246 | | 0.370 | | | 18 | 1100 | 12 | | 8.10 | | 31 | | 70 | | 0.470 | | | JAN 1988 | | | | | | | | | | | | | 30 | 1100 | 104 | | 7.50 | | 6.5 | | 408 | | 2.00 | | | 30 <i>.</i> | 1400 | 236 | | 7.60 | | 110 | | 852 | | 1.50 | | | 30 | 1530 | 309 | | 7.30 | | 380 | | 2780 | | 2.60 | | | 30 <i>.</i> | 1545 | 321 | | 7.30 | | 400 | | 2910 | | 2.30 | | | 30 | 1915 | 492 | | 7.30 | | 5 00 | | 2950 | | 2.30 | | | 31 | 0930 | 118 | | 7.40 | | 82 | | 1010 | | 1.80 | | | FEB | | | | | | | | | | _ | | | 19 | 1200 | 14 | | 8.10 | | 9.6 | | 29 | 6.30 | 0.360 | | | 26 | 1530 | 40 | | 8.20 | 2.5 | 55 | | 334 | | 0.400 | | | 26 | 1645 | 87 | | 8.00 | 2.5 | 160 | | 932 | | 1.40 | | | 26 | 1745 | 161 | | 7.80 | 1.5 | 340 | | 1860 | | 1.90 | | | 26 | 1815 | 185 | | 7.80 | 1.5 | 350 | | 2120 | | 1.50 | | | 26 | 2100 | 112 | | 7.50 | 0.5 | 320 | | 1400 | | 2.90 | | | 27 | 0230 | 33 | _ == | 7.50 | 0.5 | 140 | | 380 | | 2.80 | | | 27 | 1115 | 20 | 7.80 | _ == | | | | | | 2.00 | | | 27 | 1116 | 20 | 7.90 | 7.90 | | 32 | | 73 | | | | | 27 | 1125 | 20 | 7.90 | | | | | | | 2.00 | | | 27 | 1126 | 20 | 8.00 | 7.90 | | 40 | | 100 | | | | | 27 | 1127 | 20 | 8.00 | 7.90 | | 37 | | 104 | | | | | 27 | 1128 | 20 | 7.90 | | | | | 100 | | 2.00 | | | 27 | 1815 | 42 | | 7.80 | | 39 | | 182 | | 1.60 | | | 27 | 1900 | 60 | | 7.80 | | 24 | | 300 | | 1.60
1.30 | | | 28 | 1630 | 43 | | 8.00 | | 29 | | 132 | | 1.50 | | | 28 | 1700 | 60 | | 8.00 | | 49 | | 264
436 | | 1.50 | | | 28 | 1730 | 85 | | 7.90 | | 22 | | | | 0.800 | | | 29
APR | 1800 | 40 | | 8.10 | | 30 | | 138 | | 0.800 | | | 07 | 1020 | 15 | 0 40 | 0 20 | 9.0 | 5.6 | 11.0 | 15 | 5.60 | 0.040 | 0.100 | | MAY | 1020 | 12 | 8.40 | 8.30 | 9.0 | 3.0 | 11.0 | 13 | 3.00 | 0.040 | 0.100 | | 26 | 0940 | 10 | 8.20 | 8.20 | 15.0 | 10 | 10.0 | 26 | 4.60 | 0.090 | 0.120 | | AUG | 0940 | 10 | 0.20 | 0.20 | 15.0 | 10 | 10.0 | 20 | 4.00 | 0.050 | 0.120 | | 22 | 2359 | 19 | | 8.10 | | 54 | | 248 | | 0.240 | | SINSINAWA RIVER BASIN 05414800 SINSINAWA RIVER NEAR HAZEL GREEN, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | WAIER TEM | FERMIUKE, | DEGREES | CENTIGRAL | DE, WAIER | ILAK OCI | OBER 190/ | 10 SEPIE | 1DEK 1900 | | | |------------------|--|-------------|---|--------------|-------------------|--|---|---------------|--|-------------------|--------------|------------------------------| | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN' | MAX | MIN | MEAN | | | | OCTOBER | | | NOVEMBER | ₹ | | DECEMBER | | | JANUARY | | | 1
2 | $15.0 \\ 15.0$ | 11.0
8.5 | 13.0
11.5 | 11.0
13.0 | $9.0 \\ 11.0$ | $\begin{smallmatrix} 10.0 \\ 12.0 \end{smallmatrix}$ | 4.5
3.5 | 3.5
2.5 | 4.0
3.0 | . 0
. 0 | . 0
. 0 | .0 | | 3
4 | 10.0
12.5 | 6.5
8.5 | 8.5
10.5 | 14.5
14.0 | 12.5
11.5 | 13.5
13.0 | 3.5
2.5 | 2.5
1.0 | 3.0
1.5 | .0 | . 0
. 0 | .0 | | 5 | 14.0 | 11.5 | 12.5 | 11.0 | 7.0 | 8.5 | 2.5 | 1.5 | 2.0 | . 0 | . 0 | . 0 | | 6
7 | 13.0
9.5 | 9.5
7.5 | 11.0
9.0 | 7.0
7.0 | 5.5 | 6.0 | 3.0 | 2.0 | 2.5
3.5 | .0 | . 0 | .0 | | 8 | 9.0 | 6.5 | 8.0 | 9.0 | 5.5
7.0 | 6.0
8.5 | 7.0 | 3.0
4.0 | 5.0 | . 0
. 0 | . 0
. 0 | .0 | | 9
10 | 9. 0
8.5 | 7.5
6.5 | 8.5
7.5 | 8.5
5.5 | 5.5
3.5 | 6.5
4.5 | 7.5
6.0 | 6.0
4.5 | 7.0
5.0 | . 0
. 0 | . 0
. 0 | .0 | | 11 | 7.0 | 4.0 | 6.0 | 5.0 | 3.0 | 4.5 | 6.5 | 4.5 | 5.5 | .0 | . 0 | .0 | | 12
13 | $\begin{array}{c} 8.5 \\ 10.0 \end{array}$ | 4.5
6.0 | 6.5
8.0 | 6.5
7.5 | 4.0
6.0 | 5.0
6.5 | 5.5
3.5 | 2.5
2.0 | 3.5
2.5 | . 0
. 0 | . 0
. 0 | .0 | | 14
15 | 10.0
12.5 | 9.0
9.5 | 9.5
11.0 | 7.5
10.0 | 6.0
7.0 | 7.0
8.5 | 3.0
1.5 | 2.0 | 2.5
.5 | .0 | . 0
. 0 | .0 | | 16 | 12.0 | 11.0 | 11.5 | 10.5 | 10.0 | 10.0 | .5 | .0 | .0 | .0 | .0 | .0 | | 17
18 | 11.0
10.5 | 9.0 | 10.0 | 10.5 | 7.5 | 9.5 | . 5 | . 0 | .0 | . 0 | . 0 | .0 | | 19 | 10.5 | 9.0 | 10.0 | 6.5 | 6.0
4.5 | 6.5
5.5 | .5 | .0 | .0
.5 | . 5
. <u>5</u> | .0 | .0 | | 20 | 10.0 | 6.5 | 8.0 | 5.0 | 2.0 | 3.0 | 1.0 | . 0 | .5 | .5 | .0 | .0 | | 21
22 | 7.0
9.0 | 4.5
6.0 | 6.0
7.5 | 2.5
6.0 | $\frac{1.0}{1.5}$ | 2.0
3.0 | 1.5
3.0 | .0
1.5 | .5
2.5 | 1.0 1.0 | .0
.5 | .5
1.0 | | 23
24 | 8.0
8.0 | 6.0
6.5 | 7.0
7.0 | 6.5
5.5 | 5.5
5.0 | 6.0
5.0 | 3.5
4.0 | 2.0
3.5 | 3.0
4.0 | . 5
. 0 | . 0
. 0 | .0 | | 25 | 7.0 | 4.5 | 6.0 | 5.0 | 4.0 | 4.5 | 3.5 | 1.5 | 3.0 | . 0 | .0 | .0 | | 26
2 7 | 6.5
7.5 | 5.5
5.5 | 6.0
6.5 | 5.0
5.0 | 4.5
4.5 | 4.5
5.0 | 1.5
1.0 | . 5
. 0 | 1.0 | .0 | .0 | .0 | | 28 | 7.0 | 5.0 | 6.5 | 6.5 | 4.5 | 5.5 | . 5 | .0 | .0 | . 0 | .0 | .0 | | 29
30 | 8.0
9.0 | 6.5
6.0 | 7.5
7.5 | 6.5
6.5 | 6.0
4.5 | 6.5
5.5 | .5
1.0 | . 0
. 0 | .0
.5 | .0
.5 | .0 | .0 | | 31 | 9.0 | 7.5 | 8.5 | | | ~ | . 5 | . 0 | . 0 | 3.0 | .5 | 1.5 | | MONTH | 15.0 | 4.0 | 8.6 | 14.5 | 1.0 | 6.7 | 7.5 | . 0 | 2.2 | | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | 1.5 | .0 | .5 | 7.0 | 2.5 | 4.5 | 12.0 | 7.0 | 10.0 | 19.0 | 10.5 | 15.0 | | 3 | .5 | . 0
. 5 | . 0
. 5 | 5.5
4.5 | 3.0
1.0 | 4.5
3.0 | $11.0 \\ 12.0$ | 8.0
9.0 | 9.5
10.5 | 19.0
19.0 | 11.0
10.5 | 15.0 | | 4
5 | .5
.0 | . 0
. 0 | . 0
. 0 | 5.5
6.5 | .5
1.5 | 3.0
4.0 | 18.0
17.5 | $9.5 \\ 11.5$ | 13.5
14.5 | 17.0
20.0 | 10.0
11.0 | 15.0
15.0
13.5
15.5 | | 6 | . 0 | . 0 | .0 | 8.5 | 2.5 | 5.5 | 14.0 | 8.5 | 11.5 | 20.0 | 11.0 | 16.0 | | 7
8 | . 0
. 0 | . 0
. 0 | . 0
. 0 | 8.5
10.5 | 4.0
6.5 | 6.5
8.5 | 16.0
16.5 | 6.5
9.5 | 11.5
13.0 | 18.5
18.0 | 12.5
13.0 | 15.5
15.5 | | 9
10 | .0 | .0 | . 0 | 7.5
9.0 | 5.0
3.0 | 6.0
6.0 | 16.5
13.0 | 10.0
7.5 | 13.5 | 13.5 | 11.5
10.5 | 12.5
15.0 | | 11 | . 0 | .0 | .0 | 9.5 | 5.0 | 7.5 | 14.5 | 5.5 | 9.5 | 21.0 | 12.5 | 17.0 | | 12 | .0 | .0 | .0 | 8.5 | 4.0 | 6.5 | 16.0 | 7.0 | 11.5 | 23.0 | 15.0 - | 19.0 | | 13
14 | . 0
. 5 | .0 | .0 | 4.0
2.0 | 1.0
.5
.0 | 2.0
1.0 | $\begin{array}{c} 14.5 \\ 13.0 \end{array}$ | 8.5
6.5 | $\begin{smallmatrix}12.0\\10.0\end{smallmatrix}$ | $21.5 \\ 21.0$ | 15.0
13.0 | 18.5
17.5 | | 15 | . 5 | . 0 | . 0 | 2.5 | . 0 | 1.5 | 13.0 | 5.5 | 9.5 | 23.5 | 17.0 | 20.0 | | 16
17 | . 5
. 5 | . 0
. 0 | .5
.5 | 6.0
6.5 | 1.5
3.0 | 3.5
5.0 | 14.5
16.0 | 5.5
8.0 | 10.0
11.5 | 18.5
21.0 | 14.0
11.5 | 15.5
16.0 | | 1 8
19 | 2.5
4.0 | .5
1.5 | $\begin{array}{c} 1.5 \\ 2.5 \end{array}$ | 8.0
7.5 | 2.5
2.5 | 5.5
5.5 | 13.0
13.0 | 6.0
4.5 | 9.5
9.0 | 22.0
23.0 | 13.5
14.5 | 18.0
19.0 | | 20 | 3.0 | .0 | 2.0 | 8.0 | 2.5 | 5.5 | 11.5 | 6.5 | 8.5 | 24.0 | 15.5 | 19.5 | | 21
22 | .5
2.5 | . 0 | .0 | 8.0 | 3.0 | 6.0 | 8.5 | 4.5 | 6.0 | 24.0 | 16.5
17.5 | 20.5
20.5 | | 23 | 1.5 | .5
.0 | 1.5
.5 | 11.0 13.0 | 3.5
8.0 | 7.5
10.5 | 6.5
7.0 | 5.5
5.0 | 6.0
6.0 | 22.5
21.0 | 16.0 | 18.5 | | 24
25 | 1.5
1.5 | .0 | . 5
. 5 | 11.5
13.5 | 7.5
8.0 | 9.5
11.0 | 13.5
17.5 | 4.5
8.5 | 9.0
13.0 | 21.5
20.5 | 15.0
12.5 | 18.0
17.0 | | 26 | 3.5 | .0 | 1.0 | 10.0 | 4.5 | 7.0 | 15.0 | 7.0 | 10.5 | 21.5 | 13.5 | 17.5 | | 27
28 | 6.0
6.0 | . 0
. 5 | 2.5
2.5 | 10.0
9.5 | 2.0
7.0 | 6.5
8.0 | 7.5
15.0 | 5.0
4.5 | 6.0
9.5 | 21.5
24.5 | 15.5
17.0 | 19.0
20.5 | | 29
30 | 7.5 | .5 | 4.0 | 9.0
12.5 | 6.0
3.5 | 7.5
8.0 | 17.5
18.5 | 8.0
9.5 | 12.5
14.0 | 24.0
25.0 | 17.5
18.0 | 21.0
21.5 | | 31 | | | | 13.0 | 6.0 | 9.5 | | | | 25.5 | 18.0 | 22.0 | | MONTH | 7.5 | .0 | . 7 | 13.5 | .0 | 6.0 | 18.5 | 4.5 | 10.3 | 25.5 | 10.0 | 17.6 | 05414800 SINSINAWA RIVER NEAR HAZEL GREEN, WI--CONTINUED | WATED TE | TOTTO A TITOR | DECDEES | CENTIGRADE, | TATA TITED | VEAD | OCTORED | 1027 | TΩ | CEPTEMBED | 1022 | |-----------|------------------|----------|---------------|------------|------|---------|------|----|-------------|------| | WULTER II | ani bixa i okia, | DEGITIES | CEMITIGIANDE, | MVJ TETZ | TIME | OCTODER | 1701 | 10 | OPI THINDRY | 1,00 | | | | WAIER IEM | PEKATUKE, | DEGREES | CENTIGRADE | s, WATER | LEAR OCT | JBER 1987 | IO SEPIE | ADEK 1900 | | | |----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | | | 1
2
3
4
5 |
26.0
25.0
24.0
23.5
24.5 | 19.0
19.5
17.5
16.0
17.0 | 22.5
22.5
21.0
20.0
21.0 | 23.0
25.0
25.5
26.0
27.0 | 16.0
18.0
18.5
19.0
20.0 | 19.5
21.5
22.0
22.5
23.5 | 29.5
29.5
29.5
28.5
27.5 | 24.0
24.0
24.0
24.0
22.5 | 26.5
26.5
26.5
26.0
25.0 | 22.5
23.0
23.0
20.5
18.0 | 18.5
19.5
20.0
18.0
15.0 | 20.5
21.0
21.5
19.0
16.5 | | 6
7
8
9
10 | 25.5
26.0
25.0
22.0
22.5 | 18.0
18.5
19.0
15.0 | 22.0
22.5
22.0
18.5
19.0 | 28.0
28.0
28.0
27.5
26.0 | 21.5
22.0
22.0
21.5
22.0 | 25.0
25.5
25.5
24.5
24.0 | 26.5
26.0
27.5
28.0
27.0 | 19.5
19.5
22.5
23.0
21.0 | 23.0
23.0
24.5
25.5
24.0 | 18.0
18.5
19.0
19.0 | 13.5
14.5
15.5
15.5
15.5 | 16.0
16.5
17.0
17.5 | | 11
12
13
14
15 | 23.5
24.5
25.5
26.0
26.0 | 15.5
17.0
18.5
20.0
20.5 | 19.5
21.0
22.0
23.0
23.0 | 25.0
26.5
28.5
30.0
30.5 | 20.0
19.0
21.0
24.0
24.5 | 23.0
23.0
25.0
27.0
27.5 | 29.0
28.5
27.0
30.0
31.0 | 22.5
23.5
23.5
23.5
24.5 | 26.0
26.0
25.5
26.5
28.0 | 20.0
21.5
21.0
19.0
18.5 | 16.5
18.5
18.0
15.5
16.5 | 18.0
19.5
19.0
17.5
17.5 | | 16
17
18
19
20 | 25.5
21.5
25.0
23.0
28.5 | 18.5
18.0
18.5
20.0
20.0 | 22.0
20.0
21.5
21.5
24.5 | 28.0
30.0
28.0
27.0
24.5 | 24.0
23.5
24.0
21.5
21.5 | 26.0
27.0
26.0
24.5
22.5 | 31.0
30.5
28.5
25.5 | 25.5
25.5
25.0
22.5
20.0 | 28.5
28.0
26.5
24.0
22.5 | 17.5
20.5
20.0
20.0
16.0 | 16.0
16.5
18.5
16.0
13.5 | 16.5
18.0
19.0
19.0
14.5 | | 21
22
23
24
25 | 28.5
29.5
27.0
25.5
29.0 | 24.0
23.0
21.5
20.0
22.5 | 26.5
26.0
24.5
23.0
25.5 | 25.0
26.5
27.0
27.0
27.0 | 19.5
19.0
20.0
21.5
21.0 | 22.0
22.5
23.5
24.0
24.0 | 24.0
22.5
23.5
23.0
22.5 | 20.5
20.0
19.0
19.5
19.0 | 22.5
20.5
21.0
21.5
20.5 | 15.5
20.5
19.0
17.5
17.5 | 11.5
15.0
15.0
12.0
13.0 | 14.0
17.5
17.0
14.5
15.0 | | 26
27
28
29
30
31 | 25.5
25.5
25.5
22.0
22.5 | 20.5
18.5
19.0
18.0
14.5 | 23.5
22.0
22.5
20.0
19.0 | 26.5
27.5
28.0
27.0
29.0
28.0 | 20.0
20.5
22.0
22.0
22.5
21.5 | 23.5
24.5
25.0
25.0
25.5
25.5 | 22.0
20.5
20.5
21.0
22.5
22.5 | 17.5
19.0
16.5
17.0
18.5
18.0 | 20.0
19.5
18.5
19.0
20.0
20.0 | 18.0
18.5
16.5
18.0 | 14.5
15.5
15.0
14.5 | 16.0
16.5
15.5
16.0 | | MONTH | 29.5 | 14.5 | 22.0 | 30.5 | 16.0 | 24.2 | 31.0 | 16.5 | 23.7 | | | | | | | 0 | VVCEN DIC | COLUED (N | C/I) MATE | D VEAD O | 10 מינום חייי | 107 TA CEE | TEMBER 10 | 300 | | | ## OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|------------------|------------------|------------------|-----|---------|------| | | | OCTOBER | | | NOVEMBE | ₹. | | DECEMBER | R | | JANUARY | | | 1
2
3
4
5 | 11.0
10.7
12.1
11.8
11.4 | 7.5
7.4
9.1
8.5
8.3 | 9.2
9.2
10.5
9.9
9.2 | 10.3
10.7
11.4
11.6
13.0 | 8.2
7.8
7.4
7.3
8.5 | 9.1
8.8
8.9
9.0
10.6 | 13.5
13.6
 | 11.4
11.8
 | 12.2
12.5
 | | | | | 6
7
8
9
10 | 10.7
12.2
12.8
12.2
11.8 | 8.3
9.6
9.6
9.4
9.9 | 9.4
10.5
10.8
10.6
10.6 | 12.7
11.4
11.3
13.0
13.5 | 10.0
9.7
9.3
9.3
10.6 | 11.1
10.5
9.9
11.1
11.8 | | | | | | | | 11
12
13
14
15 | 12.9
13.0
13.1
11.7
12.4 | 10.0
9.7
9.4
9.1
8.8 | 11.2
11.1
10.9
10.1
10.1 | 13.6
13.6
12.5
12.1
12.4 | 10.9
10.5
9.9
9.7
9.3 | 12.0
11.9
11.1
10.5
10.6 | | | | | | | | 16
17
18
19
20 | 9.6
10.3
10.5
10.8
10.5 | 8.4
8.2
8.0
7.9
8.3 | 8.9
8.9
9.0
9.0 | 9.8
9.2
12.1
13.0
13.6 | 8.7
8.0
9.2
10.5
10.7 | 9.2
8.5
10.7
11.5
12.2 | | | | | | | | 21
22
23
24
25 | 12.3
11.9
12.1
11.1
11.9 | 9.9
9.4
9.3
9.3 | 10.8
10.3
10.5
10.0 | 13.6
12.0
10.2
11.3
12.1 | 10.5
9.5
9.2
10.0
10.5 | 12.0
10.9
9.8
10.6
11.1 | | | | | | | | 26
27
28
29
30
31 | 10.6
12.2
12.7
12.7
13.2
12.1 | 9.1
9.3
9.4
9.4
9.1
8.8 | 9.6
10.3
10.8
10.6
10.7 | 11.8
11.8
11.1
10.4
11.7 | 10.7
10.9
9.6
9.3
10.3 | 11.1
11.2
10.5
9.9
11.1 | | |

 | | | | | MONTH | 13.2 | 7.4 | 10.1 | 13.6 | 7.3 | 10.6 | | | | | | | 237 # SINSINAWA RIVER BASIN 05414800 SINSINAWA RIVER NEAR HAZEL GREEN, WI--CONTINUED OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |--|--|---|---|--|--|--|---|--|---|---|--|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | | | | 13.6
12.6 | 8.5
8 .1 | 10.6
9.9 | 15.9
15.4 | 6.5
6.5 | 10.5
10.4 | | 3 | | | | | | | 12.5 | 8.0 | 9.5 | 14.8 | 6.6 | 10.2 | | 4
5 | | | | | | | 13.7
13.8 | 7.1
7.1 | 10.0
9.5 | 14.5
14.1 | 6.9
6.5 | 10.3
10.0 | | 6 | | | | | | | 13.2 | 7.4 | 10.0 | 13.6 | 6.4 | 9.7 | | 7
8 | | | | | | | $14.1 \\ 14.1$ | 6.9
6.7 | 10.2
9.7 | 13.7
13.0 | 6.5
7.3 | 9.6
9.1 | | 9
10 | | | | | | | $14.4 \\ 11.8$ | 6.6
6.7 | 9.6
9.3 | 12.0
13.6 | 7.6
6.4 | 9.6
10.3 | | 11 | | | | | | | 12.6 | 7.2 | 9.8 | 13.2 | 6.3 | 9.5 | | 12
13 | | | | | | | 13.1
13.1 | 7.0
7.0 | 9.7
9.4 | $\frac{12.1}{12.9}$ | 5.5
5.5 | 8.5
9.0 | | 14 | | | | | | | 13.5 | 7.5 | 10.3 | 13.2 | 6.3 | 9.5 | | 15 | | | | | | | 13.8 | 8.2 | 10.7 | 12.7 | 6.1 | 8.8 | | 16
17 | | | | | | | 14.5
14.7 | 7.7
7.7 | 10.9
10.7 | 12.2
13.8 | 6.3
6.6 | 9.3
10.2 | | 18
19 | | | | | | | 15.0
15.4 | 8.4
8.7 | 11.4
11.9 | 13.5
13.3 | 6.2
6.1 | 9.4
9.3 | | 20 | | | | | | | 15.5 | 8.7 | 11.4 | 13.3 | 5.7 | 9.1 | | 21 | | | | 16.0 | | | 15.3 | 9.2 | 12.0 | 13.0 | 5.3 | 8.7 | | 22
23 | | | | 16.8
17.1 | 8.6
8.6 | $\frac{12.5}{12.0}$ | 14.8
13.8 | 10.3
9.5 | 11.9
11.4 | 12.7
12.4 | 5.3
5.9 | 8.4
8.5 | | 24
25 | | | | 14.5
11.0 | 8.3
7.7 | 10.5
9.0 | 15.7
16.3 | 7.8
6.8 | $11.7 \\ 11.1$ | 13.1
13.5 | 6.2
6.4 | 9.3
9.6 | | 26 | | | | 14.4 | 8.2 | 11.1 | 13.1 | 6.7 | 9.9 | 12.6 | 5.8 | 8.9 | | 27 | | | | 14.1 | 8.6 | 11.4 | 15.2 | 9.6 | 12.2 | 12.3 | 5.7 | 8.5 | | 28
29 | | | | $\frac{12.2}{9.5}$ | 7.5
7.5 | 9.8
8.5 | 17.2
17.5 | 7.8
6.9 | 12.6
11.8 | $12.4 \\ 12.0$ | $\frac{5.1}{5.1}$ | 8.4
8.3 | | 30
31 | | | | 12.7
13.3 | 8.6
8.5 | 10.5
10.6 | 16.2 | 6.6 | 10.9 | 12.3
12.5 | 5.0
4.9 | 8.2
8.3 | | MONTH | | | | | | | 17.5 | 6.6 | 10.7 | 15.9 | 4.9 | 9.3 | | 11011111 | | | | | | | 17.5 | 0.0 | 10., | 13.7 | ,,, | 7.5 | | | | | | | | | | | | | | | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | 1 | | 1 2
 11.9
11.0 | 4.4 | 7 - 8
7 - 3 | 12.8
12.9 | 6.0 | 9.0
8.8 | 8.4
8.5 | 3.4 | 5.6
5.6 | 11.2
11.4 | 6.0 | 8.0 | | 2
3 | $11.0 \\ 11.5$ | 4.4
4.4
5.0 | 7.3
7.9 | 12.9
13.0 | 6.0
5.4
5.3 | 8.8
8.7 | 8.5
9.0 | 3.4
3.7
4.0 | 5.6
6.0 | 11.4
11.6 | 6.0
5.8
5.9 | 8.0
8.0
8.2 | | 2 | 11.0 | 4.4
4.4 | 7.3 | 12.9 | 6.0
5.4 | 8.8 | 8.5 | 3.4
3.7 | 5.6 | 11.4 | 6.0
5.8 | 8.0
8.0 | | 2
3
4
5 | 11.0
11.5
11.7 | 4.4
4.4
5.0
5.2 | 7.3
7.9
8.2 | 12.9
13.0
13.3
13.2 | 6.0
5.4
5.3
5.2
5.0 | 8.8
8.7
8.7 | 8.5
9.0
8.8 | 3.4
3.7
4.0
4.1
4.6 | 5.6
6.0
5.6
6.5 | 11.4
11.6
10.7
12.0 | 6.0
5.8
5.9
6.0
7.5 | 8.0
8.2
8.3
9.5 | | 2
3
4
5
6
7 | 11.0
11.5
11.7
11.6
11.5
11.1 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4 | 7.3
7.9
8.2
8.0
7.7
7.5 | 12.9
13.0
13.3
13.2
11.7
11.3 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5 | 8.8
8.7
8.7
8.5
7.7
7.4 | 8.5
9.0
8.8
9.1
10.1
10.2 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2 | 5.6
6.0
5.6
6.5
7.2
7.2 | 11.4
11.6
10.7
12.0
12.9
12.6 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9 | 8.0
8.0
8.2
8.3
9.5 | | 2
3
4
5
6
7
8
9 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
4.3
5.7 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.5 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
9.7 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9 | 5.6
6.0
5.6
6.5
7.2
7.2
6.5
6.7 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9 | 8.0
8.2
8.3
9.5 | | 2
3
4
5
6
7
8
9 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8 | 4.4
5.0
5.2
4.9
4.8
4.4
4.3
5.7 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.4
4.5 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1
6.9 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
9.7
10.2 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9
5.3 | 5.6
6.0
5.6
6.5
7.2
7.2
6.5
6.7
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6 | | 2
3
4
5
6
7
8
9
10 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
4.3
5.7
5.7 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.5 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.2
10.2 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9 | 5.6
6.0
5.6
6.5
7.2
7.2
6.5
6.7 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6 | | 2
3
4
5
6
7
8
9
10 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
4.3
5.7
5.7
5.2
4.9 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4
8.4 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.1
5.1
4.3 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1
6.9
7.6
7.7 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
9.7
10.2 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9
5.3 | 5.6
6.0
5.6
6.5
7.2
7.2
6.7
7.3
7.1
7.0
6.8 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6 | | 2
3
4
5
6
7
8
9
10 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
4.3
5.7
5.7 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.5
4.7
5.1 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1
6.9
7.6
7.7 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.2
10.2 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9
5.3 | 5.6
6.0
5.6
6.5
7.2
7.2
6.5
6.7
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4 | 8.0
8.0
8.2
8.3
9.5
9.7
9.0
8.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.9
11.7
11.6
11.8 | 4.4
4.4
5.0
5.2
4.9
4.8
4.3
5.7
5.7
5.2
4.9
4.8 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4
8.4
8.1
7.8
7.8 | 12.9 13.0 13.3 13.2 11.7 11.3 11.1 10.6 10.5 10.8 11.1 10.7 10.2 9.1 7.2 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.1
5.3
3.9
3.5 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1
6.9
7.6
7.7
7.1
6.6
5.9 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
9.7
10.2
10.2
10.3
9.6
9.2
9.0
9.1 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9
5.3
5.0
4.9
4.6
4.3 | 5.6
6.0
5.6
6.5
7.2
7.2
6.5
6.7
7.3
7.1
7.0
6.8
6.7
6.1 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0
 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4
 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.7
11.6
11.8 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
5.7
5.7
5.7
5.2
4.9
4.9
5.0
5.2
5.0 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4
8.4
8.1
7.9
7.8
8.1
8.3
8.1 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5
10.8
11.1
10.7
10.2
9.1
7.2
7.7
8.5 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.1
5.0
4.3
3.9
3.5
3.3
2.7 | 8.8
8.7
8.5
7.7
7.4
7.3
7.1
6.6
7.7
7.1
6.6
5.9
4.9 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.3
9.6
9.2
9.0 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9
5.3
5.0
4.9
5.3
4.9
4.3
4.3
4.4 | 5.6
6.0
5.6
6.5
7.2
6.5
7.3
7.1
7.0
6.8
6.7
6.1
6.1
6.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0
 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4
 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.9
11.7
11.6
11.8 | 4.4
4.4
5.0
5.2
4.9
4.8
4.3
5.7
5.7
5.2
4.9
4.8
4.9 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4
8.4
8.1
7.8
7.8
8.1
8.1
7.2 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5
10.8
11.1
10.7
10.2
9.1
7.2
7.7
8.5
8.8 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.1
5.1
5.3
3.9
3.5 | 8.8
8.7
8.5
7.7
7.4
7.3
7.1
6.9
7.6
7.7
7.1
6.6
9
4.8
4.9
5.8 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.7
8.8 | 3.4
3.7
4.0
4.1
4.6
5.3
5.0
4.9
5.3
5.0
4.9
4.3
4.5
4.9 | 5.6
6.0
6.5
7.2
7.2
6.5
7.3
7.1
7.0
6.7
6.1
6.3
6.6 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0
 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4
 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.9
11.7
11.6
11.8 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
5.7
5.7
5.2
4.9
4.9
5.0
4.9
3.7 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4
8.4
8.1
7.9
7.8
8.1
8.3
8.1
7.2 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5
10.8
11.1
10.7
10.2
9.1
7.2
7.7
8.5
8.8
9.2 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.1
5.0
4.3
3.9
3.5
3.9
3.9 | 8.8
8.7
8.5
7.7
7.4
7.3
7.1
6.6
7.7
7.1
6.6
5.9
4.9
4.9
5.8 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.7
8.8
9.6 | 3.4
3.7
4.0
4.1
4.6
5.3
5.2
5.0
4.9
5.3
5.0
4.9
5.0
4.3
4.5
4.4
4.5
5.9 | 5.6
6.0
6.5
7.2
6.5
7.3
7.1
7.0
6.8
6.7
6.1
6.3
6.6
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0
 |
6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4
 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.7
11.6
11.8
12.0
12.1
11.9
10.4
10.7 | 4.4
4.4
5.0
5.2
4.9
4.8
4.3
5.7
5.7
5.2
5.0
4.8
4.9
5.2
5.0
4.9 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4
8.4
8.1
7.8
8.3
8.1
7.3
6.5
6.4 | 12.9 13.0 13.3 13.2 11.7 11.3 11.1 10.6 10.5 10.8 11.1 10.7 10.2 9.1 7.2 7.7 8.5 8.8 9.2 11.1 12.5 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.1
5.3
3.9
3.5
3.9
4.9
6.5 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1
6.9
7.6
7.7
7.1
6.6
5.9
4.9
4.9
8.5 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
9.7
10.2
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.7
8.8
9.6 | 3.4
3.7
4.0
4.1
4.6
5.3
5.0
4.9
5.3
5.0
4.9
5.3
4.5
4.9
5.9
5.9 | 5.6
6.0
5.6
6.5
7.2
7.2
6.5
7.3
7.1
7.0
6.7
6.1
6.3
6.6
7.3
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0

11.2
12.3
8.5 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4
 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6

8.5
9.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.7
11.6
11.8
12.0
12.1
11.9
10.4
10.7 | 4.4
4.4
5.0
5.2
4.9
4.8
4.3
5.7
5.7
5.0
4.8
4.9
5.0
5.0
4.9
3.7
3.7
3.9 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.2
8.4
8.1
7.8
7.8
8.1
8.1
7.3
6.5
6.4
7.2 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5
10.8
11.1
10.7
10.2
9.1
7.2
7.7
8.5
8.8
9.2
11.1
12.5
12.6 | 6.0
5.4
5.3
5.2
5.0
4.65
4.7
5.1
5.3
3.9
3.5
3.8
2.8
7.1
3.9
6.5
6.5
6.5 | 8.8
8.7
8.7
8.5
7.7
7.3
7.1
6.6
7.7
7.1
6.6
5.9
4.8
5.8
6.3
7.7
9.0
8.7 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.8
9.6
9.5
7.9
7.9 | 3.4
3.7
4.0
4.6
5.2
5.0
5.0
5.0
4.9
5.3
5.0
4.9
5.4
4.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5 | 5.6
6.0
6.5
7.2
6.5
7.2
6.5
7.3
7.1
6.8
6.7
6.1
6.3
6.6
7.3
7.3
7.3
6.8
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0

11.2
12.3
8.5
8.7
10.0 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4

6.9
7.1
5.5
5.3
5.6 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6

8.5
9.1
7.0
6.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.9
11.7
11.6
11.8
12.0
12.1
11.9
10.4
10.7 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
5.7
5.7
5.2
5.0
4.8
4.9
5.2
5.0
4.9
3.7
3.7
3.7
4.2
4.7 | 7.3
7.9
8.2
8.0
7.7
7.5
8.4
8.4
8.4
7.8
7.8
8.1
8.3
8.1
7.2
7.3
6.5
6.4
7.2
7.3 | 12.9 13.0 13.3 13.2 11.7 11.3 11.1 10.6 10.5 10.8 11.1 10.7 10.2 9.1 7.2 7.7 8.5 8.8 9.2 11.1 12.5 12.9 12.6 12.4 | 6.0
5.4
5.3
5.2
6.4
5.3
5.2
6.4
6.5
6.6
6.6
6.6 | 8.8
8.7
8.5
7.7
7.4
7.3
7.6
9
7.7
7.1
6.6
5.9
4.9
8.5
7.7
9.0
8.7
8.7 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.7
8.8
9.6
9.5
7.1
7.4
8.3 | 3.4
3.7
4.0
4.1
4.6
5.3
5.0
4.9
5.3
5.0
4.9
5.4
4.3
4.5
4.4
9.5
5.9
5.9
5.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6 | 5.6
6.0
6.5
7.2
6.5
7.3
7.1
6.8
6.7
7.3
6.6
6.1
6.3
6.6
7.3
7.3
6.5
6.6 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0

11.2
12.3
8.5
8.7
10.0
10.2 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4

6.9
7.1
5.5
5.3
5.6
5.7 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6

8.5
9.1
7.0
6.4
7.4 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.7
11.6
11.8
12.0
12.1
11.9
10.4
10.7
9.9
10.6
10.5 | 4.4
4.4
5.0
5.2
4.9
4.8
4.4
5.7
5.7
5.2
4.9
5.0
4.9
5.2
4.9
3.7
3.7
3.9
4.2
4.7 | 7.3
7.9
8.2
8.0
7.7
7.3
8.2
8.4
8.1
7.8
7.8
8.1
8.1
7.2
7.3
6.5
7.2
7.3 | 12.9
13.0
13.3
13.2
11.7
11.3
11.1
10.6
10.5
10.8
11.1
10.7
10.2
9.1
7.2
7.7
8.5
8.8
9.2
11.1
12.5
12.6 | 6.0
5.4
5.3
5.2
5.0
4.65
4.7
5.1
5.3
3.9
3.5
3.8
2.8
7.1
3.9
6.5
6.5
6.5 | 8.8
8.7
8.7
8.5
7.7
7.3
7.1
6.6
7.7
7.1
6.6
5.9
4.8
5.8
6.3
7.7
9.0
8.7 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.7
8.8
9.6
9.5
7.9
7.1
7.4
8.3
9.6 | 3.4
3.7
4.16
5.3
5.0
4.9
5.3
5.0
4.9
5.3
4.9
5.8
4.4
4.9
5.8
5.9
5.8
5.9
5.8
5.9
5.6
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6 | 5.6
6.0
6.5
7.2
7.2
6.5
7.3
7.1
6.8
6.7
6.1
6.3
6.6
7.3
7.3
6.5
7.3
7.3
6.5
7.3
7.3
6.5
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0

11.2
12.3
8.5
8.7
10.0
10.2 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4

6.9
7.1
5.5
5.6
5.7 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6

8.5
9.1
7.0
6.4
7.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.7
11.6
11.8
12.0
12.1
11.9
10.4
10.7
9.9
10.6
10.5 | 4.4
4.4
5.0
5.2
4.8
4.4
5.7
5.2
4.8
4.9
5.0
4.8
4.9
5.0
4.9
4.9
5.0
4.9
4.9
5.0
4.9
4.9
5.0
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9 | 7.3
7.9
8.2
8.0
7.7
7.5
7.3
8.4
8.4
8.4
7.8
8.3
7.8
8.1
7.3
6.5
7.2
7.3
7.8
8.3
8.1 | 12.9 13.0 13.3 13.2 11.7 11.3 11.1 10.6 10.5 10.8 11.1 10.7 10.2 9.1 7.2 7.7 8.5 8.8 9.2 11.1 12.5 12.9 12.6 12.4 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.0
4.3
3.5
3.3
2.7
3.19
4.5
6.6
6.6 | 8.8
8.7
8.7
8.5
7.7
7.4
7.3
7.1
6.9
7.7
7.1
6.6
5.9
4.9
8.7
9.0
8.7
8.9 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
9.7
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.7
8.8
9.6
9.5
7.9
7.1
7.4
8.3
9.6
9.1
10.8 | 3.4
3.7
4.1
4.6
5.3
5.0
4.9
5.3
5.0
4.3
4.5
4.4
4.9
5.8
5.9
5.9
6.7
6.7
6.7
6.7 | 5.6
6.0
6.5
7.2
6.5
7.3
7.1
6.8
6.7
7.3
6.6
6.6
7.3
7.3
6.6
6.6
7.3
7.3
6.5
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0

11.2
12.3
8.5
8.7
10.0
10.2
10.6
10.1
9.3 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4

6.9
7.1
5.5
5.3
5.6
5.7 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.7
11.6
11.8
12.1
11.7
11.6
11.8
12.1
11.9
10.4
10.7 | 4.4
5.2
4.8
5.2
4.8
4.3
5.7
5.0
4.8
4.3
5.7
5.0
4.8
4.9
5.2
5.2
4.8
4.9
5.2
4.8
4.9
5.0
5.0
4.8
4.9
6.5
6.5
6.5
6.5
6.5
6.5
6.5
6.5 | 7.3
7.9
8.2
8.0
7.5
7.3
8.2
8.4
8.1
9.8
8.1
7.8
8.1
7.3
6.4
7.2
7.3
8.0
9.2 | 12.9 13.0 13.3 13.2 11.7 11.3 11.1 10.6 10.5 10.8 11.1 10.7 10.2 9.1 7.2 7.7 8.5 8.8 9.2 11.1 12.5 12.6 12.4 | 6.0
5.4
5.3
5.2
5.0
4.6
4.5
4.7
5.1
5.3
3.9
4.5
4.5
4.7
3.9
4.9
6.3
6.6
6.6

4.7 | 8.8
8.7
8.5
7.7
7.3
7.1
6.9
7.6
7.1
6.6
9.0
9.0
9.7
8.9
9.7
8.9 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.7
8.8
9.6
9.7
7.1
4.8
9.6
9.7
9.7
9.7
9.7
9.7
9.7
9.7
9.7 | 3.7016
3.7016
3.7016
5.32093
5.9063
4.54.99
5.9467
5.7996
6.6666 |
5.6
6.0
6.5
7.2
6.5
7.2
6.7
7.1
6.7
6.7
7.3
6.7
7.3
6.6
7.3
7.3
6.6
7.3
7.3
6.5
7.3
7.3
6.5
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0

11.2
12.3
8.5
8.7
10.0
10.2
10.6
10.1
9.3
11.1 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4

6.9
7.1
5.5
5.6
5.7
5.8
5.8
6.5 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6

8.5
9.1
7.0
6.4
7.5
7.5
7.3
7.4
8.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 11.0
11.5
11.7
11.6
11.5
11.1
10.9
11.4
11.8
12.0
11.7
11.6
11.8
12.0
12.1
11.9
10.4
10.7
9.9
10.6
10.5 | 4.4
5.0
5.2
4.8
4.4
5.7
5.2
4.8
4.3
5.7
5.2
4.9
5.2
4.9
5.2
4.9
5.2
4.9
4.9
5.2
4.9
4.9
5.0
4.9
4.9
5.0
4.9
4.9
5.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | 7.3
7.9
8.2
8.0
7.5
7.3
8.2
8.4
8.1
7.8
8.1
7.8
8.3
7.3
6.5
7.2
7.3
7.8
8.3
7.2
7.3
8.3
8.0
7.5
7.8 | 12.9 13.0 13.3 13.2 11.7 11.3 11.1 10.6 10.5 10.8 11.1 10.7 10.2 9.1 7.2 7.7 8.5 8.8 9.2 11.1 12.5 12.6 12.4 | 6.0
5.4
5.3
5.2
6.4
5.3
5.2
6.5
6.6
6.6
6.6
6.6
6.6
6.7 | 8.8
8.7
8.5
7.4
7.3
7.1
6.6
7.7
7.1
6.6
9
4.9
8.7
9.0
8.7
9.0
8.7
8.9 | 8.5
9.0
8.8
9.1
10.1
10.2
9.7
10.2
10.3
9.6
9.2
9.0
9.1
9.5
8.8
9.6
9.5
7.9
7.1
7.4
8.3
9.6
9.1 | 3.7
4.1
4.6
5.3
5.0
9.0
5.3
5.0
9.0
6.3
4.5
5.3
4.9
9.0
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9 | 5.6
6.0
6.5
7.2
7.2
6.5
7.3
7.1
6.8
6.7
6.1
6.3
6.6
7.3
7.3
6.5
7.3
6.5
7.3
6.5
7.3
7.1
6.5
7.3
7.3
6.5
7.3
7.3
6.5
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3
7.3 | 11.4
11.6
10.7
12.0
12.9
12.6
12.0

11.2
12.3
8.5
10.0
10.2
10.6
10.1
9.3
11.1 | 6.0
5.8
5.9
6.0
7.5
7.3
6.9
6.4

6.9
7.1
5.5
5.3
5.6
5.7
5.8
6.5 | 8.0
8.2
8.3
9.5
9.7
9.0
8.6

8.5
9.1
7.0
6.4
7.4
7.5
7.5
7.3
7.4
8.3 | TOTAL 0.87 3.59 ### SINSINAWA RIVER BASIN ## 05414800 SINSINAWA RIVER NEAR HAZEL GREEN, WI--CONTINUED ## PRECIPITATION QUANTITY PERIOD OF RECORD.--July 1987 to current year (during non-freezing periods). GAGE. -- Micrologger. REMARKS. -- Records good. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.37 in., Aug. 8, 1987. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.82 in., Aug. 22. | | | RAIN | FALL ACCUM | ULATED (| INCHES), | WATER YEAR
SUM VALUES | | 1987 TO S | EPTEMBER | 1988 | | | |-----|------|------|------------|----------|----------|--------------------------|------|-----------|----------|------|------|-----| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .01 | . 24 | .00 | | | | .01 | .00 | .00 | .00 | .00 | .00 | | 2 | .00 | .02 | .00 | | | | .35 | .00 | .00 | .00 | .00 | .00 | | 3 | .01 | .00 | .00 | | | | .09 | .00 | .00 | .00 | .00 | .00 | | 4 | .00 | .00 | | | | | .01 | .00 | .00 | .00 | . 29 | .00 | | 5 | .00 | .00 | | | | | .10 | .00 | .00 | .00 | .41 | .01 | | 6 | .00 | .00 | | | | | .04 | .00 | .00 | .00 | .00 | .00 | | 7 | .00 | .12 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 8 | .00 | .02 | | | | | .00 | .55 | .00 | .00 | . 52 | .00 | | 9 | .00 | .01 | | | | | .00 | .14 | .00 | .53 | .00 | .00 | | 10 | .00 | .01 | | | | | .00 | .00 | .00 | .05 | .00 | .00 | | 11 | .01 | .03 | | | | | .00 | .25 | .00 | .00 | .00 | .00 | | 12 | .00 | .00 | | | | | .00 | .02 | .00 | .00 | .00 | .00 | | 13 | .00 | .00 | | | | | .02 | .00 | .00 | .00 | .00 | .00 | | 14 | .02 | .00 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 15 | .01 | .06 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 16 | .53 | . 85 | | | | | .00 | .00 | .00 | .65 | .00 | .17 | | 17 | .00 | .77 | | | | | .00 | .00 | .00 | .00 | .00 | .66 | | 18 | .00 | .03 | | | | | .00 | .00 | .05 | . 47 | .00 | .15 | | 19 | .00 | .00 | | | | | .00 | .00 | .01 | .00 | .00 | .97 | | 20 | .02 | .00 | | | | | .16 | .00 | .00 | .06 | .00 | .07 | | 21 | .00 | .00 | | | | .00 | . 13 | .00 | .00 | .00 | .00 | .06 | | 22 | .00 | .00 | | | | .00 | . 45 | .00 | .02 | .00 | 1.82 | .75 | | 23 | .01 | .00 | | | | .00 | .06 | .09 | .00 | .00 | .02 | .01 | | 24 | .11 | .09 | | | | .65 | .00 | .00 | .04 | .16 | .00 | .00 | | 25 | . 00 | 13 | | | | . 01 | . 00 | .00 | .00 | .11 | .00 | .00 | | 26 | .14 | .00 | | | | .00 | . 26 | .00 | .00 | .00 | .00 | .00 | | 27 | .00 | .09 | | | | .01 | . 15 | .00 | .00 | .00 | .00 | .00 | | 28 | .00 | 1.09 | | | | 1.15 | .00 | .00 | .00 | .00 | .00 | .00 | | 29 | .00 | . 03 | | | | .06 | .00 | .00 | .27 | .00 | .00 | .00 | | 30 | .00 | .00 | | | | . 00 | .00 | .00 | .00 | .00 | .03 | .00 | | 31 | .00 | | | | | .00 | | .00 | | .00 | .00 | | 1.83 1.05 0.39 2.03 3.09 2.85 #### 05415000 GALENA RIVER AT BUNCOMBE, WI LOCATION.--Lat 42°30'49", long 90°22'40", in SW 1/4 sec.33, T.1 N., R.1 E., Lafayette County, Hydrologic Unit 07060005, on left bank at Buncombe, 0.6 mi upstream from Coon Branch, 1.5 mi upstream from Scrabble Branch, 2.0 mi upstream from Wisconsin-Illinois State line, and 3.5 mi southeast of Hazel Green. DRAINAGE AREA. -- 125 mi². PERIOD OF RECORD. -- September 1939 to current year. REVISED RECORDS.--WSP 1438: 1942(P), 1943(M), 1944(P), 1945(M). WDR WI-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 682.31 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 1, 1939, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. Gage-height telemeter at station. AVERAGE DISCHARGE. -- 49 years, 79.7 ft3/s, 8.66 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 29,700 ft³/s, June 29, 1969, gage height, 19.57 ft from rating curve extended above 8,100 ft³/s on basis of slope-area measurements at gage heights 15.68 ft and 19.57 ft; minimum discharge, 0.8 ft³/s, Mar. 3, 1954. EXTREMES OUTSIDE OF PERIOD OF RECORD.--Flood of February 1937 reached a stage of about 17.1 ft, from information by local resident, discharge, $18,000 \, \mathrm{ft}^3/\mathrm{s}$. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft3/s and maximum (*): | DATE | TIME | DISCHARGE (ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE (ft ³ /s) | GAGE HEIGHT (ft) | |---------|------|--------------------------------|------------------|------|------|--------------------------------|------------------| | Jan. 31 | | (a) *1.300 | (a) *9.22 | | | | | (a) Backwater from ice. Minimum discharge, 23 ft3/s, Aug. 18. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 16-21 and Dec. 27 to Mar. 4.) 2.5 3.0 77 3.5 156 4.0 264 | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
AN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------|------|-----------|---------|----------|---------|-------------------------|---------|---------|-----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 56 | 59 | 80 | 56 | 250 | 180 | 110 | 68 | 51 | 37 | 28 | 29 | | 2 | 56 | 62 | 74 | 52 | 180 | 120 | 110 | 67 | 52 | 37 | 27 | 29 | | 3 | 53 | 60 | 75 | 49 | 160 | 100 | 127 | 66 | 51 | 37 | 26 | 29 | | 4 | 53 | 59 | | | 140 | | | 66 | 52 | 36 | 28 | 30 | | | | | 69 | 48 | | 98 | 112 | | 52
52 | 35 | 40 | 30 | | 5 | 56 | 56 | 69 | 46 | 130 | 99 | 106 | 67 | 32 | 23 | 40 | 30 | | 6 | 58 | 55 | 65 | 45 | 130 | 100 | 105 | 67 | 52 | 34 | 32 | 30 | | 7 | 55 | 57 | 66 | 44 | 130 | 106 | 97 | 68 | 51 | 36 | 28 | 30 | | 8 | 53 | 59 | 69 | 44 | 130 | 117 | 93 | 74 | 50 | 36 | 31 | 30 | | 9 | 53 | 56 | 98 | 44 | 130 | 113 | 90 | 92 | 47 | 35 | 32 | 30 | | 10 | 52 | 53 | 90 | 44 | 120 | 101 | 86 | 77 | 47 | 47 | 32 | 29 | | 11 | 52 | 53 | 86 | 44 | 120 | 99 | 87 | 69 | 47 | 42 | 30 | 29 | | 12 | 56 | 56 | 82 | 44 | 120 | 102 | 85 | 69 | 47 | 39 | 30 | 29 | | 13 | 58 | | 75 | 44 | | 95 | 84 | 67 | 47 | 38 | 28 | 28 | | | | 59 | | | 120 | | | | | | | 28 | | 14 | 55 | 56 | 71 | 43 | 120 | 87 | 82 | 66 | 46 | 37 | 28 | | | 15 | 56 | 54 | 65 | 43 | 120 | 90 | 79 | 70 | 44 | 35 | 27 | 28 | | 16 | 59 | 60 | 64 | 44 | 120 | 87 | 78 | 64 | 43 | 37 | 26 | 30 | | 17 | 65 | 115 | 62 | 45 | 110 | 85 | 78 | 66 | 44 | 44 | 25 | 39 | | 18 | 58 | 85 | 66 | 46 | 110 | 85 | 77 | 65 | 46 | 37 | 24 | 34 | | 19 | 56 | 68 | 78 | 47 | 110 | 84 | 74 | 64 | 47 | 37 | 25 | 46 | | 20 | 55 | 63 | 90 | 70 | 110 | 83 | 75 | 64 | 45 | 35 | 28 | 47 | | 21 | 54 | 61 | 110 | 60 | 110 | 0.0 | 7.7 | | | 20 | 0.7 | 27 | | | | | | 62 | | 80 | 77 | 62 | 43 | 38 | 27 | 37 | | 22 | 54 | 61 | 86 | 54 | 110 | 80 | 76 | 59 | 42 | 35 | 30 | 59 | | 23 | 55 | 62 | 80 | 50 | 110 | 83 | 89 | 57 | 40 | 34 | 59 | 70 | | 24 | 56 | 58 | 82 | 48 | 100 | 84 | 79 | 55 | 40 | 34 | 38 | 41 | | 25 | 55 | 61 | 88 | 47 | 100 | 110 | 73 | 52 | 41 | 37 | 31 | 36 | | 26 | 56 | 59 | 79 | 46 | 110 | 93 | 73 | 53 | 37 | 36 | 30 | 34 | | 27 | 59 | 58 | 76 | 46 | 140 | 85 | 84 | 53 | 37 | 34 | 30 | 33 | | 28 | 55 | 93 | 68 | 45 | 150 | 97 | 79 | 52 | 37 | 33 | 31 | 33 | | 29 | 54 | 120 | 74 | 45 | 160 | 190 | 73 | 51 | 40 | 31 | 30 | 34 | | 30 | 54 | 89 | 70 | 220 | | 133 | 70 | 51 | 41 | 30 | 30 | 34 | | 31 | 53 | | 62 | 600 | | 117 | | 50 | | 29
| 30 | | | TOTAL | 1720 | 1967 | 2369 | 2205 | 3750 | 3183 | 2608 | 1971 | 1359 | 1122 | 941 | 1045 | | MEAN | 55.5 | 65.6 | 76.4 | 71.1 | 129 | 103 | 86.9 | 63.6 | 45.3 | 36.2 | 30.4 | 34.8 | | | | | | | | | | | | 47 | 59 | 70 | | MAX | 65 | 120 | 110 | 600 | 250 | 190 | 127 | 92 | 52 | 29 | 24 | 28 | | MIN | 52 | 53 | 62 | 43 | 100 | 80 | 70 | 50 | 37 | | | | | CFSM | .44 | .52 | .61 | .57 | 1.03 | . 82 | .70 | .51 | .36 | .29 | .24 | . 28 | | IN. | .51 | . 59 | .71 | . 66 | 1.12 | .95 | .78 | . 59 | . 40 | .33 | . 28 | .31 | CAL YR 1987 TOTAL 29963 MEAN 82.1 MAX 498 MIN 52 CFSM .66 IN. 8.92 WTR YR 1988 TOTAL 24240 MEAN 66.2 MAX 600 MIN 24 CFSM .53 IN. 7.21 ## 430844088233300 NORTH LAKE NEAR NORTH LAKE, WI LOCATION.--Lat 43°08'44", long 88°23'33", in NE 1/4 sec.20, T.8 N., R.18 E., Waukesha County, Hydrologic Unit 07090001, 1.4 miles southwest of North Lake. PERIOD OF RECORD. -- April 1985 to current year. GAGE. -- Staff gage read by Peter J. Mihelich. Elevation of gage is 896 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 13.16 ft, Oct. 5, 1986; minimum observed, 9.75 ft, July 11-14, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 10.69 ft, May 1; minimum observed, 9.75 ft, July 11-14. | | | | GAGE HEI | GHT, FEET | | EAR OCTOB
AN VALUES | | TO SEPTEM | BER 1988 | | | | |----------|-------|-----|----------|-----------|-----|------------------------|-----|-----------|----------|------|------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | 10.69 | 10.12 | 9.82 | 9.87 | 9.87 | | 2 | 10.50 | | | | | | | 10.65 | 10.11 | 9.82 | 9.85 | 9.87 | | 3 | 10.46 | | | | | | | 10.61 | 10.09 | 9.82 | 9.82 | 9.87 | | 4 | 10.42 | | | | | | | 10.54 | 10.05 | 9.82 | 9.81 | 9.87 | | 5 | 10.38 | | | | | | | 10.49 | 10.04 | 9.82 | 9.80 | 9.95 | | 6 | 10.36 | | | | | | | 10.45 | 10.03 | 9.81 | 9.80 | 9.95 | | 7 | 10.34 | | | | | | | 10.39 | 10.03 | 9.80 | 9.80 | 9.91 | | 8 | 10.32 | | | | | | | 10.39 | 10.01 | 9.79 | 9.80 | 9.89 | | 9 | 10.30 | | | | | | | 10.39 | 10.00 | 9.78 | 9.82 | 9.88 | | 10 | 10.28 | | | | | | | 10.43 | 9.97 | 9.76 | 9.85 | 9.88 | | 11 | 10.26 | | | | | | | 10.43 | 9.93 | 9.75 | 9.85 | 9.88 | | 12 | 10.24 | | | | | | | 10.43 | 9.92 | 9.75 | 9.85 | 9.88 | | 13 | 10.24 | | | | | | | 10.43 | 9.91 | 9.75 | 9.85 | 9.88 | | 14 | 10.24 | | | | | | | 10.43 | 9.90 | 9.75 | 9.85 | 9.88 | | 15 | 10.24 | | | | | | | 10.43 | 9.89 | 9.85 | 9.85 | 9.88 | | 16 | 10.24 | | | | | | | 10.44 | 9.88 | 9.85 | 9.85 | 9.89 | | 17 | 10.26 | | | | | | | 10.44 | | 9.85 | 9.85 | 9.95 | | 18 | 10.26 | | | | | | | 10.36 | 9.87 | 9.85 | 9.85 | 9.95 | | 19 | 10.26 | | | | | | | 10.35 | 9.85 | 9.85 | 9.85 | 10.15 | | 20 | 10.26 | | | ~~- | | | | 10.33 | 9.85 | 9.85 | 9.85 | 10.13 | | 21 | 10.26 | | | | | | | 10.33 | 9.84 | 9.91 | 9.85 | 10.09 | | 22 | 10.26 | | | | | | | 10.31 | 9.83 | 9.95 | 9.85 | 10.15 | | 23 | 10.26 | | | | | | | 10.29 | 9.82 | 9.95 | 9.88 | 10.21 | | 24 | 10.26 | | | ~~- | | | | 10.27 | 9.82 | 9.95 | 9.88 | 10.15 | | 25 | 10.26 | | | ~ | | | | 10.23 | 9.82 | 9.95 | 9.88 | 10.11 | | 26 | 10.28 | | | ~ | | | | 10.19 | 9.82 | 9.95 | 9.88 | 10.10 | | 27 | 10.28 | ~ | | ~ | | | | 10.15 | 9.82 | 9.92 | 9.88 | 10.09 | | 28 | | | | ~ | | | | 10.15 | 9.82 | 9.90 | 9.88 | 10.09 | | 29 | | | | ~ | | | | 10.15 | 9.82 | 9.90 | 9.88 | 10.09 | | 30
31 | | | | | | | | 10.14 | 9.82 | 9.89 | 9.88 | 10.08 | | 31 | | | | | | | | 10.13 | | 9.88 | 9.87 | | | MEAN | | | | | | | | 10.37 | | 9.85 | 9.85 | 9.99 | | MAX | | | | | | | | 10.69 | | 9.95 | 9.88 | 10.21 | | MIN | | | | ~ | | | | 10.13 | | 9.75 | 9.80 | 9.87 | ## 430723088252100 OKAUCHEE LAKE AT OKAUCHEE, WI LOCATION.--Lat 43°07'23", long 88°25'21", in NE 1/4 NE 1/4, sec.36, T.8 N., R.17 E., Waukesha County, Hydrologic Unit 07090001, at Okauchee. DRAINAGE AREA. -- 80.7 mi². ### LAKE-STAGE RECORDS PERIOD OF RECORD. -- February to September 1984, March 1986 to current year. GAGE.--Staff gage at outlet read by Tom Gukich. Datum of gage, 869.00 ft above National Geodetic Vertical Datum of 1929. Lake levels drawn down below dam crest in late September to repair dam crest. Repairs started Sept. 29. REMARKS.--Lake levels controlled at dam outlet by Town of Oconomowoc. The Oconomowoc River flows through the EXTREMES FOR PERIOD OF RECORD.--Maximum gage-height observed, 5.54 ft, Sept. 22, 1986; minimum observed, 3.48 ft, Aug. 31, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage-height observed, 4.90 ft, Apr. 14; minimum observed, 3.48 ft, Aug. 31. | | | | GAGE HEI | GHT, FEET | | ZEAR OCTO | | TO SEPTEM | BER 1988 | | | | |-----|------|------|----------|-----------|-----|-----------|------|-----------|----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | 4.50 | | | | | 2 | | | | | | | | | | | 3.78 | | | 3 | | | | | | | | 4.70 | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | - | | | | | | | | 6 | 4.00 | | | | | | | | | | | | | 7 | | | | | | | | | | | | 3.52 | | 8 | 4.00 | | | | | | | | 4.50 | | | | | 9 | 4.10 | | | | | | | | | | | | | 10 | | | | | | | | 4.82 | 4.40 | | | | | 11 | | | | | | | | | | | | | | 12 | | | | | | | | 4.74 | | | | 3.52 | | 13 | 4.10 | 4.52 | | | | | | | 4.40 | | | | | 14 | | | | | | | 4.90 | | | | | | | 15 | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | 17 | | | | | | | | 4.98 | | | | | | 18 | 4.30 | | | | | | | 4.50 | | | 3.67 | | | 19 | | | | | | | 4.60 | | | | | | | 20 | | | | | | | | | | | | 3.52 | | 21 | 4.38 | 4.51 | | | | | | | | | | | | 22 | | | | | | | | | | | | | | 23 | | | | | | | | | | | 3.60 | | | 24 | | | | | | | | | | | | | | 25 | | | | | | | | 4.54 | | | 3.60 | 3.92 | | 26 | 4.60 | | | | | | | | | 3.90 | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | 4.42 | | 4.20 | | | 4.00 | | 29 | | | | | | | | | | | | | | 30 | 4.70 | | | | | | | | | | | | | 31 | | | | | | | | | | | 3.48 | | #### 430723088252100 OKAUCHEE LAKE AT OKAUCHEE, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 1984 to current year. REMARKS .-- A detailed water quality management plan has been developed for Okauchee Lake by Southeastern Wisconsin Regional Planning Commission; previous water-quality data are available in this report. Lake sampled near center at a lake depth of about 93 feet. Lake ice-covered during Feb. 17 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. WATER-QUALITY DATA, FEBRUARY 17 TO AUGUST 22, 1988 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER ### WATER-QUALITY RECORDS ## 430759088244200 OKAUCHEE LAKE, NO. 1, NEAR OKAUCHEE, WI LOCATION.--Lat 43°07'59", long 88°24'42", in NE 1/4 NW 1/4 sec.30, T.8 N., R.18 E., Waukesha County, Hydrologic Unit 07090001, near Okauchee. PERIOD OF RECORD. -- April 1986 to current year. REMARKS.--Sampling site is located in Crane's Nest Bay, in the northeast part of the lake, at a depth of 10 ft. - Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, APRIL 19 TO AUGUST 22, 1988 (Milligrams per liter unless otherwise indicated) | | Apr. 19 | June 17 | Ju1y 19 | Aug. 22 | |------------------------------|---------|---------|---------|---------| | | | | | | | Depth of sample (ft) | 1.5 | 1.5 | 1.5 | 1.5 | | Specific conductance (µS/cm) | 560 | 505 | 482 | 452 | | pH (units) | 8.00 | 8.50 | 8.30 | 8.60 | | Water temperature (°C) | 8.5 | 22.5 | 27.0 | 24.5 | | Secchi-disc (meters) | | 1.3 | 1.7 | 1.5 | | Dissolved oxygen | 12.2 | 8.0 | 7.6 | 8.8 | | Total phosphorus (as P) | 0.012 | 0.014 | 0.009 | 0.216 | | Chlorophyll a. phyto. (ug/L) | 5 | 4 | 6 | 4 | ### 430645088264500 OKAUCHEE LAKE, NO. 2, AT OKAUCHEE, WI LOCATION.--Lat $43^{\circ}06'45"$, long $88^{\circ}26'45"$, in NE 1/4 NE 1/4 sec.35, T.8 N., R.17 E., Waukesha County, Hydrologic Unit 07090001, at Okauchee. PERIOD OF RECORD. -- April 1986 to current year. REMARKS.--Sampling site is located in Lower Okauchee Lake, at a depth of 10 ft. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, APRIL 19 TO AUGUST 22, 1988 (Milligrams per liter unless otherwise indicated) | | Apr. 19 | June 17 | July 19 | Aug. 22 | |------------------------------|---------|---------|---------|---------| | | | | | | | Depth of sample (ft) | 1.5 | 1.5 | 1.5 | 1.5 | | Specific conductance (µS/cm) | 529 | 435 | 436 | 418 | | pH (units) | 8.20 | 8.80 | 8.40 | 8.70 | | Water temperature (°C) | 10.0 | 24.0 | 28.0 | 25.0 | | Secchi-disc (meters) | | 2.6 | 2.2 | 1.7 | | Dissolved oxygen | 11.6 | 9.7 | 7.6 | 8.4 | | Total phosphorus (as P) | 0.012 | 0.012 | 0.009 | 0.164 | | Chlorophyll a, phyto. (µg/L) | | 3 | <5 | 7 | ### 430642088252400 OKAUCHEE LAKE, NO. 3, AT OKAUCHEE, WI LOCATION.--Lat $43^{\circ}06'42"$, long $88^{\circ}25'24"$, in NE 1/4 NE 1/4 sec.36, T.8 N., R.17 E., Waukesha County, Hydrologic Unit 07090001, at Okauchee. PERIOD OF RECORD.--April 1986 to current year. REMARKS.--Sampling site is located in Ice House Bay, in the south bay of Okauchee Lake, at a depth of 10 ft. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, APRIL 19 TO AUGUST 22, 1988 (Milligrams per liter unless otherwise indicated) | | Apr. 19 | June 17 | July 19 | Aug. 22 | |------------------------------|---------|---------|---------|---------| | Depth of sample (ft) | 1.5 | 1.5 | 1.5 | 1.5 | | Specific conductance (µs/cm) | 534 | 472 | 473 | 441 | | pH (units) | 8.00 | 8.60 | 8.00 | 8.60 | | Water temperature (°C) | 9.0 | 23.5 | 27.5 | 25.0 | | Secchi-disc (meters) | | 1.7 | 2.2 | 1.5 | | Dissolved oxygen | 11.9 | 9.9 | 7.2 | 8.8 | | Total phosphorus (as P) | 0.012 | 0.010 | 0.009 | 0.014 | | Chlorophyll a, phyto. (µg/L) | | 4 | 6 | 7 | ### 430757088261700 OKAUCHEE LAKE, NO. 4, AT OKAUCHEE, WI LOCATION.--Lat 43°07'57", long 88°26'17", in NW 1/4 NW 1/4 sec.25, T.8 N., R.17 E., Waukesha County, Hydrologic Unit 07090001, at Okauchee. PERIOD OF RECORD. --
June 1986 to current year. REMARKS.--Sampling site is located near Crazyman's Island, in the northwest bay of Okauchee Lake, at a depth of 10 ft. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, APRIL 19 TO AUGUST 22, 1988 (Milligrams per liter unless otherwise indicated) | | Apr. 19 | June 17 | July 19 | Aug. 22 | |-------------------------------------|---------------|---------|---------|---------| | Depth of sample (ft) | 1.5 | 1.5 | 1.5 | 1.5 | | Specific conductance (µS/cm) | 532 | 438 | 449 | 452 | | pH (units) | 8.10 | 8.80 | 8.30 | 8.50 | | Water temperature (°C) | 7.5 | 22.0 | 27.0 | 24.5 | | Secchi-disc (meters) | - | 1.3 | 3.4 | 1.7 | | Dissolved oxygen | 12.6 | 10.7 | 8.0 | 8.4 | | Total phosphorus (as P) | 0.010 | 0.016 | 0.005 | 0.010 | | Chlorophyll a, phyto. ($\mu g/L$) | | | <5 | 3 | ### 430551088273500 OCONOMOWOC LAKE NO. 1 (CENTER) AT OCONOMOWOC, WI LOCATION.--Lat 43°05'51", long 88°27'35", in NW 1/4 SE 1/4 sec.2, T.7 N., R.17 E., Waukesha County, Hydrologic Unit 07090001, at Oconomowoc. ## LAKE-STAGE RECORDS PERIOD OF RECORD.--April 1986 to current year. GAGE. -- Staff gage at outlet read by Martha Ibach. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 9.28 ft, Oct. 5, 1986; minimum observed, 6.90 ft, Feb. 24, 1987. EXTREMES FOR CURRENT YEAR.--Maximum gage-height observed, 8.16 ft, July 24, 30; minimum observed, 7.23 ft, Feb. 17. | | | | GAGE HEI | GHT, FEET, | | EAR OCTOR | | TO SEPTEM | BER 1988 | | | | |-----------------|------|-----|----------|------------|------|-----------|------|-----------|----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | 8.06 | | | | 3 | 7.74 | | | | | | | 7.80 | | | | 7.98 | | 4 | | | | | | | | | 8.06 | | | | | 5 | | | | | | | | | | | | | | 6 | | | | | | | | | | | | | | 7 | | | | | | | | | | | 8.10 | | | 8 | | | | | | | | | | | | | | 9
1 0 | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | 11 | | | | | | | | | 7.96 | | | 7.98 | | 12 | | | | | | | | | | 8.06 | | | | 13 | | | | | | | | 7.92 | | | | | | 14 | | | | | | | | | | | 8.06 | | | 15 | | | | | | | 7.78 | | | | | | | 16 | | | | | | | | | | | 8.05 | | | 17 | | | | | 7.23 | | | | 7.94 | 8.12 | | 8.00 | | 18 | | | | | | | | | 7.96 | | | | | 19 | | | | | | | | | | 8.14 | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | 7.96 | | | 8.00 | | | 22 | | | | | | | 7.90 | | | | | | | 23 | | | | | | | | | 8.04 | | | | | 24 | | | | | | | | | | 8.16 | | | | 25 | | | | | | | | | 8.06 | | | | | 26 | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | | 8.08 | | | 7.96 | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | | | 8.16 | | | | 31 | | | | | | | | | | | | | 430551088273500 OCONOMOWOC LAKE NO. 1 (CENTER) AT OCONOMOWOC, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- March 1986 to current year. REMARKS.--Lake sampled near center at a lake depth of about 60 ft. Lake ice-covered during February 17 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. # WATER-QUALITY DATA, FEBRUARY 17 TO AUGUST 16, 1988 (Milligrams per liter unless otherwise indicated) | | | _ | - | | | | | | | | |--|--------------|---------------|------------|-------------|------------|-------------|------------|-------------|------------|-------------| | | Feb | . 17 | Apr | . 15 | Jun | e 23 | Jul | y 19 | Aug. | 16 | | Depth of sample (ft)
Specific conductance (µS/cm) | 1.5 ·
541 | . 57.0
554 | 1.5
528 | 55.5
528 | 1.5
517 | 58.0
541 | 1.5
482 | 60.0
547 | 1.5
473 | 61.0
559 | | pH (units) | 7.40 | 7.80 | 8.20 | 8.20 | 8.50 | 7.90 | 8.30 | 7.30 | 8.40 | 7.20 | | Water temperature (°C) | 1.0 | 2.5 | 8.0 | 8.0 | 24.0 | 8.5 | 27.0 | 8.0 | 29.0 | 8.5 | | Color (Pt-Co. scale) | | | 4 | 8 | | | | | | | | Turbidity (NTU) | | | 0.40 | 0.40 | | | | | | | | Secchi-disc (meters) | _ | | | . 2 | 3 | .1 | 1 | . 6 | 3. | 0 | | Dissolved oxygen | 13.2 | 8.0 | 11.3 | 11.3 | 8.7 | 2.9 | 8.4 | 0.5 | 8.3 | 0 | | Hardness, total (as CaCO ₂) | | | 250 | 250 | | | | | === | | | Calcium, dissolved (Ca) | | | 49 | 48 | | | | | | | | Magnesium, Dissolved (Mg) | | | 32 | 32 | | | | | | | | Sodium, dissolved (Na) | | | 10 | 10 | | | | | | | | Potassium, dissolved (K) | | | 2.1 | 2.1 | | | | | | | | Alkalinity, total (as CaCO ₃) | | | 224 | 224 | | | | | | | | Sulfate, dissolved (SO,) | | | 27 | 29 | | | | | | | | Fluoride, dissolved (F) | | | 0.10 | 0.10 | | | | | | | | Chloride, dissolved (Cl) | | | 22 | 22 | | | | | | | | Silica, dissolved (SiO ₂) | | | 5.2 | 5.1 | | | | | | | | Solids, dissolved, at 180°C | | | 291 | 291 | | | | | | | | Nitrogen, nitrite, total (as N) | | | <0.010 | <0.010 | | | | | | | | Nitrogen, nitrite + nitrate, total | | | 0.300 | 0.300 | | | | | | | | Nitrogen, ammonia, total (as N) | | | 0.070 | 0.060 | | | | | | | | Nitrogen, organic, total (as N) | | | 0.43 | 0.54 | | | | | | | | Nitrogen, total (as N) | | | 0.80 | 0.90 | | | | | | | | Total phosphorus (as P) | | | 0.002 | 0.011 | 0.004 | 0.005 | 0.005 | 0.060 | 0.007 | 0.028 | | Phosphorus, ortho, diss (as P) | | | <0.001 | <0.001 | | 0.005 | | 0.035 | | 0.008 | | Iron, dissolved (Fe) μg/L | | | 25 | 6 | | | | | | | | Manganese, dissolved (Mn) µg/L | | | 1 | <1 | | | | | | | | Chlorophyll a, phyto. (µg/L) | | | <5 | | <5 | | 2 | | <5 | | 430609088262200 OCONOMOWOC LAKE NO. 2 (OFF HEWITT POINT) AT OCONOMOWOC, WI ## WATER-QUALITY RECORDS LOCATION.--Lat 43°06'09", long 88°26'22", in NW 1/4 NW 1/4 sec.1, T.7 N., R.17 E., Waukesha County, Hydrologic Unit 07090001, at Oconomowoc. PERIOD OF RECORD. -- March 1986 to current year. REMARKS.--Sampling site is located in northeast bay near Hewitt Point at a lake depth of about 48 ft. Lake ice-covered during February 17 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-OUALITY DATA. FEBRUARY 17 TO AUGUST 16, 1988 | | | | | | | indicated) | | | | | |--|---------------------------|----------------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------| | | Feb | . 17 | Apr | . 15 | Jun | e 23 | Jul: | y 19 | Aug | . 16 | | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) | 1.5
566
7.90
1.0 | 48.0
591
7.50
3.0 | 1.5
558
8.00
8.5 | 46.5
554
7.90
6.0 | 1.5
540
8.50
24.5 | 48.0
586
7.70
8.5 | 1.5
511
8.20
27.0 | 48.0
587
7.20
8.5 | 1.5
498
8.30
28.5 | 47.5
604
7.10
8.5 | | Secchi-disc (meters) Dissolved oxygen Nitrogen, nitrate, total (as N) | 12.4 | 2.5 | 11.4
0.490 | 10.6
0.390 | 8.7
 | 0.1 | 8.2
 | .9
0.2
 | 8.7
 | .8
0
 | | Nitrogen, nitrite, total (as N)
Nitrogen, nitrite + nitrate, total
Nitrogen, ammonia, total (as N) | | | 0.010
0.500
0.080 | 0.010
0.400
0.090 | | | | | | | | Nitrogen, organic, total (as N) Nitrogen, total (as N) Total phosphorus (as P) | | | 0.52
1.1
0.004 | 0.51
1.0
0.003 | 0.004 | 0.025 | 0.004 | | 0.006 | 0.038 | | Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | | | <0.001
<5 | <0.001 | <5 | 0.005 | <5 | 0.004 | <5 | 0.004 | | 2-17-88 | 4-15- | 88 | 6 | -23-88 | | 7-19- | 88 | 8 | -16-88 | | | | | DISSOLV | 'ED OXYGEN | , IN MILLIGF | RAMS PER L | ITER | | | | | | 0 5 10 15 0
Water 10 Temp. | 5 | 10 15 | 0 0 | 5 10 | 15 0 | 5 | 10 15 | 10 | 5 10 | 15 | ## 430653088294601 CENTER OF FOWLER LAKE AT OCONOMOWOC, WI LOCATION.--Lat 43°06'53", long 88°29'46", in SE 1/4 NW 1/4 sec.33, T.8 N., R.17 E., Waushara County, Hydrologic Unit 07120006, within City of Oconomowoc, at center of Fowler Lake. DRAINAGE AREA. -- 87.8 mi². ### LAKE-STAGE RECORDS PERIOD OF RECORD.--January to December 1984, October 1986 to current year. ${\tt GAGE.--Staff\ gage\ at\ outlet\ read\ by\ City\ of\ Oconomowoc\ Engineering\ Department.}$ EXTREMES FOR PERIOD OF RECORD.--Maximum gage-height observed, 9.45 ft, Oct. 6, 7, 9, 1986; minimum observed, 7.82 ft, Sept. 12, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage-height observed, 9.06 ft, Feb. 19; minimum observed, 7.82 ft, Sept. 12. | | | | GAGE HE | IGHT, FEET | | YEAR OCTO
EAN VALUE: | | TO SEPTEM | BER 1988 | | | | |-----|-----|-----|---------|------------|------|-------------------------|------|-----------|----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | | | | | 2 | | | | | | 9.03 | | 8.76 | | | | | | 3 | | | | | | | | | 8.74 | | | | | 4 | | | ~ | | | | | | | | | | | 5 | | | | | 8.95 | | | | | | 8.59 | | | 6 | | | | | | | 8.90 | | | 8.68 | | | | 7 | | | | | | | | | | 8.56 | | 7.96 | | 8 | | | | 8.99 | | | | | 8.70 | | 8.62 | | | 9 | | | | | | 9.02 | | | | | | | | 10 | | | | | | | | | 8.58 | | | | | 11 | | | | | | | 8.87 | | | | | | | 12 | | | | | 9.00 | | | 8.93 | | | | 7.82 | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | | 8.12 | | 7.85 | | 15 | | | | 9.01 | | | 8.98 | | 8.44 | | | | | 16 | | | | | | 9.00 | | | | | 8.60 | | | 17 | | | | | 9.04 | | | | | | 8.57 | | | 18 | | | | | | | | | | | | | | 19 | | | | | 9.06 | | | 8.69 | | | | 8.27 | | 20 | | | | | | | | | | 8.37 | | 8.54 | | 21 | | | | | | | | | | | | 8.73 | | 22 | | | | 9.00 | | | | | 8.31 | | 8.52 | | | 23 | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | 25 | | | | | | 8.97 | | 8.53 | | | | | | 26 | | | | | 9.05 | | | | | | | | | 27 | | | | | | | | | | | | 8.78 | | 28 | | | | | | | | | | 8.44 | | | | 29 | | | | 8.90 | | 8.96 | 8.78 | | | | | | | 30 | | | | | | | | | 8.60 | | 8.27 | 8.74
| | 31 | | | | | | | | | | | | | ## 430653088294601 CENTER OF FOWLER LAKE AT OCONOMOWOC, WI--CONTINUED ## WATER-QUALITY RECORDS PERIOD OF RECORD.--January to December 1984 and February 1987 to current year. SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER REMARKS.--Lake sampled near center at a lake depth of 52 ft. Lake ice-covered during Feb. 17 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, FEBRUARY 17 TO AUGUST 16, 1988 | | | LITY DATA, FEBRUARY ns per liter unless | | | | |--|---|--|--|--|--| | | Feb. 17 | Apr. 15 | June 08 | July 07 | Aug. 16 | | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Color (Pt-Co. scale) | 1.5 48.0
532 581
8.20 7.20
1.0 2.5 | 1.5 47.5
524 523
8.20 7.80
10.0 4.5
9 8 | 1.5 49.5
454 527
9.00 7.80
24.5 6.5 | 1.5 48.5
450 536
8.70 7.30
28.0 6.5 | 1.5 48.5
460 540
8.50 7.30
28.5 7.0 | | Turbidity (NTU) Secchi-disc (meters) Dissolved oxygen Hardness, total (as CaCO ₃) | 12.5 6.4 | 4.2 0.40
2.4
10.9 7.8
250 250 | 2.7 | 9.9 0 | 7.9 0 | | Calcium, dissolved (Ca) Magnesium, Dissolved (Mg) Sodium, dissolved (Na) Potassium, dissolved (K) | | 47 47
32 32
11 11
2.1 2.1 | | | | | Alkalinity, (as CaCO ₂) Sulfate, dissolved (SO ₄) Fluoride, dissolved (F) Chloride, dissolved (Cl) | - - | 223 219
29 27
0.10 0.10
23 24 | | | | | Silica, dissolved (SiO ₂)
Solids, dissolved, at 180°C
Nitrogen, nitrite, total (as N)
Nitrogen, nitrite + nitrate, tot
Nitrogen, ammonia, total (as N) | tal | 32 4.7
289 290
<0.010 <0.010
0.200 0.200
0.020 0.080 | | | | | Nitrogen, organic, total (as N)
Nitrogen, total (as N)
Total phosphorus (as P)
Phosphorus, ortho, diss (as P) | | 0.38 0.42
0.60 0.70
0.003 0.003
<0.001 <0.001 | 0.004 0.005 | 0.009 0.041 | 0.012 0.15
0.12 | | Iron, dissolved (Fe) µg/L
Manganese, dissolved (Mn) µg/L
Chlorophyll a, phyto. (µg/L) | | <3 <3 <1 7 4 | 2 | <5 | <5 | | 2-17-88 | 4-15-88 | 6-8-88 | 7–7- | -88 | 8-16-88 | | | DISSOLV | ED OXYGEN, IN MILLIGR | AMS PER LITER | | | | 0 5 10 15 0 15 0 15 0 15 0 15 0 15 0 15 | 10 20 30 | 0 5 10
10 20
30 40 50 10 20
TEMPERATURE, IN DEGR | 15 0 5
10 20 30 40 50 10 REES CELSIUS | 10 15 0 10 20 30 40 50 0 | 10 20 30 | | | | PH, IN STANDARD UN | NITS | | | | 8 9 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 10
20
30
40
50 | 10 6 7 8
10 20 30 40 50 | 9 10 6 | 7 8 9 10 | | 400 500 600 4 | 100 500 600 | 400 500 6 | 300 40 0 500 | 600 400 | 500 600 | #### 05423500 SOUTH BRANCH ROCK RIVER AT WAUPUN, WI LOCATION.--Lat 43°38'30", long 88°44'15", in NW 1/4 sec.33, T.14 N., R.15 E., Fond du Lac County, Hydrologic Unit 07090002, on left bank 260 ft upstream from U.S. Business Route 151 at Waupun, and 2.8 mi upstream from mouth. DRAINAGE AREA. -- 63.6 mi², revised. PERIOD OF RECORD.--October 1948 to September 1969. March 1987 to current year. Monthly discharge only for October 1948, published in WSP 1308. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 863.46 ft above National Geodetic Vertical Datum of 1929. October 1948 to September 1969, recording gage at site 150 ft downstream. REMARKS.--Estimated daily discharge: Ice periods listed in rating table preceding 1988 water year data. Records good except those for ice-affected periods and those above 100 $\rm ft^3/s$, which are poor. AVERAGE DISCHARGE.--22 years (1949-69, 1988), 23.7 ft³/s, 5.06 in/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 1,500 $\rm ft^3/s$, Apr. 3, 1959, gage height, 7.97 ft, from rating curve extended above 650 $\rm ft^3/s$; minimum, no flow at times in 1949, 1953-54, 1958-59, 1963-64. EXTREMES FOR CURRENT PERIOD. -- March to September 1987: Peak discharges greater than base discharge of 400 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Aug. 16 | 2000 | *330 | *5.06 | | | | | Minimum discharge, 2.1 ft³/s, Aug. 7, 8. Water Year 1988: | DATE | T | IME D | ISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE | HEIGHT
(ft) | |------|------|-------|----------------------------------|---------------------|------|------|-----------------------------------|------|----------------| | Mar. | 8 20 | 045 | *218 | *4.07 | | | | | | Minimum daily discharge, $0.52 \, \mathrm{ft}^3/\mathrm{s}$, Aug. 15. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). | Ma | r. 1 to Ju | ıly 23, 19 | 87 | July 24 | , 1987 | to Sept. 30, | 1987 | |-----|------------|------------|-----|---------|--------|--------------|------| | 2.0 | 1.9 | 2.5 | 29 | 1.7 | 0.35 | 2.1 | 11 | | 2.1 | 5.0 | 2.7 | 47 | 1.75 | .80 | 2.2 | 16 | | 2.2 | 9.3 | 3.0 | 81 | 1.8 | 1.8 | 2.5 | 42 | | 2.3 | 15 | 3.4 | 138 | 1.9 | 4.2 | 3.0 | 105 | | 2.4 | 21 | 3.8 | 191 | 2.0 | 7.0 | 4.0 | 211 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|-----|-----|-----|-----|-----|----------|----------|----------|-------|-------|-------|-------| | 1 | | | | | | 51 | 34 | 40 | 38 | 7.0 | 8.2 | 13 | | 2 | | | | | | 55 | 33 | 40 | 33 | 8.1 | 7.9 | 13 | | 3 | | | ~ | | | 47 | 33 | 39 | 28 | 9.3 | 5.0 | 11 | | 4 | | | | | | 43 | 33
31 | 36 | 24 | 7.5 | 3.3 | 9.9 | | 5 | | | | | | 43
39 | 32 | 34 | 22 | 7.6 | 3.8 | 8.9 | | J | | | | | | 39 | 32 | 34 | 22 | 7.0 | 3.0 | 0.9 | | 6 | | | | | | 44 | 32 | 32 | 21 | 8.5 | 2.9 | 8.3 | | 7 | | | | | | 51 | 31 | 30 | 20 | 9.8 | 2.6 | 7.7 | | 8 | | | | | | 57 | 30 | 29 | 18 | 9.1 | 22 | 7.4 | | 9 | | | | | | 52 | 29 | 27 | 17 | 8.2 | 9.7 | 6.8 | | 10 | | | | | | 40 | 29 | 26 | 16 | 11 | 8.2 | 6.6 | | | | | | | | | | | | | | | | 11 | | | | | | 41 | 31 | 27 | 18 | 6.9 | 5.9 | 6.5 | | 12 | | | | | | 34 | 36 | 26 | 17 | 10 | 5.3 | 6.2 | | 13 | | | | | | 32 | 34 | 25 | 15 | 6.2 | 5.2 | 7.7 | | 14 | | | | | | 32 | 64 | 30 | 14 | 5.5 | 5.0 | 6.4 | | 15 | | | | | | 29 | 86 | 27 | 13 | 8.2 | 5.4 | 6.7 | | 16 | | | | | | 30 | 72 | 26 | 12 | 5.2 | 76 | 11 | | 17 | | | | | | 30 | 59 | 24 | 11 | 4.9 | 182 | 18 | | 18 | | | | | | 31 | 50 | 56 | 11 | 4.3 | 89 | 17 | | 19 | | | | | | 48 | 43 | 53 | 10 | 3.8 | 43 | 23 | | 20 | | | | | | 50 | 38 | 43 | 10 | 11 | 28 | 26 | | 20 | | | | | | 30 | 36 | 43 | 10 | 11 | 20 | 20 | | 21 | | | | | | 46 | 36 | 41 | 14 | 8.8 | 20 | 23 | | 22 | | | | | | 43 | 136 | 35 | 13 | 6.3 | 14 | 20 | | 23 | | | | | | 42 | 186 | 33 | 11 | 5.8 | 11 | 17 | | 24 | | | | | | 42 | 139 | 31 | 10 | 5.5 | 10 | 15 | | 25 | | | | | | 43 | 92 | 31 | 9.8 | 4.0 | 9.2 | 13 | | 26 | | | | | | 47 | 71 | 38 | 9.0 | 4.8 | 9.6 | 11 | | 27 | | | | | | 47 | 60 | 36
86 | 8.0 | 3.8 | 9.0 | 10 | | 28 | | | | | | 43 | 50
52 | 80
81 | | | | 12 | | 28
29 | | | | | | | | | 7.9 | 3.8 | 36 | 10 | | | | | | | | 42 | 47 | 77 | 7.8 | 7.2 | 23 | | | 30 | | | | | | 37 | 41 | 56 | 7.4 | 4.7 | 14 | 9.8 | | 31 | | | | | | 34 | | 45 | | 5.8 | 11 | | | TOTAL | | | | | | 1303 | 1687 | 1224 | 465.9 | 212.6 | 685.3 | 361.9 | | MEAN | | | | | | 42.0 | 56.2 | 39.5 | 15.5 | 6.86 | 22.1 | 12.1 | | MAX | | | | | | 57 | 186 | 86 | 38 | 11 | 182 | 26 | | MIN | | | | | | 29 | 29 | 24 | 7.4 | 3.8 | 2.6 | 6.2 | | | | | | | | | | | | | | | 05423500 SOUTH BRANCH ROCK RIVER AT WAUPUN, WI--CONTINUED RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 30, 31, Jan. 1-29, and Feb. | 1.7 | 0.35 | 2.1 | 11 | |------|------|-----|-----| | 1.75 | . 80 | 2.2 | 16 | | 1.8 | 1.8 | 2.5 | 42 | | 1.9 | 4.2 | 3.0 | 105 | | 2.0 | 7.0 | 4.0 | 211 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JUN JUL AUG SEP JAN FEB MAR APR MAY 9.6 8.3 .99 1.1 1.0 .71 .76 .91 19 16 6.8 7.7 8.2 2.3 41 28 72 65 58 34 30 65 132 31 46 81 76 65 28 15 40 21 .99 3.7 8.2 23 14 30 130 26 8.2 1.7 5 17 21 7.7 8.0 13 22 62 111 24 1.4 8.2 21 12 20 85 107 23 1.2 1.8 23 30 77 5.7 5.4 5.2 22 21 .90 1.1 .91 1.0 8.1 130 88 8.2 7.9 7.3 75 67 59 . 78 15 14 8 10 16 190 24 1.6 .79 14 13 193 .67 9.6 10 14 9.6 25 1.2 .82 .64 65 146 .79 23 21 19 1.0 .62 .75 .80 7.2 9.8 10 12 5.0 11 13 58 126 55 .70 1.4 1.5 7.6 7.4 7.9 7.0 52 48 4.5 4.5 .70 2.1 12 13 13 13 51 43 12 12 112 10 87 45 42 12 38 $\overline{12}$ 68 .76 .52 15 12 30 10 61 19 3.8 6.5 .86 12 12 12 1.6 9.0 10 55 17 3.5 8.9 16 15 28 40 3.4 3.4 3.1 3.0 2.2 5.2 2.5 2.1 5.3 11 17 39 28 10 57 38 .65 11 16 11 2.9 1.4 32 26 52 49 14 13 18 10 29 11 36 9.8 31 39 19 20 12 13 12 11 33 32 3.3 21 44 13 2.1 21 9.6 18 12 3.3 4.8 1.6 36 12 10 41 31 . 98 22 23 10 9.9 17 22 36 33 12 12 41 44 31 40 11 11 12 3.5 2.8 2.1 1.1 97 10 5.8 108 11 2.9 11 21 36 11 11 47 41 3.0 25 11 21 42 56 38 9.1 3.5 1.4 28 21 15 11 26 12 22 10 56 36 13 39 8.8 1.8 1.7 1.3 27 12 22 34 33 49 50 51 8.6 7.8 7.4 1.8 5.2 4.2 21 1.6 1.5 2.0 12 51 72 26 12 1.4 29 28 46 1.4 10 36 13 48 .76 8.8 9.7 .76 30 40 6.9 7.0 29 26 ---74 40 2.6 1.4 7.5 31 9.0 23 . 97 127 66 .78 TOTAL. 283.7 644 1093 496.0 578 19.9 2401 1720 529.3 145.2 74.32 51.39 381.53 MEAN 9.15 21.5 35.3 77 17.1 34 16.0 77.5 57.3 4.84 2.40 1.66 12.7 193 41 132 31 6.9 12 1.8 8.9 .67 11 .52 108 .62 WTR YR 1988 TOTAL 8397.44 MEAN 22.9 MAX 193 MIN .52 21 127 9.6 72 10 41 12 MAX ####
05425500 ROCK RIVER AT WATERTOWN, WI LOCATION.--Lat 43°11'17", long 88°43'34", in SW 1/4 sec.4, T.8 N., R.15 E., Jefferson County, Hydrologic Unit 07090001, on left bank, 700 ft downstream from Milwaukee Street bridge, 1.1 mi downstream from Silver Creek, at Watertown. DRAINAGE AREA. -- 969 mi². PERIOD OF RECORD.--June 1931 to September 1970, October 1976 to current year. REVISED RECORDS.--WSP 1438: 1933,1935(M), 1937(M), 1938-39, 1945(M); WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 792.58 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 26, 1933, nonrecording gage at site 700 ft upstream at different datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are poor. Some regulation caused by manipulation of gates at dams on Horicon Marsh, Lake Sinissippi, and other dams in the basin. AVERAGE DISCHARGE.--51 years, (1932-70, 1977-88), 476 ft³/s, 6.67 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,080 ft³/s, Mar. 31, 1979, gage height, 6.19 ft; maximum gage height, 6.32 ft, Apr. 4, 1959; minimum daily discharge, 0.9 ft³/s, Oct. 15, 1939, Sept. 9, 1944. EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,100 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|---------|------|-----------------------------------|---------------------| | Dec. 9 | 1300 | 1,130 | 3.17 | Mar. 10 | 1945 | *1,320 | 3.38 | | Jan. 31 | 1100 | ice jam | *4.20 | Apr. 6 | 2215 | *1,320 | 3.38 | Minimum daily discharge, 11 ft³/s, Aug. 4. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 6-8, Dec. 18 to Feb. 26, and Mar. 3-5.) | 0.5 | 9.1 | 1.5 | 143 | |-----|-----|-----|-------| | 0.6 | 15 | 2.0 | 311 | | 0.8 | 30 | 2.5 | 594 | | 1.0 | 52 | 3.0 | 977 | | 1.2 | 78 | 4.0 | 1,970 | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---|--|---|---|--|---|--|---|---------------------------------|----------------------------------|---------------------------------------|----------------------------------| | 1 | 252 | 298 | 676 | 500 | 900 | 325 | 1060 | 911 | 78 | 32 | 15 | 19 | | 2 | 234 | 311 | 740 | 560 | 760 | 356 | 1080 | 882 | 71 | 28 | 14 | 20 | | 3 | 204 | 347 | 798 | 540 | 700 | 450 | 1210 | 839 | 65 | 25 | 13 | 30 | | 4 | 237 | 372 | 836 | 520 | 660 | 580 | 1250 | 684 | 64 | 24 | 11 | 28 | | 5 | 210 | 357 | 801 | 480 | 640 | 720 | 1220 | 464 | 61 | 23 | 19 | 28 | | 6 | 187 | 343 | 820 | 460 | 600 | 808 | 1270 | 339 | 56 | 22 | 15 | 31 | | 7 | 174 | 353 | 800 | 440 | 580 | 877 | 1290 | 346 | 52 | 20 | 14 | 29 | | 8 | 186 | 369 | 880 | 420 | 560 | 1020 | 1220 | 371 | 49 | 18 | 17 | 24 | | 9 | 175 | 358 | 1030 | 400 | 540 | 1200 | 1200 | 373 | 46 | 17 | 17 | 21 | | 10 | 165 | 371 | 1060 | 390 | 540 | 1250 | 1200 | 365 | 45 | 28 | 19 | 20 | | 11 | 164 | 412 | 1020 | 380 | 520 | 1280 | 1230 | 319 | 43 | 21 | 19 | 20 | | 12 | 157 | 441 | 1000 | 400 | 520 | 1210 | 1250 | 298 | 41 | 19 | 19 | 18 | | 13 | 144 | 444 | 976 | 380 | 520 | 1180 | 1250 | 302 | 38 | 19 | 22 | 15 | | 14 | 141 | 432 | 950 | 360 | 520 | 1150 | 1260 | 311 | 34 | 18 | 19 | 15 | | 15 | 148 | 411 | 833 | 360 | 500 | 1130 | 1250 | 321 | 31 | 18 | 18 | 16 | | 16 | 143 | 394 | 589 | 350 | 500 | 1110 | 1250 | 338 | 31 | 37 | 17 | 16 | | 17 | 141 | 447 | 598 | 340 | 500 | 1120 | 1220 | 340 | 29 | 37 | 16 | 19 | | 18 | 163 | 422 | 600 | 330 | 490 | 1110 | 1200 | 333 | 28 | 34 | 25 | 20 | | 19 | 176 | 352 | 700 | 320 | 480 | 1110 | 1170 | 313 | 26 | 34 | 26 | 35 | | 20 | 175 | 303 | 800 | 320 | 470 | 1100 | 1130 | 279 | 24 | 36 | 22 | 31 | | 21 | 173 | 321 | 840 | 310 | 450 | 1080 | 1080 | 215 | 22 | 39 | 21 | 30 | | 22 | 179 | 338 | 840 | 300 | 430 | 1080 | 1050 | 158 | 23 | 35 | 22 | 82 | | 23 | 170 | 333 | 860 | 290 | 420 | 1080 | 1070 | 132 | 21 | 30 | 41 | 96 | | 24 | 173 | 329 | 880 | 290 | 410 | 1110 | 1060 | 118 | 22 | 27 | 33 | 110 | | 25 | 186 | 355 | 900 | 280 | 390 | 1080 | 1010 | 116 | 26 | 29 | 31 | 134 | | 26
27
28
29
30
31 | 194
200
228
244
244
264 | 386
404
463
548
612 | 800
700
640
600
560
520 | 270
270
260
270
300
1000 | 370
367
358
327
 | 1050
993
963
1010
1050
1070 | 979
974
980
955
929 | 118
114
105
101
93
86 | 29
28
32
47
37 | 26
25
23
22
20
16 | 28
29
25
22
21
22 | 137
108
81
66
57 | | TOTAL MEAN MAX MIN CFSM IN. | 5831
188
264
141
.19
.22 | 11626
388
612
298
.40
.45 | 24647
795
1060
520
.82
.95 | 12090
390
1000
260
.40 | 15022
518
900
327
.53
.58 | 30652
989
1280
325
1.02
1.18 | 34297
1143
1290
929
1.18
1.32 | 10084
325
911
86
.34
.39 | 1199
40.0
78
21
.04 | 802
25.9
39
16
.03 | 652
21.0
41
11
.02
.03 | 1356
45.2
137
15
.05 | CAL YR 1987 TOTAL 181527 MEAN 497 MAX 1560 MIN 59 CFSM .51 IN. 6.97 WTR YR 1988 TOTAL 148258 MEAN 405 MAX 1290 MIN 11 CFSM .42 IN. 5.69 253 ### 05425912 BEAVERDAM RIVER AT BEAVER DAM, WI LOCATION.--Lat 43°26'57", long 88°50'21", in NE 1/4 SW 1/4 sec.4, T.11 N., R.14 E., Dodge County, Hydrologic Unit 07090002, on left bank 5 ft upstream from bridge on Davis Street, 0.8 mi downstream from outlet of Beaverdam Lake, at Beaver Dam. DRAINAGE AREA. -- 157 mi². PERIOD OF RECORD. -- March 1985 to current year. GAGE. -- Water-stage recorder. Datum of gage is 839.42 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: None. Records good. Flow regulated by dam 0.8 mi upstream. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 754 ft³/s, Sept. 26, 1986, gage height, 9.35 ft; minimum daily, 0.68 ft³/s, Feb. 14, 1987. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 296 $\rm ft^3/s$, Sept. 22, gage height, 7.61 ft; minimum daily, 1.0 $\rm ft^3/s$, Oct. 27. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 5.40 | 0.85 | 6.3 | 66 | |------|------|-----|-----| | 5.5 | 2.6 | 6.6 | 110 | | 5.6 | 5.4 | 7.0 | 177 | | 5.8 | 15 | 8.0 | 386 | | 6 0 | 2 2 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---------------------------------|-------------------------------|----------------------------------|---------------------------------------|-----------------------------|---------------------------------|---------------------------------|--|---------------------------------|---------------------------------|--|---------------------------------| | 1
2
3
4
5 | 117
157
115
101
111 | 4.3
9.0
1.5
32
51 | 107
103
105
104
103 | 65
66
65
63
62 | 7.8
13
14
14
14 | 19
14
15
12
7.7 | 16
24
19
20
25 | 152
144
135
132
74 | 6.4
5.9
5.1
4.5
4.5 | 4.6
3.6
3.0
1.8
2.0 | 1.4
1.5
2.9
3.5
4.8 | 3.8
4.6
5.4
11
6.2 | | 6
7
8
9
10 | 129
130
92
102
96 | 68
83
87
91
90 | 104
104
105
108
85 | 61
42
12
12
13 | 14
14
19
84
21 | 7.6
8.0
7.6
6.6
6.7 | 40
69
122
132
146 | 27
21
19
28
35 | 5.6
7.4
6.3
7.3
6.6 | 2.3
3.0
3.1
2.0
3.7 | 3.7
2.4
2.3
5.7
2.7 | 4.9
3.0
2.6
3.4
2.8 | | 11
12
13
14
15 | 94
86
82
80
76 | 89
90
91
90
88 | 45
46
44
44
93 | 13
14
14
9.6
5.1 | 32
32
32
32
33 | 6.6
5.9
5.1
11
19 | 156
180
178
188
214 | 23
15
12
7.1 | 6.1
4.5
4.9
4.7
4.4 | 2.4
1.7
2.7
3.5
3.9 | 3.5
2.8
2.7
3.0
2.6 | 1.9
3.4
3.9
2.6
1.5 | | 16
17
18
19
20 | 72
82
71
71
25 | 91
96
103
102
102 | 120
99
48
25
49 | 5.5
6.5
6.2
10 | 32
33
24
13
12 | 11
6.6
7.4
8.8
8.8 | 207
211
202
181
175 | 10
8.4
8.0
9.1
9.6 | 3.3
3.3
2.7
1.7
4.0 | 6.9
2.4
3.8
2.4
3.6 | 2.0
2.4
11
3.0
2.5 | 3.2
5.7
7.2
8.5
7.6 | | 21
22
23
24
25 | 1.4
1.7
1.2
2.0
1.1 | 98
98
100
99
101 | 55
55
56
59
61 | 59
36
9.3
34
88 | 12
12
12
12
12 | 9.3
9.2
9.1
10 | 148
128
145
131
127 | 9.3
9.2
9.7
9.2
8.6 | 6.3
7.0
2.9
3.4
4.6 | 4.3
3.2
1.9
2.2
2.9 | 1.7
1.5
4.3
2.2
2.6 | 3.7
28
5.6
2.2
4.7 | | 26
27
28
29
30
31 | 2.2
1.0
3.9
1.6
1.5 | 101
99
99
101
106 | 63
65
66
66
67
72 | 113
111
110
71
8.9
4.4 | 13
13
13
13 | 16
15
17
15
15 | 124
139
146
162
158 | 8.1
7.2
6.6
6.7
6.6
6.9 | 3.1
2.7
6.8
7.9
5.1 | 2.2
2.6
2.6
1.5
1.7 |
2.0
2.3
2.2
1.9
3.3
4.0 | 3.2
1.4
3.4
4.7
3.7 | | TOTAL
MEAN
MAX
MIN | 1908.1
61.6
157
1.0 | 2460.8
82.0
106
1.5 | 2326
75.0
120
25 | 1258.5
40.6
113
4.4 | 601.8
20.8
84
7.8 | 339.0
10.9
19
5.1 | 3913
130
214
16 | 968.3
31.2
152
6.6 | 149.0
4.97
7.9
1.7 | 88.8
2.86
6.9
1.3 | 94.4
3.05
11
1.4 | 153.8
5.13
28
1.4 | ## 05426000 CRAWFISH RIVER AT MILFORD, WI LOCATION.--Lat 43°06'00", long 88°50'58", in SW 1/4 sec.4, T.7 N., R.14 E., Jefferson County, Hydrologic Unit 07090002, on left bank near upstream side of highway bridge in Milford, 1.4 mi downstream from Rock Creek and 9.8 mi upstream from mouth. DRAINAGE AREA. -- 762 mi². PERIOD OF RECORD. -- June 1931 to current year. REVISED RECORDS.--WSP 975: 1937-38. WSP 1438: 1932-33(M), 1935(M), 1937, 1938-41(M), 1943-44(M), 1947-48(M). WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 779.40 ft above National Geodetic Vertical Datum of 1929. Prior to July 28, 1966, nonrecording gage at present site and datum. REMARKS.--Estimated daily discharges: Ice period listed in rating tables below. Records good except for ice-affected period, which is poor. Some diurnal fluctuation at lower flows, due to manipulation of gates on small dams upstream. AVERAGE DISCHARGE. -- 57 years, 398 ft³/s, 7.09 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,140 ft³/s, Apr. 6, 1959, gage height, 11.15 ft; minimum observed, 0.2 ft³/s, Sept. 15, 1958, gage height, 1.11 ft. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,250 ft³/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |-------------------|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------| | Feb. 4
Mar. 13 | 1100
0800 | ice jam
1.250 | *5.27
4.45 | Apr. 6 | 1500 | *1,270 | 4.48 | Minimum daily discharge, 24 ft³/s, Sept. 19. RATING TABLES (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 17 to Mar. 6.) | 0 | ct. 1 to | Apr. 6 (1 | 400) | Ap: | r. 6 (150 | 0) to Sep | t. 30 | |-------------------|-------------------|------------|----------------|--------------------------|------------------------|--------------------------|------------------------------| | 2.2
2.5
3.0 | 171
282
510 | 4.0
5.0 | 1,030
1,510 | 1.5
1.7
2.0
2.5 | 29
52
110
283 | 3.0
3.5
4.0
4.5 | 510
778
1,030
1,280 | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | ΤO | SEPTEMBER | 1988 | |------------|-------|------|-----|---------|---------|------|---------|------|----|-----------|------| | | | | | M | EAN VAI | LUES | | | | | | | | | | | | | | - | | | | | | |--|---|--|--|---|---|---|---|---|----------------------------------|---------------------------------|--|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN. | JUL | AUG | SEP | | 1
2
3
4
5 | 506
548
459
423
406 | 234
238
235
269
297 | 638
653
696
619
598 | 500
450
400
360
330 | 800
900
1000
900
800 | 400
480
560
700
800 | 731
726
803
867
976 | 647
619
589
569
524 | 108
106
102
96
91 | 70
69
66
60
51 | 32
31
40
39
55 | 29
34
46
65
58 | | 6
7
8
9
10 | 403
393
345
325
326 | 276
274
291
309
315 | 563
530
592
681
750 | 310
270
260
240
220 | 700
640
600
640
600 | 900
966
1010
1110
1110 | 1190
1150
1150
1140
1160 | 483
467
397
373
406 | 85
80
82
81
72 | 47
43
39
40
47 | 47
35
38
47
41 | 46
36
26
47
46 | | 11
12
13
14
15 | 311
291
274
250
255 | 311
310
318
318
310 | 819
890
908
915
910 | 210
210
190
180
170 | 560
500
470
440
410 | 1150
1190
1230
1170
1100 | 1120
1060
980
935
883 | 389
374
375
357
328 | 69
63
57
50
55 | 57
57
47
49
48 | 44
45
37
41
51 | 38
37
47
41
34 | | 16
17
18
19
20 | 249
262
257
268
275 | 291
332
402
445
513 | 1000
920
820
860
900 | 180
180
190
200
260 | 390
380
380
360
350 | 1020
946
897
843
777 | 814
753
750
687
643 | 326
307
270
255
243 | 65
62
50
38
42 | 47
61
61
65
67 | 39
34
43
46
44 | 27
32
36
24
38 | | 21
22
23
24
25 | 280
240
238
231
215 | 476
453
465
467
487 | 860
860
840
840 | 250
220
200
220
250 | 340
250
350
350
350 | 695
616
598
562
511 | 609
582
621
622
604 | 223
218
208
185
165 | 46
39
48
40
36 | 71
69
66
62
62 | 38
35
52
59
55 | 63
71
106
98
103 | | 26
27
28
29
30
31 | 210
231
233
230
231
231 | 478
465
475
507
580 | 820
800
740
700
600
540 | 280
280
270
250
260
700 | 350
350
350
380 | 576
588
559
634
664
701 | 640
667
663
661
658 | 126
109
115
114
113
111 | 55
55
50
68
70 | 61
55
48
35
35 | 51
47
49
48
38
31 | 91
107
102
83
77 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 9396
303
548
210
.40
.46 | 11141
371
580
234
.49
.54 | 23702
765
1000
530
1.00 | 8490
274
700
170
.36
.41 | 14890
513
1000
250
.67
.73 | 25063
808
1230
400
1.06
1.22 | 24845
828
1190
582
1.09
1.21 | 9985
322
647
109
.42
.49 | 1961
65.4
108
36
.09 | 1694
54.6
71
35
.07 | 1332
43.0
59
31
.06
.07 | 1688
56.3
107
24
.07 | CAL YR 1987 TOTAL 164862 MEAN 452 MAX 1460 MIN 95 CFSM .59 IN. 8.05 WTR YR 1988 TOTAL 134187 MEAN 367 MAX 1230 MIN 24 CFSM .48 IN. 6.55 ### 05426031 ROCK RIVER AT JEFFERSON, WI LOCATION.--Lat 42°59'46", long 88°48'26", in sec.2, T.6 N., R.14 E., Jefferson County, Hydrologic Unit 07090001, on right bank 30 ft downstream from bridge on State Highway 26, in Jefferson. DRAINAGE AREA. -- 1,850 mi². PERIOD OF RECORD. -- April 1978 to current year. GAGE.--Water-stage recorder. Datum of gage 774.97 ft above National Geodetic Vertical Datum of 1929 (levels by Wisconsin Department of National Resources). Auxiliary water-stage recorder 6.9 mi downstream from base gage to provide slope data. REMARKS.--Estimated daily discharges: Periods of ice effect, Dec. 17 to Mar. 7. Records good except for ice-affected periods and discharges less than $200 \text{ ft}^3/\text{s}$, which are poor. AVERAGE DISCHARGE. -- 10 years, 1,451 ft³/s, 10.65 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 10,300 ft³/s, Apr. 1, 1979, gage height, 10.79 ft; maximum gage height, 10.84 ft, Apr. 2, 1979; minimum daily discharge, 42 ft³/s, Aug. 18, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,610 ft³/s, Apr. 6, gage height, 4.79 ft; maximum gage height, 6.28 ft, Feb. 1 and 2 (backwater from ice); minimum daily discharge, 42 ft³/s, Aug. 18. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|--|---|--|---|--|--|---|---|--|-------------------------------------|-----------------------------------|---------------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 994 | 569 | 1520 | 1100 | 2100 | 800 | 1950 | 1700 | 252 | 146 | 95 | 97 | | 2 | 924 | 610 | 1620 | 1100 | 2000 | 900 | 1960 | 1650 | 207 | 151 | 89 | 98 | | 3 | 816 | 674 | 1670 | 1000 | 1900 | 1100 | 2160 | 1620 | 186 | 135 | 68 | 84 | | 4 | 763 | 723 | 1680 | 940 | 1800 | 1300 | 2270 | 1530 | 192 | 133 | 85 | 75 | | 5 | 718 | 766 | 1600 | 860 | 1600 | 1600 | 2330 | 1420 | 187 | 126 | 79 | 84 | | 6 | 700 | 748 | 1670 | 820 | 1400 | 1800 | 2490 | 995 | 183 | 127 | 73 | 84 | | 7 | 634 | 721 | 1630 | 760 | 1400 | 2000 | 2530 | 824 | 182 | 132 | 73 | 115 | | 8 | 565 | 748 | 1770 | 740 | 1300 | 2220 | 2530 | 828 | 171 | 134 | 55 | 120 | | 9 | 563 | 755 | 1950 | 700 | 1300 | 2360 | 2480 | 868 | 149 | 133 | 67 | 81 | | 10 | 546 | 759 | 2180 | 660 | 1200 | 2420 | 2430 | 891 | 149 | 110 | 67 | 78 | | 11 | 524 | 782 | 2240 | 640 | 1200 | 2450 | 2390 | 821 | 170 | 107 | 81 | 84 | | 12 | 514 | 811 | 2260 | 660 | 1200 | 2480 | 2340 | 792 | 180 | 90 | 83 | 100 | | 13 | 493 | 833 | 2240 | 620 | 1100 | 2450 | 2300 | 740 | 182 | 134 | 104 | 74 | | 14 | 492 | 838 | 2170 | 580 | 1100 | 2340 | 2250 | 691 | 190 | 107 | 106 | 66 | | 15 | 492 | 819 | 1830 | 580 | 1000 | 2270 | 2210 | 691 | 160 |
124 | 60 | 50 | | 16 | 492 | 803 | 1480 | 560 | 1000 | 2240 | 2170 | 676 | 154 | 116 | 88 | 65 | | 17 | 497 | 914 | 1500 | 560 | 1000 | 2180 | 2150 | 646 | 132 | 128 | 98 | 103 | | 18 | 491 | 999 | 1500 | 560 | 980 | 2110 | 2120 | 618 | 162 | 116 | 42 | 92 | | 19 | 502 | 1020 | 1600 | 560 | 960 | 2010 | 2040 | 584 | 176 | 116 | 44 | 151 | | 20 | 515 | 1020 | 1700 | 620 | 920 | 1930 | 1980 | 555 | 134 | 110 | 46 | 185 | | 21 | 526 | 954 | 1900 | 600 | 880 | 1860 | 1890 | 495 | 157 | 109 | 48 | 116 | | 22 | 514 | 940 | 1900 | 560 | 840 | 1800 | 1770 | 428 | 151 | 102 | 51 | 182 | | 23 | 490 | 945 | 1900 | 540 | 840 | 1780 | 1840 | 363 | 100 | 98 | 105 | 219 | | 24 | 478 | 948 | 1900 | 540 | 820 | 1730 | 1860 | 317 | 147 | 108 | 109 | 210 | | 25 | 474 | 950 | 1900 | 560 | 800 | 1750 | 1840 | 286 | 122 | 100 | 110 | 213 | | 26
27
28
29
30
31 | 477
500
511
524
539
547 | 976
981
1040
1160
1310 | 1800
1600
1500
1400
1300
1200 | 600
600
580
560
600
1900 | 780
780
780
780
 | 1720
1710
1680
1770
1860
1920 | 1780
1800
1810
1790
1740 | 300
282
274
262
248
247 | 78
93
121
152
145 | 93
113
112
110
72
84 | 91
85
88
74
90
101 | 251
229
206
186
184 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 17815
575
994
474
.31
.36 | 26116
871
1310
569
.47
.53 | 54110
1745
2260
1200
.94
1.09 | 22260
718
1900
540
.39
.45 | 33760
1164
2100
780
.63
.68 | 58540
1888
2480
800
1.02
1.18 | 53200
2107
2530
1740
1.14
1.27 | 22642
730
1700
247
.39
.46 | 4764
159
252
78
.09
.10 | 3576
115
151
72
.06 | 2455
79.2
110
42
.04 | 3882
129
251
50
.07 | CAL YR 1987 TOTAL 379698 MEAN 1040 MAX 2920 MIN 204 CFSM .56 IN. 7.64 WTR YR 1988 TOTAL 313120 MEAN 856 MAX 2530 MIN 42 CFSM .46 IN. 6.30 ## 05426250 BARK RIVER NEAR ROME, WI LOCATION.--Lat 42°57'39", long 88°40'09", in SE 1/4 SW 1/4 sec.24, T.6 N., R.15 E., Jefferson County, Hydrologic Unit 07090001, on left bank just upstream from bridge on Cushman Road, 2.8 mi southwest of Rome. DRAINAGE AREA. -- 122 mi². PERIOD OF RECORD.--November 1979 to September 1982. October 1982 to September 1983 (fragmentary). October 1983 to present. GAGE.--Water-stage recorder. Elevation of gage is 810 ft, from topographic map. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. AVERAGE DISCHARGE.--7 years (1981-82, 1984-88), 94.3 ft³/s, 10.50 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 443 ${\rm ft}^3/{\rm s}$, Apr. 6, 1982, gage height, 2.39 ft; maximum gage height, 2.40 ft Oct. 1, 1986; minimum, 3.0 ${\rm ft}^3/{\rm s}$, Aug. 4, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 222 $\rm ft^3/s$, Apr. 8, gage height, 1.68 ft; minimum, 3.0 $\rm ft^3/s$, Aug. 4. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Aug. 4 to Sept. 28; stage-discharge relation affected by ice Dec. 4, 5, 16-20, Dec. 26 to Jan. 28, and Feb. 3-17, 21-23.) | 3.2 | 3.1 | 0.7 | 28 | |-----|-----|-----|-----| | 0.3 | 4.8 | 1.0 | 73 | | 0.4 | 7.5 | 1.5 | 171 | | 0.5 | 12 | 2.0 | 293 | | ი გ | 18 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN. | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|---|------------------------------------|---------------------------------|---|--|----------------------------------|--|--|-----------------------------------|--| | 1 | 74 | 58 | 59 | 94 | 166 | 107 | 172 | 107 | 26 | 13 | 4.1 | 9.5 | | 2 | 56 | 58 | 67 | 84 | 183 | 110 | 169 | 98 | 23 | 8.7 | 4.0 | 8.6 | | 3 | 44 | 58 | 79 | 82 | 170 | 109 | 170 | 90 | 22 | 7.2 | 3.8 | 12 | | 4 | 46 | 57 | 84 | 80 | 150 | 107 | 157 | 87 | 23 | 8.2 | 3.6 | 9.8 | | 5 | 46 | 53 | 82 | 78 | 130 | 105 | 168 | 74 | 21 | 8.5 | 3.7 | 5.5 | | 6 | 38 | 56 | 82 | 76 | 120 | 111 | 191 | 58 | 18 | 7.2 | 3.7 | 6.2 | | 7 | 37 | 59 | 88 | 74 | 110 | 110 | 207 | 84 | 15 | 6.8 | 3.7 | 11 | | 8 | 43 | 61 | 99 | 72 | 100 | 102 | 220 | 84 | 15 | 6.2 | 4.2 | 12 | | 9 | 46 | 63 | 126 | 70 | 100 | 111 | 211 | 78 | 15 | 5.8 | 5.5 | 7.2 | | 10 | 55 | 62 | 129 | 70 | 100 | 128 | 195 | 75 | 14 | 6.0 | 6.1 | 6.1 | | 11 | 51 | 71 | 155 | 70 | 100 | 135 | 191 | 58 | 17 | 6.2 | 5.9 | 5.8 | | 12 | 48 | 74 | 184 | 72 | 98 | 139 | 177 | 58 | 16 | 6.1 | 5.6 | 6.8 | | 13 | 45 | 70 | 157 | 72 | 98 | 131 | 124 | 68 | 8.8 | 5.9 | 5.4 | 10 | | 14 | 44 | 62 | 138 | 70 | 96 | 124 | 122 | 84 | 8.3 | 5.5 | 5.1 | 5.4 | | 15 | 43 | 61 | 96 | 70 | 96 | 113 | 131 | 76 | 6.1 | 5.2 | 4.8 | 6.0 | | 16 | 45 | 64 | 94 | 70 | 96 | 97 | 122 | 36 | 5.7 | 7.2 | 4.7 | 7.1 | | 17 | 47 | 80 | 92 | 70 | 96 | 99 | 121 | 53 | 7.5 | 13 | 4.5 | 8.5 | | 18 | 47 | 70 | 92 | 72 | 94 | 99 | 108 | 56 | 8.2 | 16 | 6.0 | 9.4 | | 19 | 47 | 72 | 94 | 76 | 90 | 98 | 109 | 63 | 7.5 | 11 | 6.3 | 16 | | 20 | 48 | 71 | 120 | 110 | 85 | 94 | 82 | 59 | 7.4 | 10 | 5.4 | 25 | | 21
22
23
24
25 | 47
50
49
49 | 75
75
74
73
105 | 136
149
147
145
147 | 110
110
100
100
96 | 82
80
80
80
79 | 95
99
94
91
95 | 79
81
99
101
109 | 58
54
46
37
22 | 7.6
7.0
7.3
8.0
8.1 | 9.5
8.9
8.3
7.4
6.8 | 5.2
5.2
8.6
7.0
6.4 | 11
22
37
37
33 | | 26
27
28
29
30
31 | 49
50
52
53
53 | 133
109
102
105
86 | 130
120
120
110
110
100 | 92
90
90
89
114
168 | 80
83
90
97 | 94
97
119
150
154
157 | 125
136
127
125
110 | 16
25
36
30
22
22 | 6.8
6.7
7.3
27
28 | 6.7
6.3
5.7
5.1
4.7
4.5 | 5.8
7.2
8.8
13
12 | 29
26
26
28
24 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1505
48.5
74
37
.40
.46 | 2217
73.9
133
53
.61
.68 | 3531
114
184
59
.93
1.08 | 2691
86.8
168
70
.71 | 3029
104
183
79
.86 | 3474
112
157
91
.92
1.06 | 4239
141
220
79
1.16
1.29 | 1814
58.5
107
16
.48 | 398.3
13.3
28
5.7
.11
.12 | 237.6
7.66
16
4.5
.06 | 187.3
6.04
13
3.6
.05 | 460.9
15.4
37
5.4
.13
.14 | CAL YR 1987 TOTAL 31297 MEAN 85.7 MAX 223 MIN 15 CFSM .70 IN. 9.54 WTR YR 1988 TOTAL 23784.1 MEAN 65.0 MAX 220 MIN 3.6 CFSM .53 IN. 7.25 ## 05427235 LAKE KOSHKONONG NEAR NEWVILLE, WI LOCATION.--Lat 42°51'27", long 88°56'27", in NW 1/4 NE 1/4 sec.34, T.5 N., R.13 E., Jefferson County, Hydrologic Unit 07090001, 80 ft east of Pottawatomi Trail Bridge at Bingham Point Estates, and 4.5 mi northeast of Newville. DRAINAGE AREA.--2,560 mi^2 , at lake outlet. Area of Lake Koshkonong, 16.3 mi^2 . PERIOD OF RECORD. -- July 1987 to current year. GAGE.--Water-stage recorder. Datum of gage is 770.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily lake levels: March 22-28, July 4, 16-23, Aug. 4, 19-23. Records good, except for estimated days, which are fair. Lake level regulated by dam at Indianford. Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD. -- Maximum gage height, 8.32 ft, Apr. 10, 1988; minimum, 5.74 ft, June 26, 1988. EXTREMES FOR CURRENT YEAR .-- Maximum gage height, 8.32 ft, Apr. 10; minimum, 5.74 ft, June 26. | | | | GAGE HEI | GHT, FEET | | EAR OCTOR | | O SEPTEME | BER 1988 | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.75
6.77
6.62
6.55
6.52 | 6.36
6.38
6.40
6.39
6.37 | 6.80
6.85
6.95
6.99
7.00 | 7.54
7.46
7.38
7.30
7.23 | 7.44
7.73
7.98
8.15
8.20 | 6.61
6.63
6.66
6.71 | 7.61
7.64
7.71
7.79
7.88 | 7.42
7.36
7.31
7.29
7.20 | 6.12
6.09
6.05
6.03
6.02 | 5.91
5.92
5.93
5.93
5.93 | 5.93
5.92
5.91
5.94
5.98 | 5.89
5.89
5.90
5.95
5.92 | | 6 | 6.49 | 6.30 | 7.01 | 7.16 | 8.24 | 6.79 | 8.10 | 7.10 | 6.02 | 5.93 | 5.95 | 5.90 | | 7 | 6.44 | 6.29 | 7.05 | 7.08 | 8.21 | 6.88 | 8.10 | 6.97 | 6.00 | 5.92 | 5.93 | 5.91 | | 8 | 6.34 | 6.30 | 7.09 | 6.99 | 8.13 | 7.04 | 8.16 | 6.82 | 5.97 | 5.92 | 5.96 | 5.90 | | 9 | 6.30 | 6.29 | 7.21 | 6.89 | 8.03 | 7.23 | 8.21 | 6.80 | 5.92 | 5.91 | 5.97 | 5.92 | | 10 | 6.26 | 6.27 | 7.31 | 6.80 | 7.94 | 7.40 | 8.27 | 6.75 | 5.91 | 5.93 | 5.97 | 5.90 | | 11 | 6.23 | 6.25 | 7.43 | 6.72 | 7.85 | 7.55 | 8.23 | 6.66 | 5.92 | 5.92 | 5.97 | 5.90 | | 12 | 6.21 | 6.26 | 7.57 | 6.66 | 7.76 | 7.64 | 8.21 | 6.65 | 5.93 | 5.89 | 5.95 | 5.92 | | 13 | 6.20 | 6.27 | 7.63 | 6.59 | 7.68 | 7.73 | 8.19 | 6.64 | 5.93 | 5.89 | 5.92 | 5.93 | | 14 | 6.18 | 6.28 | 7.66 | 6.53 | 7.60 | 7.78 | 8.16 |
6.58 | 5.94 | 5.94 | 5.92 | 5.91 | | 15 | 6.18 | 6.27 | 7.75 | 6.49 | 7.52 | 7.79 | 8.10 | 6.54 | 5.95 | 5.92 | 5.94 | 5.88 | | 16 | 6.17 | 6.28 | 7.65 | 6.44 | 7.44 | 7.78 | 8.01 | 6.49 | 5.93 | 5.98 | 5.93 | 5.87 | | 17 | 6.21 | 6.39 | 7.55 | 6.40 | 7.38 | 7.75 | 7.99 | 6.41 | 5.91 | 5.97 | 5.93 | 5.90 | | 18 | 6.19 | 6.45 | 7.48 | 6.37 | 7.31 | 7.73 | 7.91 | 6.37 | 5.91 | 5.98 | 5.94 | 5.90 | | 19 | 6.20 | 6.51 | 7.46 | 6.38 | 7.24 | 7.70 | 7.80 | 6.34 | 5.91 | 5.98 | 5.94 | 5.93 | | 20 | 6.24 | 6.55 | 7.53 | 6.47 | 7.17 | 7.66 | 7.74 | 6.25 | 5.91 | 5.99 | 5.95 | 6.02 | | 21 | 6.26 | 6.50 | 7.55 | 6.52 | 7.10 | 7.61 | 7.66 | 6.19 | 5.91 | 5.99 | 5.96 | 5.98 | | 22 | 6.25 | 6.49 | 7.58 | 6.61 | 7.03 | 7.59 | 7.59 | 6.13 | 5.93 | 5.98 | 5.96 | 6.05 | | 23 | 6.26 | 6.53 | 7.62 | 6.71 | 6.95 | 7.57 | 7.60 | 6.05 | 5.90 | 5.97 | 5.97 | 6.15 | | 24 | 6.25 | 6.52 | 7.66 | 6.80 | 6.87 | 7.55 | 7.54 | 6.00 | 5.88 | 5.96 | 5.98 | 6.14 | | 25 | 6.26 | 6.54 | 7.69 | 6.87 | 6.81 | 7.53 | 7.51 | 5.96 | 5.90 | 5.99 | 5.98 | 6.16 | | 26
27
28
29
30
31 | 6.27
6.31
6.30
6.31
6.33
6.32 | 6.52
6.52
6.56
6.63
6.72 | 7.70
7.72
7.72
7.69
7.66
7.62 | 6.90
6.91
6.92
6.90
6.91
7.13 | 6.73
6.67
6.63
6.61 | 7.53
7.54
7.54
7.55
7.56
7.59 | 7.48
7.50
7.48
7.46
7.44 | 5.96
5.99
6.03
6.05
6.08
6.11 | 5.84
5.84
5.85
5.91
5.91 | 5.97
5.97
5.97
5.96
5.96
5.94 | 5.94
5.92
5.93
5.92
5.90
5.90 | 6.17
6.18
6.14
6.15
6.16 | | MEAN | 6.33 | 6.41 | 7.43 | 6.84 | 7.46 | 7.38 | 7.84 | 6.53 | 5.94 | 5.95 | 5.94 | 5.98 | | MAX | 6.77 | 6.72 | 7.75 | 7.54 | 8.24 | 7.79 | 8.27 | 7.42 | 6.12 | 5.99 | 5.98 | 6.18 | | MIN | 6.17 | 6.25 | 6.80 | 6.37 | 6.61 | 6.61 | 7.44 | 5.96 | 5.84 | 5.89 | 5.90 | 5.87 | WTR YR 1988 MEAN 6.67 MAX 8.27 MIN 5.84 ### 05427570 ROCK RIVER AT INDIANFORD, WI LOCATION.--Lat $42^{\circ}48^{\circ}15^{\circ}$, long $89^{\circ}05^{\circ}25^{\circ}$, in SW 1/4 SW 1/4 sec.16, T.4 N., R.12 E., Rock County, Hydrologic Unit 07090001, on right bank 50 ft upstream from bridge on County Trunk Highways F and M, 250 ft upstream from dam in Indianford, and 1.8 mi upstream from Yahara River. DRAINAGE AREA. -- 2,630 mi². PERIOD OF RECORD. -- May 1975 to current year. REVISED RECORDS.--WDR WI-79-1: Drainage area. GAGE. -- Water-stage recorder. Datum of gage is 763.74 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: July 7 and 8. Records fair. Natural flow of stream affected by dam in Indianford. Discharge is adjusted for flow through wicket gates. AVERAGE DISCHARGE.--13 years, 1,875 ft³/s, 9.68 in/yr. EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 11,900 ft^3/s , Apr. 5, 1979, gage height, 16.23 ft; minimum daily, 39 ft^3/s , June 19, 1988. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,970 ${\rm ft}^3/{\rm s}$, Dec. 15, gage height, 13.68 ft; minimum daily discharge, 39 ${\rm ft}^3/{\rm s}$, June 19. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|---|--|--|--|--------------------------------------|--|---|--|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 1440 | 705 | 1620 | 2200 | 2450 | 1440 | 2780 | 2280 | 373 | 180 | 120 | 111 | | 2 | 1590 | 684 | 1630 | 2250 | 2800 | 1490 | 2790 | 2240 | 465 | 162 | 113 | 110 | | 3 | 1500 | 851 | 1840 | 2230 | 3060 | 1550 | 2820 | 2190 | 384 | 144 | 122 | 137 | | 4 | 1310 | 1050 | 1790 | 2070 | 3240 | 1560 | 2890 | 2160 | 325 | 146 | 105 | 182 | | 5 | 1190 | 1060 | 1780 | 1910 | 3200 | 1580 | 3050 | 2070 | 298 | 152 | 126 | 167 | | 6 | 1240 | 1060 | 1870 | 1890 | 3130 | 1630 | 3450 | 1970 | 288 | 145 | 123 | 133 | | 7 | 1260 | 1070 | 1920 | 1800 | 3220 | 1810 | 3350 | 1780 | 281 | 120 | 116 | 103 | | 8 | 1150 | 1110 | 1940 | 1730 | 3250 | 1900 | 3400 | 1560 | 379 | 110 | 131 | 89 | | 9 | 1030 | 1090 | 1930 | 1640 | 3130 | 2200 | 3440 | 1390 | 204 | 114 | 148 | 127 | | 10 | 900 | 1100 | 2190 | 1530 | 3050 | 2430 | 3570 | 1560 | 138 | 129 | 153 | 142 | | 11 | 765 | 994 | 2310 | 1460 | 2960 | 2590 | 3570 | 1480 | 107 | 135 | 129 | 136 | | 12 | 727 | 999 | 2320 | 1360 | 2800 | 2640 | 3460 | 1360 | 95 | 148 | 125 | 130 | | 13 | 710 | 1050 | 2510 | 1340 | 2610 | 2800 | 3330 | 1420 | 91 | 88 | 89 | 145 | | 14 | 675 | 1090 | 2670 | 1280 | 2570 | 2880 | 3260 | 1310 | 70 | 138 | 90 | 144 | | 15 | 712 | 1070 | 2780 | 1250 | 2480 | 2910 | 3130 | 1190 | 107 | 122 | 152 | 155 | | 16 | 684 | 1050 | 2380 | 1190 | 2370 | 2890 | 2980 | 1230 | 124 | 195 | 113 | 113 | | 17 | 664 | 966 | 2180 | 1200 | 2300 | 2890 | 2810 | 1210 | 112 | 181 | 98 | 94 | | 18 | 612 | 1130 | 2200 | 1190 | 2200 | 2850 | 2880 | 1190 | 70 | 190 | 203 | 116 | | 19 | 622 | 1120 | 2260 | 1240 | 2130 | 2820 | 2730 | 1140 | 39 | 200 | 188 | 84 | | 20 | 553 | 1290 | 2400 | 1240 | 2040 | 2820 | 2610 | 1100 | 84 | 211 | 147 | 80 | | 21 | 586 | 1270 | 2470 | 1320 | 1890 | 2760 | 2520 | 1060 | 58 | 209 | 135 | 193 | | 22 | 582 | 1240 | 2550 | 1370 | 1840 | 2670 | 2570 | 1070 | 132 | 197 | 117 | 226 | | 23 | 627 | 1200 | 2610 | 1520 | 1740 | 2550 | 2490 | 801 | 183 | 182 | 134 | 273 | | 24 | 652 | 1350 | 2660 | 1620 | 1670 | 2540 | 2410 | 675 | 99 | 164 | 129 | 296 | | 25 | 633 | 1420 | 2690 | 1690 | 1620 | 2400 | 2310 | 556 | 119 | 193 | 120 | 292 | | 26
27
28
29
30
31 | 622
644
663
690
682
718 | 1400
1400
1460
1410
1520 | 2720
2730
2800
2750
2660
2470 | 1740
1720
1760
1730
1710
1990 | 1520
1540
1440
1440 | 2430
2550
2500
2580
2630
2720 | 2410
2340
2360
2340
2310 | 256
153
212
245
270
286 | 169
130
164
234
215 | 190
154
154
141
165
140 | 140
138
138
149
124
104 | 273
330
438
321
306 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 26433
853
1590
553
.32
.37 | 34209
1140
1520
684
.43
.48 | 71630
2311
2800
1620
.88
1.01 | 50170
1618
2250
1190
.62
.71 | 69690
2403
3250
1440
.91 | 74010
2387
2910
1440
.91
1.05 | 86360
2879
3570
2310
1.09
1.22 | 37414
1207
2280
153
.46
.53 | 5537
185
465
39
.07 | 4899
158
211
88
.06
.07 | 4019
130
203
89
.05
.06 | 5446
182
438
80
.07 | CAL YR 1987 TOTAL 538778 MEAN 1476 MAX 3900 MIN 342 CFSM .56 IN. 7.62 WTR YR 1988 TOTAL 469817 MEAN 1284 MAX 3570 MIN 39 CFSM .49 IN. 6.65 ## 05427948 PHEASANT BRANCH AT MIDDLETON, WI LOCATION.--Lat 43°06'12", long 89°30'42", in NE 1/4 NW 1/4 sec.11, T.7 N., R.8 E., Dane County, Hydrologic Unit 07090001, on left bank at bridge on U.S. Highway 12, 2.5 mi upstream from Lake Mendota, at Middleton. DRAINAGE AREA. -- 18.3 mi², of which 1.22 mi² is noncontributing. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1974 to current year. GAGE.--Water-stage recorder, parshall flume, and concrete control. Datum of gage is 901.5 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Jan. 5 to Feb. 2. Records good except for Jan. 5 to Feb. 2, May 29 to June 7, and June 28 to July 7, which are poor. AVERAGE DISCHARGE. -- 14 years, 4.14 ft³/s, 3.29 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 516 ft³/s, Mar. 21, 1975, gage height, 7.54 ft; maximum gage height, 8.54 ft, Mar. 12, 1976; minimum discharge, 0.29 ft³/s, Jan. 26, 1978, gage height, 3.56 ft. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 100 ft³/s and maximum (*): DATE TIME DISCHARGE GAGE HEIGHT DATE TIME DISCHARGE GAGE HEIGHT (ft³/s) (ft) Jan. 31 Unknown *75 *5.45 Minimum daily discharge, 0.63 ft³/s Sept. 9. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used May 30 to June 7, June 29 to July 7.) 3.7 0.58 4.5 5. 4.0 1.4 4.6 9. 4.2 2.2 4.8 20 4.3 2.8 5.0 34 4.4 3.7 5.3 60 ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|-----------------------------------|--|--|-----------------------------------|--|--|--|-----------------------------------|------------------------------------|--|--|--| | 1
2
3
4
5 | 1.5
1.5
1.4
1.5 | 1.8
1.5
1.5
1.4
1.3 | 4.3
3.4
3.0
2.7
2.5 | 2.4
2.2
2.3
2.0
1.7 | 20
8.7
5.8
4.2
3.4 | 7.9
5.7
3.9
3.1
2.9 | 3.3
9.9
28
12
5.7 | 2.0
1.9
1.8
1.8 | 1.2
1.2
1.2
1.2 | 1.1
1.1
.78
.77
.78 | 1.2
1.1
1.2
1.2 | .88
.87
.90
.88
.85 | | 6
7
8
9
10 | 1.5
1.6
1.5
1.5 | 1.2
2.2
1.9
1.5 | 2.3
2.4
3.8
23
9.0 | 1.6
1.5
1.5
1.5 | 2.9
2.8
2.4
2.3
2.1 | 3.2
3.8
5.3
4.3
3.5 | 5.7
4.3
4.0
3.4
2.7 | 1.7
1.7
2.5
3.0
2.0 | 1.2
1.3
1.1
1.1 |
.95
1.0
.99
.91
3.1 | 1.1
1.0
1.6
1.2 | .81
.75
.71
.63 | | 11
12
13
14
15 | 1.5
1.5
1.6
1.5 | 1.3
1.3
1.3
1.3 | 6.9
5.1
3.8
3.2
2.4 | 1.7
1.7
1.6
1.6 | 2.0
1.9
1.8
1.8 | 3.1
3.4
2.9
2.5
2.4 | 2.7
2.5
2.4
2.3
2.1 | 1.8
2.2
1.7
1.6
1.6 | 1.1
1.2
1.1
1.1 | 1.2
1.1
1.0
1.0
.98 | 1.2
1.1
1.1
1.1
1.5 | .66
.68
.68
.65 | | 16
17
18
19
20 | 2.0
2.2
1.7
1.6
1.5 | 1.7
16
4.4
3.0
2.4 | 2.7
2.7
2.5
2.8
4.2 | 1.7
1.8
1.9
2.0
3.4 | 1.8
1.8
1.9
1.9 | 2.3
2.4
2.3
2.3
2.2 | 2.0
2.0
1.9
1.8
1.8 | 1.5
1.5
1.5
1.5 | 1.0
1.1
1.1
1.1 | 12
2.4
1.3
1.2 | 1.0
.91
1.4
1.0
.98 | .75
.97
.86
8.7
3.0 | | 21
22
23
24
25 | 1.7
2.3
2.8
3.4
2.7 | 2.1
1.9
2.0
1.8
2.1 | 3.6
3.5
3.2
3.6
4.4 | 3.3
3.1
2.9
2.7
2.6 | 1.6
1.9
1.8
1.6 | 2.0
2.0
2.2
3.0
4.7 | 1.8
1.9
3.7
2.1
1.9 | 1.4
1.4
1.4
1.3 | 1.1
1.3
1.1
1.1 | 2.2
1.2
1.2
1.2 | .89
1.2
15
1.2
.94 | 1.2
19
9.5
1.5 | | 26
27
28
29
30
31 | 2.5
1.5
1.4
1.3
1.3 | 2.1
2.1
18
16
6.3 | 4.1
3.4
3.0
3.0
2.8
2.6 | 2.4
2.2
2.2
2.3
30 | 3.5
4.3
6.5
8.7 | 3.2
2.7
7.2
13
4.9
3.8 | 2.5
3.5
2.9
2.4
2.2 | 1.3
1.2
1.2
1.2
1.2 | .98
.99
2.0
3.7
1.3 | 1.3
1.6
1.3
1.3
1.3 | .86
.83
.84
.81
.84 | 1.1
1.1
1.0
.94 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 53.8
1.74
3.4
1.3
.09 | 103.9
3.46
18
1.2
.19
.21 | 129.9
4.19
23
2.3
.23
.26 | 151.0
4.87
60
1.5
.27 | 104.5
3.60
20
1.5
.20
.21 | 118.1
3.81
13
2.0
.21
.24 | 125.4
4.18
28
1.8
.23
.25 | 50.6
1.63
3.0
1.2
.09 | 37.57
1.25
3.7
.98
.07 | 49.86
1.61
12
.77
.09
.10 | 47.68
1.54
15
.81
.08
.10 | 63.07
2.10
19
.63
.11
.13 | CAL YR 1987 TOTAL 1056.3 MEAN 2.89 MAX 45 MIN 1.0 CFSM .16 IN. 2.15 WTR YR 1988 TOTAL 1035.38 MEAN 2.83 MAX 60 MIN .63 CFSM .15 IN. 2.10 ## 05427948 PHEASANT BRANCH AT MIDDLETON, WI--CONTINUED ## WATER-QUALITY RECORDS PERIOD OF RECORD. -- Water years 1974 to current year. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
SUS-
PENDED
(T/DAY)
(80155) | |----------------|--------------|---|---|---|-----------------|--------------|---|---|---| | NOV 1987 | | | | | JUL 1988 | | | | | | 17 | 0015 | 14 | 120 | 4.5 | 16 | 1000 | 14 | 274 | 10 | | 17 | 0215 | 22 | 256 | 15 | 16 | 1400 | 31 | 213 | 18 | | 17
17 | 0615
0815 | 10
20 | 72
346 | 1.9
19 | 16
16 | 1500
1700 | 37
17 | 722
276 | 72
13 | | 17 | 0915 | 25 | 442 | 30 | 16 | 2100 | 11 | 493 | 15 | | 17 | 1315 | 21 | 386 | 22 | AUG | 2100 | ** | 1,75 | 13 | | 17 | 1630 | 15 | 247 | 10 | 03 | 1400 | 1.1 | 93 | 0.28 | | 17 | 1930 | 12 | 196 | 6.4 | 07 | 1545 | 1.0 | 97 | 0.26 | | 18 | 1002 | 4.3 | 32 | 0.37 | 08 | 0800 | 3.1 | 52 | 0.44 | | 28
28 | 1300 | 13 | 213 | 7.5 | 08 | 0845 | 5.7
2.2 | 83
8 | 1.3
0.05 | | 2 8 | 1330
1530 | 17
29 | 159
399 | 7.3
31 | 08
12 | 2030
1030 | $\frac{2.2}{1.1}$ | 19 | 0.05 | | 28 | 1830 | 42 | 885 | 100 | 14 | 1600 | 1.1 | 30 | 0.09 | | 28 | 2330 | 33 | 492 | 44 | 15 | 0200 | 1.0 | 23 | 0.06 | | 29 | 0330 | 23 | 286 | 18 | 15 | 0945 | 2.1 | 63 | 0.36 | | 29 | 0930 | 16 | 161 | 7.0 | 15 | 1215 | 1.3 | 36 | 0.13 | | MAR 1988
24 | 0000 | 0.0 | 4.1 | 7.6 | 22 | 2400 | 19 | 253 | 13 | | 25 | 2330
0030 | 20
14 | 141
1160 | 7.6
44 | 23
23 | 0100
0415 | 38
21 | 1140
180 | 117
10 | | 28 | 1300 | 14 | 283 | 11 | 23 | 0615 | 34 | 1590 | 146 | | 29 | 0015 | 18 | 310 | 15 | 23 | 0946 | 16 | 689 | 30 | | 29 | 0345 | 19 | 250 | 13 | 23 | 0947 | 16 | 685 | 30 | | 29 | 1015 | 13 | 179 | 6.3 | SEP | | | | | | APR | | | | | 19 | 0600 | 17 | 358 | 16 | | 02 | 1600 | 14 | 102 | 3.9 | 19 | 1100 | 25
8.7 | 1110 | 75
14 | | 02 | 1915
2200 | 16
29 | 271
1190 | 12
93 | 19
19 | 1515
1730 | 7.0 | 601
448 | 8.5 | | 02 | 2400 | 44 | 1840 | 219 | 20 | 0200 | 3.3 | 244 | 2.2 | | 03 | 0600 | 31 | 877 | 73 | 2 0 | 0400 | 6.6 | 240 | 4.3 | | JUN | | | | | 20 | 0800 | 3.4 | 229 | 2.1 | | 28 | 2215 | 6.6 | 254 | 4.5 | 22 | 0315 | 4.3 | 594 | 6.9 | | 28
28 | 2230 | 7.0 | 128 | 2.4 | 22
22 | 0515
0715 | 14
6.6 | 389
427 | 15
7.6 | | 29 | 2330
0030 | 17
17 | 213
742 | 9.8
34 | 22 | 1015 | 30 | 602 | 49 | | 29 | 0230 | 6.6 | 185 | 3.3 | 22 | 1129 | 29 | 297 | 23 | | 29 | 1130 | 4.7 | 195 | 2.5 | 22 | 1130 | 29 | 285 | 22 | | JUL | | | | | 22 | 1315 | 39 | 1290 | 136 | | 10 | 1045 | 16 | 87 | 3.8 | 22 | 1615 | 26 | 778 | 55 | | 10 | 1100 | 20 | 113 | 6.1 | 22 | 1915 | 16 | 477 | 21 | | 10
16 | 1200
0730 | 14
17 | 450 | 17
5.0 | 23
23 | 0115
1215 | 24
7.4 | 535
304 | 35
6.1 | | 16 | 0800 | 41 | 110
960 | 5.0
106 | 23 | 1730 | 3.7 | 140 | 1.4 | | 20 | 0000 | , _ | ,,, | 100 | 23 | 1.00 | | • | | ## 05427948 PHEASANT BRANCH AT MIDDLETON, WI--CONTINUED ## WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | NITRO-
GEN,
NO2+NO3
TOTAL
(MG/L
AS N)
(00630) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | NITRO-
GEN,
ORGANIC
TOTAL
(MG/L
AS N)
(00605) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | NITRO-
GEN,
TOTAL
(MG/L
AS N)
(00600) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | |----------|--------------|---|---|---|---|---|--|--|---| | NOV 1987 | | | | | | | | | | | 17 | 0115 | 22 | 1.50 | 0.130 | 2.3 | 2.4 | 3.9 | 0.180 | 0.120 | | 17 | 0515 | 8.7 | 1.50 | 0.110 | 0.89 | 1.0 | 2.5 | 0.450 | 0.260 | | 17 | 0915 | 25 | 3.60 | 0.050 | 3.1 | 3.2 | 6.8 | 0.490 | 0.250 | | 17
17 | 0916 | 25 | 3.70
5.30 | 0.110 | 0.69 | 0.80 | 4.5 | 0.470
1.00 | 0.260
0.960 | | 17 | 1530
2030 | 17
10 | 7.80 | $1.90 \\ 1.10$ | 4.1
3.5 | 6.0
4.6 | 11
12 | 1.10 | 0.960 | | 28 | 1430 | 26 | 2.60 | 0.090 | 2.2 | 2.3 | 4.9 | 0.270 | 0.130 | | 28 | 1730 | 42 | 5.40 | 0.070 | 2.3 | 2.4 | 7.8 | 0.380 | 0.180 | | 29 | 0030 | 30 | 8.90 | 0.450 | 2.7 | 3.2 | 12 | 0.830 | 0.690 | | 29 | 0830 | 17 | 12.0 | 0.550 | 3.5 | 4.1 | 16 | 0.800 | 0.860 | | 30 | 1445 | 5.7 | 13.0 | 0.240 | 1.8 | 2.0 | 15 | 0.500 | 0.340 | | MAR 1988 | | | | | | | | | | | 24 | 2400 | 20 | 2.20 | 0.320 | 2.0 | 2.3 | 4.5 | 0.420 | 0.280 | | 28 | 2300 | 15 | 5.80 | 0.320 | 1.7 | 2.0 | 7.8 | 0.440 | 0.160 | | 29
29 | 0415
1045 | 19
13 | 6.00
7.70 | 0.740
0.890 | 3.0
2.9 | 3.7
3.8 | 9.7
11 | 0.900
0.980 | 0.450
0.650 | | APR | 1043 | 13 | 7.70 | 0.890 | 2.9 | 3.0 | 11 | 0.960 | 0.650 | | 02 | 1700 | 15 | 2.40 | 0.170 | 1.9 | 2.1 | 4.5 | 0.940 | 0.220 | | 02 | 2100 | 29 | 3.20 | 0.210 | 2.4 | 2.6 | 5.8 | 0.910 | 0.170 | | 02 | 2300 | 43 | 4.10 | 0.170 | 3.0 | 3.2 | 7.3 | 1.40 | 0.190 | | 03 | 0700 | 29 | 6.30 | 0.560 | 4.1 | 4.7 | 11 | 1.80 | 0.680 | | 03 | 1200 | 20 | 0.800 | 0.460 | 3.3 | 3.8 | 4.6 | 1.10 | 0.540 | | 03 | 2000 | 25 | 7.80 | 0.490 | 2.6 | 3.1 | 11 | 1.10 | 0.600 | | JUL | 0700 | | 0 100 | 0.150 | 0.0 | 0.0 | 0.3 | 0 / 10 | 0 110 | | 16
16 | 0730 | 17
27 | 0.100
1.00 | 0.150
0.170 | 2.0
2.6 | $\frac{2.2}{2.8}$ | 2.3
3.8 | 0.410
1.60 | 0.110
0.520 | | 16 | 0900
1500 | 37 | 1.10 | 0.170 | 2.0 | 3.0 | 4.1 | 1.30 | 0.320 | | 16 | 1900 | 16 | 3.00 | 0.110 | 1.8 | 1.9 | 4.9 | 0.260 | 0.170 | | AUG | 1,00 | 10 | 3.00 | 0.110 | 1.0 | 1.7 | 4., | 0.200 | 0.170 | | 22 | 2400 | 19 | 1.30 | 0.140 | 0.86 | 1.0 | 2.3 | 0.130 | 0.090 | | 23 | 0200 | 36 | 0.600 | 0.110 | 0.79 | 0.90 | 1.5 | 1.10 | 0.280 | | 23 | 0415 | 21 | 1.60 | 0.080 | 1.0 | 1.1 | 2.7 | 0.260 | 0.200 | | 23 | 0515 | 33 | 0.700 | 0.100 | 0.70 | 0.80 | 1.5 | 0.500 | 0.170 | | 23 | 0945 | 16 | 1.30 | 0.100 | 0.70 | 0.80 | 2.1 | 0.470 | 0.200 | | 23 | 0946 | 16 | 1.30 | 0.110 | 0.59 | 0.70 | 2.0 | 0.410 | 0.210 | | SEP | 0615 | 6 2 | 1 40 | 0 650 | 0.75 | 1 4 | 2 0 | 0 710 | 0 270 | | 22
22 | 0415
0915 | 6.2
27 | 1.40
0.900 | 0.650
0.350 | 0.75
0.45 | 1.4
0.80 | 2.8
1.7 | 0.710
0.740 |
0.270
0.230 | | 22 | 1215 | 38 | 0.800 | 0.330 | 0.43 | 0.60 | 1.4 | 1.20 | 0.230 | | 22 | 1815 | 36
17 | 2.80 | 0.470 | 0.13 | 0.90 | 3.7 | 0.630 | 0.170 | | 22 | 1015 | 17 | 2.00 | 0.200 | 3.04 | 3.70 | 3., | 0.030 | 0.170 | ### ROCK RIVER BASIN ## 054279502 GRABER POND AT MIDDLETON, WI LOCATION.--Lat 43°07'11", long 89°30'25', in SW 1/4 SE 1/4 sec.35, T.8 N., R.8 E., Dane County, Hydrologic Unit 07090001, on south side of pond along Graver Road, in Middleton. DRAINAGE AREA. -- 0.60 mi². Area of Graber Pond, 0.02 mi². ## WATER-STAGE RECORDS PERIOD OF RECORD. -- April to September 1988. GAGE.--Water-stage recorder. Datum of gage is 896.77 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily mean gage height: Apr. 12, 17, 18, 23, 30, and May 1-4. Records good except estimated daily mean gage heights, which are fair. EXTREMES.--April to September 1988: Maximum gage height, 4.94 ft Apr. 12-13; minimum, 4.07 ft June 28. | 1 4.82 4.38 4.33 4.21 4.33 4.21 4.33 4.21 4.33 4.21 4.33 4.21 4.33 4.21 4.33 4.21 4.33 4.21 4.34 4.35 4.36 4.39 4.19 4.36 4.35 4.26 4.18 4.35 4.26 4.18 4.35 4.26 4.18 4.37 4.38 4.23 4.17 4.38 4.39 4.21 4.16 4.39 4.39 4.39 4.39 4.39 4.39 4.39 4.39 | | |---|--------| | | SEP | | | 4.31 | | 4 4.75 4.35 4.26 4.18 4.55 5 4.74 4.33 4.23 4.17 4.17 6 4.73 4.32 4.22 4.17 4.16 7 4.73 4.30 4.21 4.16 4.8 8 4.71 4.28 4.19 4.18 4 9 4.71 4.28 4.19 4.18 4 10 4.71 4.27 4.16 4.19 4 11 4.75 4.26 4.21 4.20 4 12 4.94 4.76 4.25 4.20 4 13 4.94 4.75 4.23 4.22 4.18 4 14 4.94 4.75 4.2 | 4.30 | | 5 4.74 4.33 4.23 4.17 4. 6 4.73 4.32 4.22 4.17 4. 7 4.73 4.30 4.21 4.16 4. 8 4.71 4.28 4.19 4.18 4. 9 4.71 4.27 4.16 4.19 4. 10 4.75 4.26 4.21 4.20 4. 11 4.76 4.26 4.25 4.20 4. 12 4.76 4.26 4.25 4.20 4. 13 4.94 4.76 4.25 4.24 4.20 4. 14 4.94 4.75 4.25 4.24 4.20 4. 15 4.94 4.75 4.25 4.24 4.20 4. 16 4.88 4.68 4.19 4.28 4.16 4. | 4.32 | | 6 4.73 4.32 4.22 4.17 4. 7 4.73 4.30 4.21 4.16 4. 8 4.71 4.28 4.19 4.18 4. 9 4.71 4.27 4.16 4.19 4. 10 4.75 4.26 4.21 4.20 4. 11 4.76 4.26 4.25 4.20 4. 12 4.76 4.26 4.25 4.20 4. 13 4.94 4.76 4.25 4.24 4.20 4. 14 4.94 4.75 4.23 4.22 4.18 4. 15 4.89 4.71 4.21 4.19 4.16 4. 16 4.89 4.71 4.21 4.19 4.16 4. | 4.31 | | 7 4.73 4.30 4.21 4.16 4 8 4.71 4.28 4.19 4.18 4 9 4.71 4.27 4.16 4.19 4 10 4.75 4.26 4.21 4.20 4 11 4.76 4.26 4.25 4.20 4 12 4.94 4.76 4.25 4.24 4.20 4 13 4.94 4.75 4.25 4.24 4.20 4 14 4.94 4.75 4.25 4.22 4.18 4 14 4.94 4.75 4.25 4.22 4.18 4 15 4.88 4.68 4.19 4.28 4.16 4 | 4.30 | | 8 4.71 4.28 4.19 4.18 4 9 4.71 4.27 4.16 4.19 4 10 4.75 4.26 4.21 4.20 4 11 4.76 4.26 4.25 4.20 4 12 4.94 4.76 4.25 4.24 4.20 4 13 4.94 4.75 4.23 4.22 4.18 4 14 4.92 4.73 4.22 4.20 4.17 4 15 4.89 4.71 4.21 4.19 4.16 4 16 4.88 4.68 4.19 4.28 4.16 4 | 4.28 | | 9 4.71 4.27 4.16 4.19 4 10 4.75 4.26 4.21 4.20 4 11 4.76 4.26 4.25 4.20 4 12 4.94 4.76 4.25 4.24 4.20 4 13 4.94 4.75 4.23 4.22 4.18 4 14 4.92 4.73 4.22 4.18 4 15 4.89 4.71 4.21 4.19 4.16 4 16 4.88 4.68 4.19 4.28 4.16 4 | 4.27 | | 10 4.75 4.26 4.21 4.20 4 11 4.76 4.26 4.25 4.20 4 12 4.94 4.76 4.25 4.20 4 13 4.94 4.75 4.23 4.22 4.18 4 14 4.92 4.73 4.22 4.20 4.17 4 15 4.88 4.68 4.19 4.28 4.16 4 | 4.26 | | 11 4.76 4.26 4.25 4.20 4 12 4.94 4.76 4.25 4.24 4.20 4 13 4.94 4.75 4.25 4.24 4.20 4 14 4.94 4.75 4.23 4.22 4.18 4 15 4.92 4.73 4.22 4.20 4.17 4 15 4.89 4.71 4.21 4.19 4.16 4 | 4.25 | | 12 4.94 4.76 4.25 4.24 4.20 4 13 4.94 4.75 4.23 4.22 4.18 4 14 4.92 4.73 4.22 4.20 4.17 4 15 4.89 4.71 4.21 4.19 4.16 4 16 4.88 4.68 4.19 4.28 4.16 4 | 4.24 | | 12 4.94 4.76 4.25 4.24 4.20 4 13 4.94 4.75 4.23 4.22 4.18 4 14 4.92 4.73 4.22 4.20 4.17 4 15 4.89 4.71 4.21 4.19 4.16 4 16 4.88 4.68 4.19 4.28 4.16 4 | 4.23 | | 14 4.92 4.73 4.22 4.20 4.17 4 15 4.89 4.71 4.21 4.19 4.16 4 16 4.88 4.68 4.19 4.28 4.16 4 | 4.23 | | 15 4.89 4.71 4.21 4.19 4.16 4
16 4.88 4.68 4.19 4.28 4.16 4 | 4.22 | | 16 4.88 4.68 4.19 4.28 4.16 4 | 4.21 | | | 4.20 | | 17 | 4.19 | | | 4.20 | | | 4.21 | | | 4.38 | | 20 4.79 4.62 4.16 4.33 4.19 4 | 4.44 | | | 4.45 | | | 4.59 | | | 4.71 | | | 4.71 | | 25 4.51 4.11 4.29 4.40 4 | 4.70 | | 26 4.50 4.11 4.28 4.38 4 | 4.68 | | | 4.65 | | | 4.62 | | 1717 1120 1130 1 | 4.62 | | | 4.61 | | 1100 1110 1101 1 | | | TOTAL 143.94 126.86 132.32 131.32 131 | 131.69 | | | 4.39 | | | 4.71 | | | 4.19 | 4.37 ### ROCK RIVER BASIN ## 054279502 GRABER POND AT MIDDLETON, WI--CONTINUED ### PRECIPITATION QUANTITY PERIOD OF RECORD. -- Apr. 6 to Sept. 30, 1988. --- ___ ___ ___ GAGE .-- Digital recorder. TOTAL --- REMARKS.--Estimated daily rainfall: May 13-19. Records good except estimated daily rainfall, which is fair. EXTREMES FOR CURRENT YEAR: Maximum daily rainfall, 1.82 in., June 28. #### RAINFALL ACCUMULATED (INCHES), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 SUM VALUES DAY OCT NOV JUL AUG SEP DEC JAN FEB MAR APR MAY JUN ---.00 .00 .00 .00 .00 1 ---___ .00 .00 .00 .00 .30 ---3 ___ ---___ _---_ _ _ ---.00 .00 .00 .00 .00 ___ ---___ ---------___ .00 .00 .00 .13 .10 5 .00 .00 .01 .05 .00 .01 .00 .00 .01 6 ___ ---___ ---___ ___ .19 .00 .00 ---.01 .00 ------___ ------8 -**-**-.00 .00 .00 .58 .00 .51 .00 .06 .00 .00 10 ___ ___ ___ ___ ---___ .00 .01 .00 .73 .00 .00 .00 .00 .00 .00 11 ---------.05 .17 .00 .03 .00 .00 .01 .00 12 13 ___ _ _ _ ---___ ---___ .05 .00 .00 .01 .01 .00 14 15 .00 _ _ _ _ _ _ .00 .01 .00 .01 .00 ------___ ---------.02 .00 .00 .10 .00 .00 16 ------___ ___ ---___ .00 .00 1.22 .01 .13 ---17 ---------___ ___ .00 .00 .00 .00 .00 .11 ---------___ ___ 18 19 .00 .00 .00 . 41 . 67 .00 .00 ---------.00 .00 .88 .00 .00 20 ---.07 .00 .00 . 15 .01 .15 .00 .00 .26 .00 21 ___ ___ ---_---___ ---.00 .10 1.77 1.33 .00 22 23 ___ ___ ___ .00 ---___ ---.40 .11 _---.00 .00 .00 .00 .00 .00 .00 25 ___ ___ ___ ___ ---___ .00 .00 .00 .01 .00 .00 .00 26 ---.39 .00 .00 .00 .00 27 ------.13 .00 .00 .00 .03 .00 ------------_------.00 .00 1.82 .00 .00 .14 . 28 ___ .00 29 ___ ___ ___ _---___ .01 .00 .00 .01 30 ___ ------.00 .00 .00 .00 .01 31 ---.00 .00 .00 --- --- --- 1.01 2.21 2.50 2.92 ## 05427965 SPRING HARBOR STORM SEWER AT MADISON, WI LOCATION.--Lat $43^{\circ}04'45''$, long $89^{\circ}28'15''$, in NW 1/4 SE 1/4 sec.18, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, in city park near the junction of Spring Harbor Drive and University Avenue in Madison. DRAINAGE AREA. -- 3.29 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1976 to current year. GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 855.3 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Nov. 19-30, Jan. 12-28, Aug. 11-12 and 16-23.. Records are good except those for estimated daily discharges and for flow less than 0.3 $\rm ft^3/s$, which are poor. AVERAGE DISCHARGE.--12 years (1977-88), 1.37 ft^3/s , 5.65 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 706 ${\rm ft}^3/{\rm s}$, Aug. 31, 1981, gage height, 4.04 ft; no flow many days during period of record. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 138 ft³/s, Sept. 19, gage height, 2.06 ft; no flow on many days during current year. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 0.41 | 0.0 | 0.8 | 6. | |------|------|-----|----| | 0.5 | 0.55 | 0.9 | 12 | | 0.6 | 1.8 | 1.0 | 18 | | 0.7 | 3.8 | 1.1 | 26 | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | |------------|-------|------|-----|---------|--------|------|---------|------|----|-----------|------| | | | | | M | EAN VA | LUES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|----------------------------------|-----------------------------------|------------------------------------|--|-----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------| | 1
2
3
4
5 | .00
.00
.00
.00 | 2.3
.29
.02
.00 | .19
.12
.30
.19 | .02
.00
.00
.00 | .23
.04
.03
.00 | 1.6
.67
.20
.17
.30 | .00
16
7.5
.48
.81 | .00
.15
.68
.38 | .00
.00
.00
.00 | .08
.00
.00
.00 | .00
.00
.33
.55 | .00
5.0
.79
1.0
.08 | | 6
7
8
9 | .08
.13
.00
.00 | .00
6.9
.95
.28
.06 | .12
1.1
6.6
9.7
.16 | .00
.00
.00
.00 | .00
.03
.06
.06 | .97
1.6
2.1
.37
.29 | 4.3
.15
.06
.05 | .00
.00
4.3
3.6
.62 | .00
.00
.02
.00 | .00
.00
.00
.05
4.8 | .00
.00
2.8
.45
.04 | .03
.00
.00
.00 | | 11
12
13
14
15 | .00
.00
.00
.00 | .00
.01
.00
.00 | 3.0
.09
.00
.06
.03 | .00
.00
.00
.00 | .06
.06
.09
.12
.16 | .28
.53
.13
.06 | .09
.02
.00
.02 | 2.0
1.9
.18
.01 | .00
.00
.02
.00 | .08
.06
.00
.00 | .00
.00
.99
.06
4.8 | .00
.00
.00
.00 | | 16
17
18
19
20 | 2.8
.94
.04
.06 | 6.7
17
.29
.00 |
.00
.00
.00
3.5
3.8 | .40
.60
.80
1.0 | .15
.34
1.1
.51
.18 | .03
.06
.03
.05 | .00
.00
.00
.00 | .00
.00
.00
.00 | .00
.02
.00
.00 | .01
.02
.16
.01 | .04
.00
.00
.00 | .47
1.0
3.7
19
2.2 | | 21
22
23
24
25 | .04
.32
.14
1.7
.30 | .00
.00
.00
.05
.20 | .43
.49
.30
4.8
.86 | .04
.00
.00
.00 | .00
.58
.08
.01 | .03
.16
.18
3.9
2.0 | .01
2.8
10
.30
.16 | .00
.00
.00
.00 | .00
2.0
.06
.22
.00 | 1.5
.01
.00
.00 | .00
.00
.74
.07 | .04
24
1.2
.00 | | 26
27
28
29
30
31 | 1.9
.35
.06
.33
.13 | .02
.00
20
1.0
.30 | .14
.13
.07
.02
.13 | .00
.00
.00
.98
19 | 2.6
1.7
2.6 | .00
.00
12
1.6
.16 | 3.3
2.8
.23
.09 | .00
.00
.00
.00
.00 | .00
.00
12
11
.00 | .00
.00
.00
.00
.00 | .01
.00
.00
.00
.00 | .00
.00
.48
.00
.00 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 9.42
.30
2.8
.00
.09 | 56.37
1.88
20
.00
.57 | 36.63
1.18
9.7
.00
.36 | 35.24
1.14
19
.00
.35
.40 | 12.45
.43
2.6
.00
.13 | 29.54
.95
12
.00
.29 | 49.29
1.64
16
.00
.50 | 13.82
.45
4.3
.00
.14 | 25.34
.84
12
.00
.26 | 16.81
.54
10
.00
.16 | 11.26
.36
4.8
.00
.11 | 58.99
1.97
24
.00
.60 | CAL YR 1987 TOTAL 449.59 MEAN 1.23 MAX 30 MIN .00 CFSM .37 IN. 5.08 WTR YR 1988 TOTAL 355.16 MEAN .97 MAX 24 MIN .00 CFSM .29 IN. 4.02 ## WATER-QUALITY RECORDS 05427965 SPRING HARBOR STORM SEWER AT MADISON, WI--CONTINUED PERIOD OF RECORD. -- February 1976 to current year. ## WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | FEET
TIME | DIS-
CHARGE,
INST.
CUBIC
SUS-
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
PENDED
(T/DAY)
(80155) | DATE | FEET
TIME | DIS-
CHARGE,
INST.
CUBIC
SUS-
PER
SECOND
(00061) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | SEDI-
MENT,
DIS-
CHARGE,
PENDED
(T/DAY)
(80155) | |-----------|--------------|---|---|---|----------|--------------|---|---|---| | NOV 1987 | | | | | APR 1988 | | | | | | 07 | 1650 | 9.6 | 88 | 2.3 | 22 | 2345 | 41 | 250 | 28 | | 07 | 1720 | 50 | 262 | 35 | 23 | 0115 | 50 | 109 | 15 | | 07 | 1750 | 71 | 305 | 58 | 23 | 0345 | 14 | 81 | 3.1 | | 07 | 1850 | 41 | 209 | 23 | 23 | 1205 | 8.7 | 33 | 0.78 | | 07 | 2050 | 7.2 | 201 | 3.9 | JUN | 2005 | 20 | F07 | | | DEC | 1615 | 0.4 | 150 | 2 - | 28 | 2025 | 29 | 507 | 40 | | 08 | 1645 | 8.4 | 153 | 3.5 | 28 | 2125 | 58 | 1030 | 162
72 | | 08
08 | 1750 | 22
9.6 | 386 | 23 | 28
28 | 2225
2325 | 86
87 | 312
212 | 50 | | 08 | 2250
2350 | 22 | 178
221 | 4.6
13 | 28
29 | 0225 | 53 | 162 | 23 | | 09 | 0150 | 33 | 349 | 31 | 29 | 0555 | 9.1 | 81 | 2.0 | | 09 | 0450 | 44 | 249 | 30 | JUL | 0555 | 7.1 | 01 | 2.0 | | 09 | 0620 | 18 | 195 | 9.5 | 16 | 0625 | 8.2 | 190 | 4.2 | | JAN 1988 | 0020 | 10 | 175 | 7.5 | 16 | 0655 | 85 | 514 | 118 | | 30 | 0715 | 9.6 | 50 | 1.3 | 16 | 0725 | 98 | 696 | 184 | | 30 | 1115 | 22 | 109 | 6.5 | 16 | 0755 | 57 | 697 | 107 | | 30 | 1345 | 33 | 266 | 24 | 16 | 0825 | 44 | 622 | 74 | | 30 | 1715 | 26 | 95 | 6.7 | 16 | 1330 | 7.7 | 144 | 3.0 | | 30 | 2015 | 27 | 83 | 6.1 | SEP | | | | | | MAR | | | | | 02 | 1945 | 8.7 | 383 | 9.0 | | 24 | 2210 | 9.6 | 1050 | 27 | 02 | 2050 | 58 | 616 | 96 | | 24 | 2240 | 54 | 1370 | 200 | 02 | 2320 | 8.2 | 147 | 3.3 | | 24 | 2340 | 29 | 803 | 63 | 18 | 2010 | 8.2 | 78 | 1.7 | | 25 | 0140 | 6.4 | 204 | 3.5 | 18 | 2040 | 59 | 711 | 113 | | 28 | 0805 | 8.7 | 467 | 11 | 18 | 2240 | 9.6 | 60 | 1.6 | | 28 | 0835 | 37 | 361 | 36 | 19 | 0325 | 14 | 121 | 4.6 | | 28 | 0905 | 48 | 627 | 81 | 19 | 0355 | 78 | 380 | 80 | | 28 | 1035 | 16 | 198 | 8.6 | 19 | 0425 | 130 | 292 | 102 | | 28 | 1205 | 45 | 324 | 39 | 19 | 0555 | 46 | 198 | 25 | | 28 | 1535 | 6.1 | 193 | 3.2 | 19
19 | 0755
1025 | 36
9.1 | 223
97 | 22
2.4 | | APR
02 | 1445 | 20 | 1270 | 69 | 22 | 0635 | 6.4 | 39 | 0.67 | | 02 | 1515 | 67 | 1270
2020 | | 22 | 0740 | 72 | 251 | 49 | | 02 | 1745 | 17 | 2020 | 365 | 22 | 0910 | 72
72 | 206 | 40 | | 02 | 1845 | 30 | 238
177 | 11
14 | 22 | 1040 | 37 | 262 | 26 | | 02 | 1945 | 23 | 559 | 35 | 22 | 1145 | 28 | 215 | 16 | | 02 | 2015 | 23
89 | 897 | 216 | 22 | 1315 | 6.4 | 172 | 3.0 | | 02 | 2145 | 40 | 908 | 98 | 22 | 1415 | 44 | 409 | 49 | | 02 | 2215 | 65 | 540 | 95 | 22 | 1715 | 7.2 | 419 | 8.1 | | 02 | 2345 | 30 | 418 | 34 | 22 | 2005 | 65 | 298 | 52 | | 03 | 0215 | 14 | 258 | 9.8 | 23 | 0005 | 11 | 280 | 8.3 | | 22 | 2000 | 7.2 | 392 | 7.6 | | 5 | | - | - | | | | | | | | | | | | ### 05428000 LAKE MENDOTA AT MADISON, WI LOCATION.--Lat 43°05'42", long 89°22'12", in SE 1/4 sec.12, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, in city boat house at dam at outlet, in Madison. DRAINAGE AREA. -- 233 mi². Area of Lake Mendota, 15.2 mi². PERIOD OF RECORD. --December 1902 to May 1903, January 1916 to current year (incomplete). REVISED RECORDS.--WDR WI-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 840.00 ft above National Geodetic Vertical Datum of 1929, or 5.60 ft below city of Madison datum. Prior to Oct. 1, 1979, at datum 7.82 ft higher; prior to Nov. 15, 1971, nonrecording gage at same site and datum. REMARKS.--Records good, no estimated daily lake levels. Lake level regulated by concrete dam with two 12-foot gates and 20-foot lock at outlet. Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 12.01 ft, Apr. 5, 1959; minimum observed, 8.02 ft, Feb. 24 to Mar. 10, 1920, current datum. EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 10.18 ft, May 15; minimum, 8.76 ft, Feb. 28. | | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | | | | | | | |----------------------------------|--|--------------------------------------|--|--|------------------------------|--|--|--|--------------------------------------|--|--|--------------------------------------| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 10.02 | 9.41 | 9.66 | 9.76 | 9.28 | 8.82 | 9.62 | 10.04 | 9.93 | 9.69 | 9.63 | 9.46 | | 2 | 10.03 | 9.41 | 9.60 | 9.72 | 9.30 | 8.86 | 9.66 | 10.04 | 9.92 | 9.68 | 9.61 | 9.47 | | 3 | 9.97 | 9.42 | 9.56 | 9.70 | 9.30 | 8.90 | 9.78 | 10.03 | 9.90 | 9.67 | 9.60 | 9.51 | | 4 | 9.95 | 9.45 | 9.51 | 9.67 | 9.29 | 8.92 | 9.84 | 10.03 | 9.89 | 9.67 | 9.60 | 9.52 | | 5 | 9.94 | 9.45 | 9.45 | 9.64 | 9.27 | 8.94 | 9.87 | 10.02 | 9.89 | 9.65 | 9.62 | 9.50 | | 6 | 9.95 | 9.42 | 9.39 | 9.62 | 9.25 | 8.97 | 9.96 | 10.02 | 9.88 | 9.66 | 9.60 | 9.48 | | 7 | 9.94 | 9.43 | 9.39 | 9.59 | 9.23 | 9.00 | 9.94 | 10.00 | 9.88 | 9.65 | 9.56 | 9.46 | | 8 | 9.90 | 9.48 | 9.42 | 9.56 | 9.21 | 9.04 | 9.96 | 10.0 | 9.85 | 9.64 | 9.59 | 9.44 | | 9 | 9.90 | 9.49 | 9.50 | 9.53 | 9.20 | 9.08 | 9.97 | 10.07 | 9.83 | 9.63 | 9.61 | 9.45 | | 10 | 9.88 | 9.48 | 9.53 | 9.50 | 9.18 | 9.12 | 9.98 | 10.10 | 9.81 | 9.67 | 9.59 | 9.44 | | 11 | 9.84 | 9.48 | 9.57 | 9.46 | 9.16 | 9.14 | 9.98 | 10.10 | 9.80 | 9.68 | 9.59 | 9.43 | | 12 | 9.80 | 9.48 | 9.62 | 9.44 | 9.14 | 9.17 | 9.99 | 10.11 | 9.78 | 9.66 | 9.59 | 9.44 | | 13 | 9.76 | 9.49 | 9.62 | 9.41 | 9.11 | 9.20 | 10.0 | 10.11 | 9.77 | 9.64 | 9.57 | 9.44 | | 14 | 9.72 | 9.50 | 9.62 | 9.39 | 9.09 | 9.22 | 10.01 | 10.10 | 9.75 | 9.64 | 9.57 | 9.42 | | 15 | 9.70 | 9.49 | 9.72 | 9.36 | 9.07 | 9.24 | 10.02 | 10.10 | 9.75 | 9.63 | 9.58 | 9.41 | | 16 | 9.68 | 9.52 | 9.73 | 9.33 | 9.06 | 9.25 | 10.0 | 10.09 | 9.73 | 9.68 | 9.57 | 9.39 | | 17 | 9.69 | 9.64 | 9.72 | 9.31 | 9.03 | 9.26 | 9.99 | 10.07 | 9.71 | 9.73 | 9.58 | 9.42 | | 18 | 9.65 | 9.67 | 9.72 | 9.30 | 9.01 | 9.27 | 9.98 | 10.06 | 9.70 | 9.74 | 9.56 | 9.43 | | 19 | 9.62 | 9.69 | 9.75 | 9.30 | 8.99 | 9.29 | 9.97 | 10.05 | 9.68 | 9.74 | 9.56 | 9.48 | | 20 | 9.60 | 9.69 | 9.86 | 9.36 | 8.97 | 9.30 | 9.95 | 10.05 | 9.67 | 9.73 | 9.54 | 9.54 | | 21 | 9.56 | 9.64 | 9.86 | 9.35 | 8.94 | 9.31 | 9.92 | 10.04 | 9.67 | 9.74 | 9.52 | 9.51 | | 22 | 9.51 | 9.63 | 9.86 | 9.34 | 8.91 | 9.31 | 9.90 | 10.02 | 9.68 | 9.73 | 9.49 | 9.60 | | 23 | 9.48 | 9.64 | 9.86 | 9.32 | 8.89 | 9.33 | 9.96 | 10.01 | 9.66 | 9.72 | 9.61 | 9.69 | | 24 | 9.47 | 9.63 | 9.85 | 9.31 | 8.86 | 9.35 | 9.97 | 9.99 | 9.63 | 9.72 | 9.62 | 9.68 | | 25 | 9.44 | 9.64 | 9.85 | 9.30 | 8.84 | 9.40 | 9.97 | 9.97 | 9.65 | 9.72 | 9.60 | 9.69 | | 26
27
28
29
30
31 | 9.42
9.42
9.39
9.38
9.38 | 9.62
9.60
9.63
9.69
9.69 | 9.82
9.80
9.82
9.81
9.78
9.80 | 9.29
9.27
9.25
9.22
9.22
9.24 | 8.81
8.80
8.78
8.78 | 9.42
9.42
9.48
9.57
9.58
9.61 | 9.98
10.04
10.04
10.03
10.03 | 9.97
9.95
9.95
9.95
9.94
9.94 | 9.62
9.60
9.61
9.73
9.72 | 9.70
9.70
9.68
9.66
9.66
9.64 |
9.55
9.54
9.54
9.51
9.49
9.48 | 9.68
9.68
9.67
9.67
9.68 | | MEAN | 9.69 | 9.55 | 9.68 | 9.42 | 9.06 | 9.22 | 9.94 | 10.03 | 9.76 | 9.68 | 9.57 | 9.52 | | MAX | 10.03 | 9.69 | 9.86 | 9.76 | 9.30 | 9.61 | 10.04 | 10.11 | 9.93 | 9.74 | 9.63 | 9.69 | | MIN | 9.37 | 9.41 | 9.39 | 9.22 | 8.78 | 8.82 | 9.62 | 9.94 | 9.60 | 9.63 | 9.48 | 9.39 | CAL YR 1987 MEAN 9.66 MAX 10.38 MIN 8.65 WTR YR 1988 MEAN 9.60 MAX 10.11 MIN 8.78 ## 05429000 LAKE MONONA AT MADISON, WI LOCATION.--Lat 43°03'48", long 89°23'49", in SW 1/4 sec.23, T.7 N., R.9 E., Dane County, Hydrologic Unit 07090001, in Brittingham Park, in Madison. DRAINAGE AREA. -- 279 mi². Area of Lake Monona, 5.3 mi². PERIOD OF RECORD.--September 1915 to current year (fragmentary) in reports of the Geological Survey. For 1856 to March 1917 in reports of Wisconsin Railroad Commission, volume 19. REVISED RECORDS. -- WSP 1338: Lake area. WDR WI-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 840.00 ft above National Geodetic Vertical Datum of 1929, or 5.60 ft below city of Madison datum. Prior to Oct. 1, 1979, datum 3.61 ft higher; prior to Nov. 15, 1971, nonrecording gage at same site and datum. REMARKS.--Records good, no estimated daily lake levels. Lake level regulated by concrete dam with four 12-foot stop-log sections and 12-foot lock at outlet of Lake Waubesa. Gage-height telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 7.27 ft, July 28, 1929; minimum observed, 3.22 ft, Jan. 20, 1965, current datum. EXTREMES FOR CURRENT YEAR. -- Maximum gage height, 5.40 ft, Dec. 7; minimum, 4.21 ft, Mar. 26 and 27. | | | | GAGE HEI | GHT, FEET | , WATER Y | EAR OCTOB
AN VALUES | ER 1987 T | O SEPTEMB | ER 1988 | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 5.05 | 4.91 | 4.99 | 5.04 | 5.33 | 4.87 | 4.26 | 5.13 | 4.96 | 4.90 | 4.84 | 4.72 | | 2 | 4.96 | 4.89 | 5.07 | 5.06 | 5.33 | 4.80 | 4.28 | 5.12 | 4.98 | 4.89 | 4.82 | 4.72 | | 3 | 4.91 | 4.87 | 5.16 | 5.07 | 5.33 | 4.74 | 4.39 | 5.12 | 4.96 | 4.88 | 4.82 | 4.78 | | 4 | 4.88 | 4.82 | 5.21 | 5.08 | 5.31 | 4.69 | 4.45 | 5.10 | 4.95 | 4.88 | 4.81 | 4.78 | | 5 | 4.83 | 4.74 | 5.27 | 5.08 | 5.29 | 4.64 | 4.46 | 5.06 | 4.93 | 4.88 | 4.80 | 4.76 | | 6 | 4.78 | 4.71 | 5.33 | 5.08 | 5.27 | 4.60 | 4.48 | 5.05 | 4.93 | 4.88 | 4.78 | 4.76 | | 7 | 4.73 | 4.70 | 5.38 | 5.08 | 5.25 | 4.57 | 4.49 | 5.04 | 4.92 | 4.87 | 4.78 | 4.76 | | 8 | 4.72 | 4.71 | 5.29 | 5.08 | 5.23 | 4.56 | 4.50 | 5.07 | 4.93 | 4.85 | 4.79 | 4.75 | | 9 | 4.68 | 4.66 | 5.27 | 5.08 | 5.22 | 4.54 | 4.51 | 5.11 | 4.88 | 4.84 | 4.80 | 4.72 | | 10 | 4.65 | 4.62 | 5.23 | 5.08 | 5.20 | 4.52 | 4.49 | 5.11 | 4.86 | 4.90 | 4.80 | 4.73 | | 11 | 4.68 | 4.58 | 5.20 | 5.08 | 5.18 | 4.51 | 4.49 | 5.12 | 4.85 | 4.88 | 4.79 | 4.73 | | 12 | 4.72 | 4.55 | 5.12 | 5.09 | 5.17 | 4.49 | 4.49 | 5.14 | 4.85 | 4.88 | 4.79 | 4.73 | | 13 | 4.76 | 4.53 | 5.06 | 5.08 | 5.14 | 4.45 | 4.48 | 5.13 | 4.85 | 4.87 | 4.80 | 4.71 | | 14 | 4.79 | 4.51 | 5.01 | 5.08 | 5.12 | 4.42 | 4.48 | 5.14 | 4.84 | 4.86 | 4.79 | 4.70 | | 15 | 4.82 | 4.49 | 4.99 | 5.08 | 5.10 | 4.40 | 4.49 | 5.12 | 4.83 | 4.86 | 4.81 | 4.71 | | 16
17
18
19
20 | 4.86
4.91
4.93
4.94
4.94 | 4.49
4.55
4.52
4.48
4.44 | 4.96
4.95
4.93
4.92
4.94 | 5.09
5.10
5.11
5.14
5.26 | 5.09
5.07
5.06
5.06
5.04 | 4.38
4.35
4.33
4.30
4.29 | 4.53
4.56
4.58
4.62
4.70 | 5.09
5.08
5.07
5.07
5.06 | 4.83
4.84
4.84
4.84 | 4.96
5.02
5.01
4.99
4.97 | 4.81
4.79
4.82
4.84
4.81 | 4.72
4.72
4.74
4.81
4.81 | | 21 | 4.93 | 4.46 | 4.92 | 5.26 | 5.03 | 4.27 | 4.78 | 5.05 | 4.83 | 5.00 | 4.81 | 4.82 | | 22 | 4.96 | 4.48 | 4.92 | 5.25 | 5.01 | 4.27 | 4.88 | 5.05 | 4.82 | 4.99 | 4.80 | 4.92 | | 23 | 4.96 | 4.49 | 4.92 | 5.25 | 4.99 | 4.24 | 4.99 | 5.02 | 4.83 | 4.98 | 4.87 | 5.00 | | 24 | 4.99 | 4.50 | 4.97 | 5.24 | 4.97 | 4.25 | 5.04 | 4.99 | 4.82 | 4.96 | 4.83 | 5.01 | | 25 | 5. 0 1 | 4.53 | 5.01 | 5.24 | 4.96 | 4.26 | 5.08 | 4.95 | 4.80 | 4.95 | 4.80 | 5.01 | | 26
27
28
29
30
31 | 5.03
5.04
5.03
4.99
4.95
4.92 | 4.58
4.62
4.73
4.85
4.90 | 5.02
5.03
5.09
5.12
5.13
5.11 | 5.23
5.23
5.22
5.21
5.22
5.29 | 4.95
4.94
4.94
4.93 | 4.22
4.21
4.27
4.29
4.28
4.27 | 5.12
5.14
5.16
5.17
5.15 | 4.92
4.92
4.93
4.94
4.95 | 4.79
4.77
4.80
4.95
4.91 | 4.93
4.91
4.89
4.88
4.87
4.86 | 4.78
4.79
4.76
4.75
4.75
4.73 | 5.01
5.01
5.02
5.01
5.01 | | MEAN | 4.88 | 4.63 | 5.08 | 5.14 | 5.12 | 4.43 | 4.67 | 5.05 | 4.87 | 4.91 | 4.80 | 4.82 | | MAX | 5.05 | 4.91 | 5.38 | 5.29 | 5.33 | 4.87 | 5.17 | 5.14 | 4.98 | 5.02 | 4.87 | 5.02 | | MIN | 4.65 | 4.44 | 4.92 | 5. 0 4 | 4.93 | 4.21 | 4.26 | 4.92 | 4.77 | 4.84 | 4.73 | 4.70 | CAL YR 1987 MEAN 5.02 MAX 5.69 MIN 4.41 WTR YR 1988 MEAN 4.87 MAX 5.38 MIN 4.21 ## 05429500 YAHARA RIVER NEAR MCFARLAND, WI LOCATION.--Lat 43°00'32", long 89°18'18", in SW 1/4 sec.3, T.6 N., R.10 E., Dane County, Hydrologic Unit 07090001, on left bank just upstream from bridge on U.S. Highway 51, at dam at outlet of Lake Waubesa and 1.0 mi southwest of McFarland. DRAINAGE AREA. -- 327 mi². PERIOD OF RECORD. -- September 1930 to current year. REVISED RECORDS.--WSP 805, WDR WI-73-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 840.00 ft above National Geodetic Vertical Datum of 1929 (levels by Wisconsin Department of Natural Resources). September 1930 to Dec. 22, 1934, nonrecording gage at same site at datum 0.40 ft higher. Dec. 23, 1934 to Sept. 30, 1982, recording gage at same site at datum 0.40 ft higher. REMARKS.--No estimated daily discharges. Records fair. Flow regulated by dams at outlets of Lake Mendota and Lake Waubesa. The Madison Metropolitan Sewerage District diverted an average of 53 ft³/s of effluent into the Badfish Creek basin during 1988 water year. The data were provided by the Madison Metropolitan Sewerage District. Prior to 1958 the effluent was discharged into the Yahara River above Mc Farland. Gage-height telemeter at station for Lake Waubesa stage. AVERAGE DISCHARGE.--58 years, 157 ft³/s, 6.52 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 867 ft³/s, Apr. 10, 1959, gage height, 5.82 ft; maximum gage height, 6.33 ft, July 23, 24, 1950, backwater from aquatic vegetation; minimum discharge, 1.0 ft³/s, Oct. 18, 1964. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 330 ft³/s, Feb. 2, gage height, 5.02 ft; maximum gage height, 5.07 ft, Dec. 9, backwater from aquatic vegetation; minimum, 2.9 ft³/s Sept. 15. | | | DISCHARGE | , CUBIC | FEET PE | R SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-------|------|-----------|---------|-------------|-----------|--------------------------|------------|---------|-----------|------|-------|-------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 191 | 182 | 214 | 253 | 323 | 244 | 130 | 197 | 37 | 21 | 35 | 8.1 | | 2 | 188 | 182 | 224 | 246 | 327 | 237 | 135 | 190 | 40 | 19 | 34 | 7.5 | | 3 | 171 | 178 | 241 | 245 | 323 | 227 | 160 | 200 | 28 | 19 | 30 | 9.1 | | 4 | 156 | 179 | 253 | 245 | 320 | 215 | 177 | 207 | 18 | 19 | 28 | 8.1 | | 5 | 151 | 178 | 262 | 245 | 319 | 205 | 181 | 204 | 23 | 15 | 21 | 6.4 | | 6 | 147 | 163 | 269 | 247 | 323 | 198 | 193 | 162 | 21 | 13 | 13 | 7.5 | | 7 | 140 | 156 | 284 | 250 | 314 | 191 | 168 | 82 | 23 | 15 | 21 | 7.1 | | 8 | 126 | 159 | 287 | 250 | 309 | 189 | 124 | 70 | 31 | 22 | 14 | 6.3 | | 9 | 118 | 159 | 296 | 254 | 308 | 188 | 125 | 68 | 22 | 20 | 8.8 | 5.7 | | 10 | 111 | 153 | 289 | 25 5 | 303 | 184 | 120 | 72 | 20 | 17 | 9.6 | 5.8 | | 11 | 109 | 146 | 278 | 256 | 301 | 179 | 124 | 74 | 12 | 14 | 9.6 | 12 | | 12 | 110 | 141 | 272 | 259 | 296 | 180 | 125 | 106 | 11 | 15 | 9.5 | 20 | | 13 | 113 | 139 | 258 | 262 | 293 | 181 | 83 | 127 | 10 | 13 | 9.3 | 22 | | 14 | 118 | 136 | 241 | 261 | 289 | 183 | 52 | 154 | 9.8 | 18 | 9.5 | 12 | | 15 | 126 | 131 | 227 | 261 | 288 | 179 | 32 | 149 | 11 | 14 | 11 | 3.7 | | 16 | 134 | 128 | 213 | 262 | 283 | 174 | 24 | 140 | 13 | 21 | 11 | 3.3 | | 17 | 148 | 148 | 228 | 264 | 278 | 169 | 22 | 133 | 19 | 33 | 9.9 | 4.8 | | 18 | 154 | 154 | 224 | 268 | 273 | 166 | 19 | 133 | 13 | 34 | 8.9 | 19 | | 19 | 159 | 153 | 220 | 270 | 270 | 165 | 18 | 130 | 19 | 38 | 12 | 11 | | 20 | 164 | 154 | 228 | 295 | 271 | 161 | 20 | 128 | 27 | 33 | 11 | 13 | | 21 | 170 | 140 | 218 | 298 | 268 | 155 | 34 | 125 | 14 | 56 | 12 | 11 | | 22 | 169 | 132 | 213 | 297 | 263 | 150 | 40 | 120 | 19 | 65 | 14 | 22 | | 23 | 170 | 134 | 208 | 294 | 260 | 151 | 5 6 | 112 | 19 | 63 | 24 | 35 | | 24 | 176 | 135 | 210 | 297 | 255 | 154 | 64 | 102 | 9.2 | 59 | 21 | 30 | | 25 | 178 | 142 | 218 | 298 | 251 | 164 | 116 | 92 | 9.4 | 57 | 30 | 37 | | 26 | 183 | 145 | 222 | 308 | 248 | 169 | 150 | 50 | 11 | 54 | 19 | 30 | | 27 | 191 | 148 | 224 | 302 | 248 | 164 | 160 | 19 | 17 | 57 | 11 | 31 | | 28 | 192 | 165 | 238 | 298 | 247 | 152 | 196 | 24 | 15 | 53 | 17 | 24 | | 29 | 188 | 192 | 245 | 293 | 247 | 151 | 210 | 28 | 27 | 47 | 10 | 24 | | 30 | 184 | 206 | 245 | 292 | | 155 | 206 | 29 | 26 | 43 | 8.7 | 25 | | 31 | 180 | === | 249 | 309 | | 140 | | 34 | | 35 | 9.0 | | | TOTAL | 4815 | | 7498
 8434 | 8298 | 5520 | 3264 | 3461 | 574.4 | 1002 | 491.8 | 461.4 | | MEAN | 155 | 155 | 242 | 272 | 286 | 178 | 109 | 112 | 19.1 | 32.3 | 15.9 | 15.4 | | MAX | 192 | 206 | 296 | 309 | 327 | 244 | 210 | 207 | 40 | 65 | 35 | 37 | | MIN | 109 | 128 | 208 | 245 | 247 | 140 | 18 | 19 | 9.2 | 13 | 8.7 | 3.3 | | CFSM | . 47 | . 47 | .74 | .83 | .88 | .54 | . 33 | . 34 | .06 | .10 | . 05 | . 05 | | IN. | . 55 | .53 | . 85 | .96 | . 94 | .63 | . 37 | . 39 | . 07 | .11 | .06 | . 05 | CAL YR 1987 TOTAL 61094.9 MEAN 167 MAX 309 MIN 4.9 CFSM .51 IN. 6.95 WTR YR 1988 TOTAL 48477.6 MEAN 132 MAX 327 MIN 3.3 CFSM .41 IN. 5.51 LOCATION.--Lat 42°53'37", long 89°17'55", in NW 1/4 SE 1/4 sec.15, T.5 N., R.10 E., Dane County, Hydrologic Unit 07090001, on right bank 75 ft upstream from bridge on County Highway A, 4.4 mi southwest of Stoughton, and 9.5 mi upstream from mouth. 05430095 BADFISH CREEK AT COUNTY HIGHWAY A NEAR STOUGHTON, WI DRAINAGE AREA. -- 41.9 mi², of which 1.5 mi² is noncontributing. PERIOD OF RECORD.--May 1956 to September 1966, December 1985 to September 1988 (discontinued). Published as Badfish Creek near Stoughton, May 1956 to September 1966. GAGE.--Water-stage recorder. Datum of gage is 873.05 ft above National Geodetic Vertical Datum of 1929. May 1956 to September 1966, site 0.5 mi downstream at same datum. REMARKS.--Estimated daily discharges: Jan. 1-8. Records are fair. Approximately 76 percent of flow is effluent from Nine Springs treatment plant. (Data provided by Madison Metropolitan Sewerage District.) The Sewerage District began discharging into the basin in December 1958. AVERAGE DISCHARGE. -- 9 years (water years 1960-66, 1987-88), 56.6 ft³/s, since effluent discharged into basin. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 871 $\rm ft^3/s$, Jan. 13, 1960, gage height, 4.60 ft; minimum, 3.4 $\rm ft^3/s$, Nov. 26, 1958, result of freezeup. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 215 $\rm ft^3/s$, Jan. 31, gage height, 4.87 ft; minimum daily, 58 $\rm ft^3/s$, Jan. 9, 11, Sept. 11, 18, 25. | | | DISCHARGE | CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 ТО | SEPTEMBER | 1988 | | | |----------------------------------|----------------------------|----------------------------|----------------------------------|------------------------------|----------------------------|----------------------------------|-----------------------------|------------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 67
67
65
64
66 | 65
66
67
65
65 | 76
74
75
74
72 | 65
62
62
63
64 | 87
76
73
71
69 | 71
71
70
70
69 | 80
88
129
98
89 | 70
72
74
74
7 5 | 66
65
65
63 | 67
66
65
66
70 | 65
66
66
67
67 | 66
65
64
61
60 | | 6
7
8
9
10 | 67
68
68
68
66 | 64
64
64
63 | 72
76
82
126
94 | 65
64
64
58
61 | 68
66
68
67
68 | 69
71
74
72
72 | 101
88
84
81
77 | 75
73
73
79
78 | 65
67
66
65
65 | 75
78
76
74
74 | 64
62
65
67 | 63
62
62
62
60 | | 11
12
13
14
15 | 65
66
67
66
67 | 62
62
62
61
59 | 91
85
80
80
81 | 58
63
63
63 | 67
67
66
66
67 | 73
71
70
71
71 | 79
78
78
76
75 | 76
78
77
74
73 | 65
64
68
72
73 | 76
76
74
77
73 | 68
68
66
66
72 | 58
59
60
59
60 | | 16
17
18
19
20 | 67
66
64
65
66 | 61
73
65
64
64 | 78
77
77
78
88 | 63
63
65
68
86 | 68
68
69
67 | 72
72
73
72
71 | 72
71
72
72
73 | 74
75
74
74
74 | 73
71
70
66
71 | 74
68
70
71
70 | 74
73
77
75
72 | 60
60
58
63
63 | | 21
22
23
24
25 | 66
66
66
64 | 62
61
64
66
67 | 83
79
77
77
75 | 72
70
67
65
67 | 66
68
68
68 | 74
75
76
78
85 | 72
73
88
75
73 | 72
69
72
71
70 | 68
64
62
61
62 | 69
68
66
64
68 | 69
72
81
74
72 | 61
71
66
61
58 | | 26
27
28
29
30
31 | 65
67
66
65
66 | 66
64
88
84
78 | 71
69
72
70
70
69 | 66
66
67
103
172 | 70
69
68
70 | 79
77
88
91
85
82 | 75
80
77
74
72 | 71
69
67
63
61
64 | 59
61
65
73
66 | 66
67
68
68
66
63 | 72
69
66
68
68 | 61
61
61
61 | | TOTAL
MEAN
MAX
MIN | 2047
66.0
68
64 | | 2448
79.0
126
69 | 2164
69.8
172
58 | 2001
69.0
87
66 | 2315
74.7
91
69 | 2420
80.7
129
71 | 2241
72.3
79
61 | 1982
66.1
73
59 | 2173
70.1
78
63 | 2146
69.2
81
62 | 1847
61.6
71
58 | TOTAL 25267 MEAN 69.2 MAX 137 TOTAL 25764 MEAN 70.4 MAX 172 CAL YR 1987 MIN 55 270 #### ROCK RIVER BASIN ### 05430150 BADFISH CREEK NEAR COOKSVILLE, WI LOCATION.--Lat 42°50'00", long 89°11'48", in SW 1/4 SE 1/4 sec.4, T.4 N., R.11 E., Rock County, Hydrologic Unit 07090001, on right bank, 20 ft upstream from bridge on State Highway 59, 2.2 mi east of Cooksville, and 2.2 mi above the mouth. DRAINAGE AREA. -- 82.6 mi². PERIOD OF RECORD. -- July 1977 to current year. GAGE.--Water-stage recorder. Elevation of gage is 810 ft, from topographic map. REMARKS.--Estimated daily discharges: May 4-9 and ice periods listed in rating table below. Records good except those for estimated daily discharges, which are fair. Approximately 52 percent of flow is effluent from Nine Springs treatment plant. (Data provided by Madison Metropolitan Sewerage District.) AVERAGE DISCHARGE. -- 11 years, 103 ft3/s. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 870 $\rm ft^3/s$, Sept. 1, 1981, gage height, 8.11 ft; minimum daily, 35 $\rm ft^3/s$, Aug. 1, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 494 $\rm ft^3/s$, Jan. 31, gage height, 6.67 ft; minimum daily, 73 $\rm ft^3/s$, July 24. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used May 31 to June 28; stage-discharge relation affected by ice Jan. 1-12, 14, 15, 27, and Feb. 5-7.) 4.5 64 5.0 152 4.7 98 6.0 340 7.0 562 DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|----------------------------|-------------------------------|--|---------------------------------------|--------------------------|--|---------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|----------------------------| | 1 | 90 | 96 | 119 | 110 | 219 | 114 | 114 | 125 | 91 | 99 | 75 | 92 | | 2 | 90 | 98 | 109 | 100 | 164 | 115 | 133 | 124 | 91 | 92 | 80 | 91 | | 3 | 81 | 97 | 106 | 98 | 145 | 110 | 261 | 110 | 89 | 81 | 88 | 90 | | 4 | 79 | 95 | 102 | 96 | 132 | 107 | 207 | 110 | 87 | 75 | 92 | 83 | | 5 | 82 | 93 | 96 | 96 | 120 | 103 | 170 | 110 | 83 | 79 | 94 | 82 | | 6 | 110 | 93 | 94 | 96 | 120 | 101 | 210 | 110 | 86 | 86 | 82 | 88 | | 7 | 108 | 91 | 97 | 94 | 120 | 112 | 173 | 110 | 98 | 87 | 74 | 90 | | 8 | 97 | 94 | 108 | 94 | 110 | 125 | 148 | 110 | 96 | 84 | 76 | 90 | | 9 | 92 | 93 | 219 | 96 | 109 | 119 | 141 | 120 | 95 | 80 | 87 | 88 | | 10 | 87 | 94 | 153 | 98 | 107 | 111 | 131 | 114 | 93 | 81 | 85 | 83 | | 11 | 85 | 92 | 136 | 100 | 107 | 109 | 132 | 105 | 93 | 81 | 85 | 78 | | 12 | 88 | 91 | 121 | 100 | 106 | 108 | 132 | 106 | 90 | 84 | 84 | 80 | | 13 | 91 | 92 | 110 | 94 | 100 | 101 | 134 | 103 | 92 | 81 | 79 | 81 | | 14 | 89 | 87 | 107 | 96 | 101 | 100 | 133 | 94 | 98 | 92 | 79 | 77 | | 15 | 89 | 86 | 110 | 94 | 103 | 101 | 132 | 92 | 99 | 82 | 88 | 77 | | 16 | 92 | 88 | 107 | 90 | 104 | 99 | 124 | 88 | 95 | 89 | 91 | 78 | | 17 | 93 | 137 | 105 | 94 | 103 | 101 | 114 | 89 | 96 | 82 | 87 | 78 | | 18 | 86 | 110 | 104 | 103 | 106 | 101 | 112 | 87 | 94 | 81 | 103 | 74 | | 19 | 86 | 100 | 106 | 114 | 108 | 98 | 112 | 85 | 91 | 87 | 98 | 87 | | 20 | 88 | 95 | 151 | 200 | 104 | 94 | 114 | 87 | 93 | 85 | 83 | 87 | | 21 | 89 | 86 | 136 | 159 | 98 | 98 | 110 | 84 | 100 | 86 | 77 | 80 | | 22 | 88 | 83 | 127 | 141 | 105 | 100 | 114 | 82 | 97 | 82 | 83 | 99 | | 23 | 88 | 88 | 120 | 124 | 105 | 102 | 167 | 85 | 91 | 76 | 111 | 105 | | 24 | 89 | 89 | 121 | 116 | 100 | 102 | 137 | 89 | 89 | 73 | 95 | 79 | | 25 | 85 | 96 | 129 | 115 | 99 | 125 | 128 | 90 | 88 | 91 | 90 | 74 | | 26
27
28
29
30
31 | 88
93
90
91
95 | 93
84
137
174
130 | 114
109
114
112
109
108 | 114
96
107
109
220
430 | 107
109
106
112 | 110
102
128
148
128
120 | 125
138
135
122
122 | 90
91
87
83
79
82 | 80
77
86
126
101 | 85
83
84
83
81
74 | 87
86
83
85
94
95 | 80
83
79
81
81 | | TOTAL | 2792 | 2982 | 3659 | 3794 | 3329 | 3392 | 4225 | 3021 | 2785 | 2586 | 2696 | 2515 | | MEAN | 90.1 | 99.4 | 118 | 122 | 115 | 109 | 141 | 97.5 | 92.8 | 83.4 | 87.0 | 83.8 | | MAX | 110 | 174 | 219 | 430 | 219 | 148 | 261 | 125 | 126 | 99 | 111 | 105 | | MIN | 79 | 83 | 94 | 90 | 98 | 94 | 110 | 79 | 77 | 73 | 74 | 74 | CAL YR 1987 TOTAL 37009 MEAN 101 MAX 219 MIN 67 WTR YR 1988 TOTAL 37776 MEAN 103 MAX 430 MIN 73 ## 05430175 YAHARA RIVER NEAR FULTON, WI
LOCATION.--Lat 42°49'50", long 89°10'09", in NE 1/4 NE 1/4 sec.10, T.4 N., R.11 E., Rock County, Hydrologic Unit 07090001, on right bank, 700 ft downstream from Badfish Creek, 2,000 ft upstream from bridge on State Highway 59, and 2.8 mi northwest of Fulton. DRAINAGE AREA. -- 517 mi². PERIOD OF RECORD. -- July 1977 to current year. GAGE.--Water-stage recorder. Datum of gage is 792.7 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. Diurnal fluctuation caused by powerplant at Stebbensville 1.5 mi upstream, and additional regulation from other dams and powerplants upstream. AVERAGE DISCHARGE. -- 11 years, 369 ft³/s, 9.69 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,040 $\rm ft^3/s$, Sept. 1, 1981, gage height, 8.36 ft; minimum daily, 60 $\rm ft^3/s$, Aug. 7, 1977. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,300 ft³/s, Jan. 31, gage height, 5.83 ft; maximum gage height, 6.01 ft, Jan. 6, backwater from ice; minimum daily, 101 ft³/s, Sept. 5. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Jan. 1-18, 26, 27, and Feb. 5-17.) | 3.0 | 86 | 4.5 | 554 | |-----|-----|-----|-------| | 3.5 | 202 | 5.0 | 794 | | 4.0 | 358 | 6.0 | 1,410 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC FEB APR JUN JUL AUG SEP JAN MAR MAY e520 375 370 196 374 438 134 23 118 108 ---TOTAL MEAN MAX MIN CFSM .65 .66 .96 . 90 1.01 .26 .23 .21 .82 .66 .55 . 27 . 26 IN. 1.03 1.09 .95 TOTAL 128862 MEAN 353 MAX 629 MIN 140 CFSM .68 IN. 9.27 TOTAL 112442 MEAN 307 MAX 1140 MIN 101 CFSM .59 IN. 8.09 CAL YR 1987 WTR YR 1988 ## 05430500 ROCK RIVER AT AFTON, WI LOCATION.--Lat 42°36'33", long 89°04'14", in NE 1/4 sec.28, T.2 N., R.12 E., Rock County, Hydrologic Unit 07090001, on right bank in Afton, 0.3 mi downstream from highway bridge and 1.1 mi upstream from Bass Creek. DRAINAGE AREA. -- 3,340 mi². PERIOD OF RECORD.--January 1914 to current year. Monthly discharge only for January 1914, published in WSP 1308. REVISED RECORDS.--WSP 1238: 1916(M), 1919(M), 1933, 1937-38, 1943. WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 742.36 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 21, 1932, a nonrecording gage, and Aug. 21, 1932, to Sept. 30, 1933, water-stage recorder, at same site at datum 1 ft higher. REMARKS.--Estimated daily discharges: Ice period listed in rating table below. Records are good except those for ice-affected period and periods of discharge below 800 ft³/s, which are fair. Diurnal fluctuation caused by powerplants above station. AVERAGE DISCHARGE. -- 74 years, 1,859 ft³/s, 7.56 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft³/s, Mar. 23, 24, 1929, gage height, 11.81 ft present datum; maximum gage height observed, 13.05 ft, Feb. 5, 1916, present datum (backwater from ice); minimum discharge, 22 ft³/s, Sept. 9, 1964; minimum daily, 42 ft³/s, Aug. 25, 26, 1934; minimum gage height, 0.09 ft, Aug. 26, 1934. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 4,210 ft³/s, Apr. 6, gage height, 7.00 ft; maximum gage height, 10.82 ft, Feb. 9, backwater from ice; minimum daily, 307 ft³/s, Sept. 1. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Jan. 1 to Feb. 18.) | 2.2 | 260 | 4.0 | 1,440 | |-----|-----|-----|-------| | 2.5 | 420 | 5.0 | 2,220 | | 3.0 | 740 | 7.0 | 4,210 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|--------------------------------------|--|--|---|--|--|--|-----------------------------------|--|--|--| | 1 | 2090 | 1350 | 2180 | 2800 | 3400 | 2030 | 3000 | 3020 | 648 | 365 | 321 | 307 | | 2 | 2060 | 1340 | 2150 | 2800 | 3600 | 1990 | 3090 | 2920 | 854 | 387 | 322 | 367 | | 3 | 2050 | 1360 | 2340 | 2800 | 3800 | 2050 | 3610 | 2750 | 755 | 368 | 324 | 347 | | 4 | 1900 | 1520 | 2500 | 2700 | 3900 | 2110 | 3660 | 2750 | 643 | 361 | 346 | 342 | | 5 | 1800 | 1640 | 2390 | 2500 | 3900 | 2080 | 3580 | 2710 | 580 | 382 | 352 | 382 | | 6 | 1760 | 1610 | 2470 | 2400 | 3800 | 2090 | 4040 | 2600 | 586 | 342 | 345 | 353 | | 7 | 1730 | 1620 | 2610 | 2400 | 3900 | 2190 | 3970 | 2420 | 586 | 385 | 340 | 356 | | 8 | 1730 | 1660 | 2630 | 2300 | 3900 | 2380 | 3990 | 2180 | 607 | 335 | 382 | 353 | | 9 | 1610 | 1660 | 2740 | 2200 | 3800 | 2580 | 3970 | 2030 | 630 | 324 | 464 | 333 | | 10 | 1570 | 1660 | 2930 | 2100 | 3700 | 2830 | 4030 | 1990 | 390 | 364 | 391 | 357 | | 11 | 1430 | 1510 | 3140 | 1900 | 3600 | 3040 | 4070 | 2060 | 352 | 346 | 371 | 361 | | 12 | 1370 | 1470 | 3090 | 1900 | 3500 | 3150 | 3910 | 2020 | 387 | 353 | 348 | 357 | | 13 | 1180 | 1500 | 3180 | 1900 | 3300 | 3260 | 3800 | 1850 | 366 | 342 | 369 | 349 | | 14 | 1210 | 1540 | 3340 | 1800 | 3200 | 3430 | 3760 | 1820 | 339 | 330 | 316 | 349 | | 15 | 1230 | 1600 | 3630 | 1700 | 3100 | 3420 | 3790 | 1680 | 340 | 366 | 349 | 361 | | 16 | 1250 | 1620 | 3170 | 1700 | 3000 | 3400 | 3620 | 1550 | 385 | 466 | 387 | 364 | | 17 | 1260 | 1720 | 2850 | 1700 | 2900 | 3400 | 3290 | 1680 | 444 | 456 | 365 | 365 | | 18 | 1220 | 1700 | 2800 | 1700 | 2800 | 3350 | 3280 | 1580 | 381 | 403 | 427 | 339 | | 19 | 1180 | 1700 | 2890 | 1800 | 2770 | 3320 | 3210 | 1600 | 389 | 388 | 503 | 413 | | 20 | 1130 | 1820 | 3120 | 1900 | 2670 | 3310 | 3060 | 1520 | 362 | 396 | 396 | 328 | | 21 | 1050 | 1830 | 3210 | 2000 | 2470 | 3070 | 3210 | 1480 | 396 | 393 | 389 | 393 | | 22 | 1140 | 1800 | 3350 | 2000 | 2480 | 3060 | 3070 | 1460 | 312 | 423 | 390 | 509 | | 23 | 1160 | 1690 | 3350 | 2100 | 2350 | 2980 | 3220 | 1460 | 414 | 373 | 419 | 632 | | 24 | 1160 | 1730 | 3350 | 2200 | 2180 | 3020 | 3030 | 1150 | 391 | 361 | 371 | 420 | | 25 | 1190 | 1900 | 3420 | 2300 | 2220 | 2920 | 2890 | 1080 | 369 | 400 | 358 | 501 | | 26
27
28
29
30
31 | 1250
1310
1330
1300
1330
1330 | 1900
1890
2080
2140
2080 | 3460
3440
3490
3390
3280
3080 | 2300
2300
2300
2300
2400
3200 | 2170
2150
2030
1920 | 2810
2980
3100
3200
3150
3120 | 2900
3100
3000
2970
2970 | 941
475
342
455
463
638 | 368
372
352
532
442 | 431
364
353
370
352
370 | 355
369
369
351
357
397 | 595
496
624
643
572 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 44310
1429
2090
1050
.43
.49 | 50640
1688
2140
1340
.51 | 92970
2999
3630
2150
.90
1.04 | 68400
2206
3200
1700
.66 | 88510
3052
3900
1920
.91
.99 | 88820
2865
3430
1990
.86 | 103090
3436
4070
2890
1.03
1.15 | 52674
1699
3020
342
.51
.59 | 13972
466
854
312
.14 | 11649
376
466
324
.11 | 11543
372
503
316
.11
.13 | 12468
416
643
307
.12
.14 | CAL YR 1987 TOTAL 714185 MEAN 1957 MAX 4550 MIN 492 CFSM .59 IN. 7.95 WTR YR 1988 TOTAL 639046 MEAN 1746 MAX 4070 MIN 307 CFSM .52 IN. 7.12 #### 05431014 JACKSON CREEK AT PETRIE ROAD NEAR ELKHORN, WI LOCATION.--Lat $42^{\circ}31'18"$, long $88^{\circ}30'59"$, in SW 1/4 SW 1/4 sec.8, T.2 N., R.17 E., Walworth County, Hydrologic Unit 07090001, on left bank 5 ft upstream of Petrie Road bridge, 2.5 mi upstream from Delavan Lake inlet at Mounds Road, and 2.5 mi southeast of Elkhorn. DRAINAGE AREA. -- 8.96 mi². PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 960 ft, from topographic map. REMARKS.--Estimated daily discharges: July 27-31, Aug. 1-5, 11-13, and ice periods listed below. Records good except for estimated daily discharges, which are fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 359 $\rm ft^3/s$, Mar. 10, 1986, gage height, 8.84 ft; minimum daily, 0.03 $\rm ft^3/s$, Aug. 7, 12, 1987. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 64 $\rm ft^3/s$, Apr. 6, gage height, 7.25 ft; minimum daily, 0.04 $\rm ft^3/s$, July 8-10, Sept. 13-15. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used July 1 to Sept. 30; stage-discharge relation affected by ice Dec. 17-20 and Dec. 31 to Mar. 6.) | 4.8 | 0.02 | 5.9 | 7.8 | |-----|------|-----|-----| | 5.0 | .12 | 6.1 | 11 | | 5.1 | .38 | 6.3 | 14 | | 5.2 | .61 | 6.5 | 19 | | 5.3 | 1.2 | 6.7 | 26 | | 5.5 | 3.2 | 7.0 | 46 | | 5.7 | 5.4 | | | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | | |-------------|-------|------|-----|---------|-------|------|---------|------|----|-----------|------|--| | MEAN VALUES | | | | | | | | | | | | | | DAY | OCT | NOV | DEC | 'J AN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--------------------------------------|---------------------------------------|---|---|--|--|---|----------------------------------|--------------------------------------|----------------------------------
----------------------------------| | 1
2
3
4
5 | . 25
. 26
. 77
. 24
. 24 | .30
.23
.29
.30 | 5.1
4.0
3.4
2.5
1.9 | 2.1
1.5
1.0
.70
.54 | 25
10
5.0
3.6
3.0 | 3.1
3.3
2.3
2.0
1.8 | 11
10
13
11
8.8 | 4.1
3.5
3.1
2.7
2.4 | .20
.20
.19
.18
.17 | .07
.07
.07
.06
.06 | .08
.08
.07
.07 | .05
.05
.05
.07 | | 6
7
8
9
10 | .25
.30
.19
.24 | . 22
. 20
. 22
. 23
. 20 | 1.8
3.0
11
25
14 | . 47
. 42
. 38
. 34
. 32 | 2.5
2.2
1.9
1.7 | 2.1
2.4
3.2
3.3
2.5 | 34
20
13
9.9
7.8 | 2.2
2.0
2.0
2.5
2.4 | .15
.14
.14
.14 | . 05
. 05
. 04
. 04
. 04 | .20
.17
.24
.28
.13 | .06
.06
.05
.05 | | 11
12
13
14
15 | .15
.15
.19
.20 | .20
.22
.24
.24 | 10
8.0
5.6
4.3
2.8 | .30
.28
.27
.26
.25 | 1.5
1.4
1.3
1.2 | 2.5
3.2
2.7
2.1
1.9 | 6.6
5.5
4.6
4.1
3.4 | 1.6
1.9
1.6
1.3 | .13
.12
.11
.11 | .05
.05
.05
.07 | .11
.09
.08
.13 | .05
.05
.04
.04 | | 16
17
18
19
20 | .22
.24
.22
.21
.66 | .33
1.0
.89
.67
.52 | .69
.45
.30
.23
8.0 | .30
.60
1.4
4.0 | 1.1
1.1
1.5
1.9 | 1.8
1.9
2.0
2.1
2.0 | 2.9
2.9
2.4
2.1
2.1 | 1.1
.98
.85
.87 | .11
.11
.10
.09 | .14
.10
.09
.08 | .10
.09
.12
.11 | .05
.05
.08
.07 | | 21
22
23
24
25 | .15
.18
.16
.22 | .55
.44
.56
.36 | 12
10
8.5
11
19 | 12
7.2
4.7
2.1
1.1 | 1.0
3.0
4.5
2.0
1.2 | 1.6
1.6
2.1
2.1
3.3 | 1.9
1.9
13
8.2
6.2 | .70
.62
.58
.52 | .07
.07
.07
.07
.06 | .15
.13
.12
.12
.19 | .09
.08
.10
.07
.06 | .06
.18
.31
.26 | | 26
27
28
29
30
31 | . 26
. 34
. 33
. 30
. 26
. 30 | 1.0
.94
3.9
6.7
5.8 | 13
9.0
7.3
6.3
4.7
3.5 | .72
.60
.50
.44
37 | 2.0
3.5
3.2
3.1 | 3.2
2.5
7.7
16
15
14 | 5.3
7.0
7.0
5.7
4.8 | .39
.39
.35
.30
.25 | .05
.06
.07
.11
.07 | .14
.12
.11
.10
.09 | .06
.06
.07
.06
.06 | .19
.18
.17
.17
.16 | | TOTAL MEAN MAX MIN CFSM IN. | 8.14
.26
.77
.15
.03 | 28.60
.95
6.7
.19
.11 | 216.37
6.98
25
.23
.78 | 147.79
4.77
45
.25
.53
.61 | 94.0
3.24
25
1.0
.36
.39 | 117.3
3.78
16
1.6
.42
.49 | 236.1
7.87
34
1.9
.88
.98 | 43.99
1.42
4.1
.22
.16
.18 | 3.41
.11
.20
.05
.01 | 2.70
.087
.19
.04
.01 | 3.29
.11
.28
.05
.01 | 3.02
.10
.31
.04
.01 | CAL YR 1987 TOTAL 1143.49 MEAN 3.13 MAX 70 MIN .03 CFSM .35 IN. 4.75 WTR YR 1988 TOTAL 904.71 MEAN 2.47 MAX 45 MIN .04 CFSM .28 IN. 3.76 #### 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI LOCATION.--Lat 42°39'03", long 88°33'03", in NW 1/4 NE 1/4 sec.12, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, on left bank 200 ft downstream of State Highway 15, 1.1 mi upstream from Delavan Lake inlet at Mounds Road, and 1.5 mi south of Elkhorn. DRAINAGE AREA. -- 4.34 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 930 ft, from topographic map. REMARKS.--Estimated daily discharges: Oct. 21-24, Mar. 29 to Apr. 6, and ice periods listed in rating table below. Records good except for estimated daily discharges, which are fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 162 ft³/s, Sept. 26, 1986, gage height, 9.55 ft; minimum daily, 0.11 ft³/s, Sept. 23-24, 1987. EXTREMES FOR CURRENT YEAR.--Maximum discharge observed 52 ft³/s, Apr. 23, gage height, 7.25 ft; maximum gage height, 8.24 ft Jan. 20, backwater from ice; minimum daily, 0.13 ft³/s, Aug. 7, 21, Sept. 10, 11. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used Oct. 1, 7-11, 25; stage-discharge relation affected by ice Dec. 16-18, and Jan. 2 to Feb. 26.) | 4.9 | 0.11 | 5.6 | 4.8 | |-----|------|-----|-----| | 5.0 | . 20 | 5.8 | 8.2 | | 5.1 | .33 | 6.0 | 12 | | 5.2 | .50 | 6.5 | 25 | | 5.3 | . 85 | 7.0 | 41 | | 5.4 | 1.8 | 8.0 | 84 | | 5 5 | 2 2 | | | ## DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--------------------------------------|--------------------------------------|--|--------------------------------------|---|--|--|--|--------------------------------------|-----------------------------------|----------------------------------|-----------------------------------| | 1
2
3
4
5 | .70
1.1
.60
.57
.65 | . 53
. 69
. 51
. 44
. 42 | 2.6
1.4
1.5
.93 | 1.4
1.2
1.0
.90
.80 | 10
5.0
4.0
3.2
2.7 | 2.7
2.8
2.1
1.7
1.6 | 8.8
8.0
12
9.0 | 2.5
2.4
2.0
2.0
1.6 | .59
.51
.51
.49
.48 | .32
.31
.29
.31
.32 | .22
.19
.17
.21
.61 | .15
.15
.34
1.1
.20 | | 6
7
8
9
10 | .76
.69
.55
.49
.46 | . 43
. 43
. 48
. 46
. 44 | .86
4.5
7.9
11
4.4 | .68
.60
.54
.52 | 2.4
2.3
2.1
1.9 | 1.9
2.1
2.9
2.8
2.1 | 35
8.9
6.0
4.8
4.2 | 1.4
1.3
1.6
2.9
1.8 | . 59
. 56
. 56
. 48
. 48 | .31
.31
.31
.28
.28 | .15
.13
.38
1.0
.21 | .18
.14
.14
.15 | | 11
12
13
14
15 | . 39
. 44
. 46
. 42
. 43 | . 42
. 45
. 46
. 39
. 37 | 3.9
2.5
1.6
1.5 | . 49
. 48
. 47
. 46
. 45 | 1.6
1.6
1.5
1.4 | 2.1
2.5
2.1
1.9 | 3.6
3.0
2.7
2.6
2.2 | 1.3
2.1
1.3
1.0 | .46
.46
.58
.51 | .30
.28
.25
.26 | .19
.18
.14
.14 | .13
.26
.17
.15 | | 16
17
18
19
20 | . 54
. 89
. 39
. 45
. 66 | 2.7
2.9
.68
.60
.52 | 1.0
.94
.90
2.9 | .50
.70
1.0
2.5 | 1.3
1.2
1.4
1.7 | 1.7
1.8
1.8
1.8 | 1.9
1.9
1.8
1.6 | 1.3
1.2
.95
.93 | . 44
. 46
. 42
. 39
. 43 | 4.6
.31
.27
.29
.72 | .16
.15
1.8
.27
.18 | .17
.17
.34
.95 | | 21
22
23
24
25 | .50
.45
.40
.44 | . 48
. 52
. 86
. 72
3.9 | 7.2
5.2
3.8
6.8
8.9 | 5.0
3.0
2.0
1.5 | 1.3
3.0
2.5
1.7
1.4 | 1.7
1.7
1.8
2.0
3.5 | 1.3
1.4
13
4.7
3.6 | .73
.64
.68
.65 | . 42
. 40
. 38
. 37
. 35 | .74
.27
.20
.18
.57 | .13
.17
.56
.16 | .16
3.7
1.8
.18 | | 26
27
28
29
30
31 | 1.3
.68
.44
.43
.42 | .90
.72
8.0
3.9
4.3 | 4.8
3.2
2.8
2.4
2.2
1.8 | 1.0
.90
.80
.72
1.5 | 3.8
3.1
2.8
3.1 | 3.0
2.4
10
15
12 | 3.0
5.8
5.2
3.6
2.9 | . 59
. 57
. 53
. 49
. 48
. 54 | .32
.37
1.1
2.3
.33 | .25
.25
.17
.19
.16 | .17
.17
.15
.17
.18 | .18
.20
.18
.17
.17 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 17.58
.57
1.3
.39
.13 | 38.62
1.29
8.0
.37
.30 | 112.48
3.63
11
.86
.84 | 72.81
2.35
30
.45
.54 | 72.5
2.50
10
1.2
.58
.62 | 104.9
3.38
15
1.6
.78
.90 | 174.1
5.80
35
1.3
1.34
1.49 | 37.99
1.23
2.9
.48
.28
.33 | 16.24
.54
2.3
.32
.12 | 13.66
.44
4.6
.16
.10 | 9.15
.30
1.8
.13
.07 | 12.38
.41
3.7
.13
.10 | CAL YR 1987 TOTAL 845.54 MEAN 2.32 MAX 58 MIN .11 CFSM .53 IN. 7.25 WTR YR 1988 TOTAL 682.41 MEAN 1.86 MAX 35 MIN .13 CFSM .43 IN. 5.85 ### 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1983 to current year. PERIOD OF DAILY RECORD. SUSPENDED-SEDIMENT DISCHARGE: October 1983 to current year. TOTAL PHOSPHORUS DISCHARGE: October 1983 to current year. INSTRUMENTATION. -- Automatic pumping sampler since October 1983. REMARKS. -- Records good. COOPERATION. -- Observer furnished by Delavan Lake Sanitary District. EXTREMES FOR PERIOD OF RECORD.-SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 5,520 mg/L Aug. 7, 1984; minimum observed, 1 mg/L on several days during 1984. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 58 tons Nov. 1, 1984; minimum daily, 0.01 ton on many days from 1984 to 1988. TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 8.20 mg/L Aug. 7, 1984; minimum observed, 0.04 mg/L Oct. 12, 1984, Mar. 29 and Apr. 7, 1988. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 216 lb May 25, 1984; minimum daily, 0.03 lb Sept. 23-24, 1987. EXTREMES FOR CURRENT YEAR.-SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum observed, 1,190 mg/L Mar. 28; minimum observed, 9 mg/L Apr. 23. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 26 tons Apr. 6; minimum daily, 0.01 ton Aug. 6-7, Sept. 21. TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 1.20 mg/L Jan. 21; minimum observed, 0.04 mg/L Mar. 29 TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 49.2 lb Apr. 6; minimum daily, 0.04 lb Sept. 15. ### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME |
DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |-----------|--------------|---|--|---|----------|--------------|--|--|---| | OCT 1987 | | | | | JAN 1988 | | | | | | 01 | 1044 | 0.42 | | 35 | 19 | 0515 | 10 | | 462 | | 01 | 1045 | 0.42 | 0.120 | | 19 | 0600 | 10 | 0.230 | | | 12 | 0930 | 0.32 | | 57 | 19 | 0800 | 10 | 0.260 | | | 19 | 0850 | 0.40 | | 76 | 19 | 0915 | 10 | 0.140 | 527 | | NOV
18 | 1002 | 0.67 | 0 100 | 32 | 19
19 | 1130
1200 | 10
10 | 0.140 | 374 | | 28 | 1400 | 17 | $0.100 \\ 0.220$ | 32 | 19 | 1315 | 10 | 0.300 | 3/4 | | 28 | 1415 | 18 | 0.220 | 310 | 19 | 1400 | 10 | 0.500 | 229 | | 28 | 1430 | 21 | | 339 | 19 | 1600 | 10 | | 143 | | 28 | 1445 | 22 | 0.200 | | 19 | 1645 | 10 | 0.340 | | | 28 | 1500 | 25 | | 376 | 19 | 1800 | 10 | | 95 | | 28 | 1530 | 28 | | 739 | 19 | 1930 | 10 | | 68 | | 28 | 1545 | 28 | 0.230 | | 19 | 2030 | 10 | 0.350 | | | 28 | 1600 | 27 | | 220 | 19 | 2230 | 10 | | 71 | | 28 | 1630 | 24 | | 170 | 19 | 2300 | 10 | | 75 | | 28 | 1645 | 22 | 0.290 | | 20 | 0115 | 5.0 | 0.340 | | | 28 | 1700 | 20 | | 128 | 20 | 0300 | 5.0 | | 61 | | 28 | 1730 | 18 | 0 150 | 98
 | 20 | 0600 | 5.0 | 0.290 | 52 | | 28
28 | 1745
1800 | 17
16 | 0.150 | 77 | 20
20 | 0645
1100 | 5.0
5.0 | 0.260 | 41 | | 28 | 1830 | 15 | 0.210 | | 20 | 1230 | 5.0 | 0.200 | 40 | | 28 | 1845 | 14 | 0.210 | 49 | 20 | 1300 | 5.0 | | 82 | | 30 | 0805 | 3.9 | 0.090 | 324 | 20 | 1330 | 5.0 | 0.270 | | | DEC | 0005 | 3.7 | 0.050 | 32.1 | 20 | 1345 | | | | | 08 | 1915 | 14 | 0.210 | 119 | 20 | 1400 | 5.0 | | 73 | | 08 | 1930 | 14 | | 134 | 20 | 1430 | 5.0 | | 64 | | 08 | 1945 | 13 | | 146 | 20 | 1500 | 5.0 | 0.210 | | | 08 | 2000 | 13 | | 126 | 20 | 1530 | 5.0 | | 58 | | 08 | 2345 | 14 | 0.250 | | 21 | 1515 | 3.0 | | 59 | | 08 | 2400 | 15 | | 109 | 21 | 1520 | 3.0 | 1.20 | | | 09 | 0030 | 17 | | 108 | 30 | 0730 | 1.5
1.5 | 0.340 | 129 | | 09
09 | 0045
0100 | 17
17 | 0.330 | 103 | 30
30 | 0800
0900 | 1.5 | | 158 | | 09 | 0100 | 17 | 0.210 | 103 | 30 | 1000 | 1.5 | | 167 | | 09 | 0200 | 17 | 0.210 | 95 | 30 | 1030 | 1.5 | 0.330 | | | 09 | 0230 | 18 | 0.290 | | 30 | 1100 | 1.5 | | 214 | | 09 | 0300 | 19 | | 64 | 30 | 1200 | 1.5 | | 227 | | 09 | 0315 | 19 | 0.250 | | 30 | 1230 | 1.5 | 0.360 | | | 09 | 0400 | 17 | | 45 | 30 | 1300 | 1.5 | | 259 | | 09 | 0445 | 15 | 0.230 | | 30 | 1400 | 1.5 | | 266 | | 09 | 0500 | 15 | | 48 | 30 | 1430 | 1.5 | 0.190 | | | 09 | 0730 | 14 | 0.230 | 40 | 30 | 1500 | 1.5 | | 213 | | 21 | 0815 | 7.4 | | 56 | 30 | 1530 | 1.5 | 0.290 | 173 | | 30 | 1024 | 2.0 | | 19
 | 30 | 1600 | 1.5 | 0.290 | 150 | | 30 | 1025 | 2.0 | 0.050 | | 30 | 1630 | 1.5 | - - | 130 | ### 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI--CONTINUED ### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | SEDI-
MENT,
SUS-
PENDED
(MG/L)
(80154) | |-------------------|--------------|---|---|--|---|-----------|--------------|--|--|---| | FEB 1988 | 0021 | 10 | | 0.000 | 5.0 | APR 1988 | 0000 | 10 | 0.010 | | | 01
1 8 | 0931
1040 | 10
1.4 | | 0.220 | 52
37 | 07
07 | 0330
0400 | 10
10 | 0.040 | 18 | | 18 | 1045 | 1.4 | | 0.070 | | 07 | 1800 | 7.9 | 0.100 | 17 | | MAR
22 | 1001 | | | 0.070 | | 07
23 | 1801
0200 | 48 | 0.100
0.420 | 2 8 2 | | 22
28 | 1005 | | 1.5 | 0.050 | 21 | 23 | 0215 | 42 | 0.500 | 259 | | 28 | 1000
1030 | | 11
17 | 0.670 | 1190
954 | 23
23 | 0245
0315 | 35
35 | 0.500 | 255
197 | | 28 | 1100 | | 17 | 0.380 | 561 | 23 | 0345 | 28 | | 180 | | 28
28 | 1101
1130 | | 17
16 | 0.300 | 376 | 23
23 | 0415
0445 | 24
22 | 0.530 | 128 | | 28 | 1200 | | 14 | 0.320 | 282 | 23 | 0545 | 18 | | 70 | | 28
28 | 1300
1400 | | 16
14 | 0.340 | 252
142 | 23
23 | 0615
0645 | 17
15 | 0.440 |
54 | | 28 | 1500 | | 12 | 0.220 | 77 | 23 | 0745 | 14 | | 40 | | 28
28 | 1630 | | 12 | 0.190 | 81 | 23 | 0815 | 13 | 0.250 | 32 | | 28 | 1730
1800 | | 21
23 | 0.210 | 113 | 23
23 | 0845
0945 | 12
11 | | 26 | | 28 | 1830 | | 24 | | 479 | 23 | 1015 | 11 | 0.180 | | | 28
28 | 1900
2000 | | 21
18 | 0.150 | 274 | 23
23 | 1045
1145 | 10
9.4 | | 23
17 | | 28 | 2030 | | 18 | 0.070 | | 23 | 1245 | 9.0 | | 13 | | 28
28 | 2100
2200 | | 17
16 | 0.070 | 138 | 23
23 | 1315
1345 | 8.9
8.4 | 0.140 |
9 | | 28 | 2230 | | 15 | | 129 | MAY | | | | | | 28
28 | 2330
2400 | | 14
14 | 0.180 | 106 | 05
05 | 1120
1220 | 1.7 2.0 | 0.070 | 4 4
 | | 29 | 0100 | 15 | | | 97 | JUN | | | | | | 29
29 | 0130
0230 | 15
15 |
 | 0.210 | 94 | 16
JUL | 1325 | 0.44 | 0.270 | 73 | | 29 | 0300 | 15 | | 0.080 | | 12 | 1114 | 0.30 | | 48 | | 29
2 9. | 0400
0500 | 15
15 | | 0.060 | 73
 | 12
16 | 1315
1530 | 0.27
17 | 0.150 | 301 | | 29 | 0530 | 15 | | | 86 | 16 | 1600 | 23 | | 268 | | 29
29 | 1000
1015 | 15
15 | | 0.040 | 55 | 16 | 1630 | 40 | 0.570 | 111 | | 29 | 1045 | 15 | | 0.110 | 87
71 | 16
16 | 1700
1730 | 33
22 | 0.450 | 111 | | 29 | 1145 | 15 | | | 57 | 16 | 1800 | 15 | 0.570 | 53 | | 29
29 | 1215
1515 | 15
15 | | 0.200
0.060 | 111
51 | 16
16 | 1830
1900 | $^{11}_{8.9}$ | 0.350
0.450 |
38 | | APR | | | | | | 16 | 1930 | 7.0 | 0.240 | | | 06
06 | 1100
1105 | 35
35 | | 0.550
0.450 | 114 | 16
16 | 2000
2100 | | 0.350
0.240 | | | 06 | 1400 | 3 5 | | 0.320 | | 18 | 1410 | 0.35 | 0.290 | | | 06
06 | 1430
1435 | 35 | | 0.240
0.250 | | 25
25 | 0900
0905 | 0.42
0.41 | 0.290 | 48
 | | 06 | 1436 | 35 | | | 53 | AUG | 0905 | 0.41 | 0.230 | | | 06
06 | 1500
1600 | 35
35 | | | 48
46 | 08
15 | 2400
1105 | 11 | 0.240
0.060 | 63
 | | 06 | 1630 | 35
35 | | 0.190 | 4 b
 | 18 | 1635 | 0.63
5.2 | 0.000 | | | 06 | 1700 | 35 | | 0 200 | 41 | 30 | 1025 | 0.15 | 0.000 | 67
 | | 06
06 | 1710
1800 | 35
35 | | 0.200 | 38
44 | 30
SEP | 1027 | 0.15 | 0.080 | | | 06 | 1830 | 35 | | 0.150 | | 18 | 1200 | 0.46 | 0.410 | 67 | | 06
06 | 1930
2030 | 35
35 | | | 50
30 | 19
22 | 0935
1030 | 2.0
4.1 | 0.220
0.440 | 52 | | 06 | 2100 | 35 | | 0.200 | | 22 | 1100 | 12 | | 48 | | 06
06 | 2130
2230 | 35
35 | | 0.130 | 28 | 22
22 | 1130
1200 | 12
16 | 0.240
0.280 | 40
38 | | 06 | 2300 | 35 | | | 27 | 22 | 1230 | 19 | | 34 | | 06
07 | 2400
0030 | 35 | 12 | 0.130 | 27
 | 22
22 | 1300
1330 | 18
14 | 0.230 | 35
46 | | 07 | 0200 | | 11 | | 23 | 22 | 1400 | 10 | 0.410 | 72 | | 07 | 0300 | | 11 | | 20 | 23 | 1040 | 0.53 | 0.220 | 49 | ### 277 ROCK RIVER BASIN 054310157 JACKSON CREEK TRIBUTARY NEAR ELKHORN, WI--CONTINUED WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | SEDIMENT | DISCHARGE, | SUSPENDE | D (TONS/ | DAY), WATI
MEAN VALUI | ER YEAR O | CTOBER 198 | 7 TO SEP | TEMBER 198 | 18 | | |----------------------------------|--------------------------------------|--|---|---|--------------------------------------|---|--------------------------------------|--|-----------------------------------|--|--------------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | .06
.10
.06
.06 | .07
.09
.07
.06 | .18
.15
.14
.08 | .05
.05
.04
.03
.03 | 1.4
.66
.52
.40 | .20
.21
.15
.12 | 1.6
1.3
3.0
1.7
2.1 | .21
.20
.19
.19 | .09
.08
.08
.08 | . 04
. 04
. 04
. 04
. 04 | .02
.02
.02
.02
.05 | .03
.03
.06
.15 | | 6
7
8
9
10 | .09
.08
.07
.06 | .05
.05
.05
.05 | .07
.64
1.0
1.4 | .03
.02
.02
.02
.02 | .29
.27
.24
.22
.19 | .13
.14
.20
.18 | 26
.42
.25
.19
.16 | .16
.14
.21
.50 | .10
.09
.10
.08 | .04
.04
.04
.03 | .01
.01
.04
.18 | .03
.02
.02
.03 | | 11
12
13
14
15 | .06
.07
.07
.07 | .04
.05
.04
.04 | .24
.15
.09
.09 | .02
.02
.02
.02
.02 | .17
.17
.16
.14 |
.13
.16
.13
.11 | .13
.11
.09
.09 | .11
.30
.16
.13 | .08
.08
.10
.09 | .04
.03
.03
.03 | .02
.02
.02
.02
.06 | .02
.04
.03
.03 | | 16
17
18
19
20 | .09
.16
.07
.09
.13 | .50
.32
.06
.05 | .06
.05
.05
.21
1.5 | .03
.04
.09
6.2
.73 | .13
.12
.13
.16 | .10
.10
.10
.10 | .06
.06
.05
.04 | . 18
. 17
. 13
. 13
. 12 | .08
.08
.07
.06 | 1.6
.02
.02
.02
.12 | .02
.02
.23
.04 | .03
.03
.05
.13 | | 21
22
23
24
25 | .09
.08
.07
.07 | .04
.04
.07
.06 | 1.0
.54
.30
.80 | .45
.28
.19
.14 | . 12
. 26
. 22
. 14
. 12 | .09
.09
.09
.09 | .03
.04
3.5
.09
.06 | .10
.09
.10
.09 | .06
.06
.05
.05 | .06
.02
.02
.02
.07 | .02
.02
.08
.02
.02 | .01
.43
.18
.02 | | 26
27
28
29
30
31 | .21
.11
.07
.06
.06 | .02
.02
3.5
.22
.38 | .56
.30
.21
.14
.11 | .09
.07
.06
.08
.58
6.8 | .31
.25
.22
.24 | .13
.10
6.4
2.5
3.0
e2.0 | .07
.32
.30
.25
.22 | .09
.09
.08
.08
.08 | .04
.04
.21
.60
.04 | .03
.03
.02
.02
.02 | .03
.03
.03
.03
.03 | .02
.02
.02
.02
.02 | | TOTAL
MEAN
MAX
MIN | 2.55
.08
.21
.06 | 6.64
.22
3.5
.02 | 11.67
.38
1.5
.05 | 16.35
.53
6.8
.02 | 7.85
.27
1.4
.12 | 17.36
.56
6.4
.09 | 42.34
1.4
26
.03 | 4.73
.15
.50
.08 | 2.85
.09
.60
.04 | 2.64
.09
1.6
.02 | 1.20
.04
.23
.01 | 1.59
.05
.43
.01 | | CAL YR
WTR YR | | TOTAL 258
TOTAL 117
PHOSE | | .32 MAX 2 | 26 MIN | .01 | EAR OCTO | BER 1987 T | O SEPTEME | ER 1988 | | | | DAY | ост | NOV | DEC | JAN | | MEAN VALUE | IS | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | . 44
. 68
. 38
. 36
. 41 | .26
.34
.25
.21 | 1.15
.57
.56
.32
.30 | . 37
. 32
. 27
. 24
. 22 | 12.2
5.52
4.13
3.09
2.44 | MAR
. 90
. 93
. 68
. 55
. 52 | 8.00
6.00
19.0
8.50
11.0 | 1.00
.95
.79
.75 | . 53
. 47
. 49
. 48 | . 33
. 31
. 29
. 30
. 31 | . 22
. 17
. 15
. 17
. 47 | .06
.06
.13
1.26 | | 6
7
8
9
10 | . 47
. 42
. 33
. 30
. 28 | .20
.20
.22
.21 | .25
3.10
6.59
12.8
2.63 | .18
.16
.15
.14 | 2.02
1.81
1.55
1.31
1.10 | .61
.66
.91
.85 | 49.2
3.60
3.15
2.39
2.02 | .55
.51
.67
.90 | .62
.61
.64
.56 | . 29
. 28
. 28
. 24
. 23 | .11
.09
.32
1.14
.15 | .09
.07
.06
.06 | | 11
12
13
14
15 | . 23
. 26
. 27
. 24
. 24 | .19
.20
.20
.17
.16 | 2.02
1.25
.77
.69
.47 | .13
.13
.13
.12
.14 | .96
.90
.79
.69 | . 63
. 74
. 63
. 54
. 48 | 1.63
1.29
1.12
1.02 | .61
.70
.62
.51 | .58
.59
.76
.69 | . 25
. 23
. 20
. 20
. 15 | .11
.09
.06
.05 | .05
.09
.06
.05 | | 16
17
18
19
20 | .31
.50
.22
.25
.36 | 2.29
2.36
.37
.31
.26 | .43
.39
.36
1.10
4.19 | .19
.27
.68
13.5
7.80 | .56
.48
.53
.64 | . 47
. 51
. 51
. 50
. 47 | .70
.66
.58
.49
.47 | .72
.68
.55
.55 | .64
.65
.58
.52
.57 | 10.0
.31
.34
.33
.79 | .05
.04
2.62
.22
.13 | .05
.05
.48
1.40
.29 | | 21
22
23
24
25 | .27
.24
.21
.23
.25 | . 23
. 24
. 39
. 33
2 . 68 | 2.56
1.80
1.28
2.20
2.81 | 14.9
10.0
5.51
3.18
1.94 | .48
.95
.80
.60 | . 47
. 45
. 47
. 49
. 85 | .37
.39
21.8
2.24
1.54 | . 46
. 42
. 46
. 45
. 41 | .54
.50
.47
.45 | .75
.21
.14
.12
.98 | .09
.11
.70
.10 | .08
5.91
2.39
.21
.18 | | 26
27
28
29
30
31 | .70
.35
.23
.22
.21 | .46
.33
8.27
2.22
2.32 | 1.48
.96
.81
.66
.59
.49 | 1.26
.82
.56
.45
2.39
45.9 | 1.20
1.07
.95
1.03 | .70
.54
11.0
30.0
19.0
11.0 | 1.28
2.42
2.13
1.46
1.18 | . 44
. 43
. 42
. 40
. 41
. 47 | .37
.41
1.56
3.45
.35 | .37
.34
.22
.23
.18
.17 | .09
.08
.07
.08
.08 | .21
.23
.21
.19
.19 | | TOTAL
MEAN
MAX
MIN | 10.06
.32
.70
.20 | 26.27
.88
8.27
.16 | 55.58
1.79
12.8
.25 | 112.18
3.62
45.9
.12 | 49.46
1.71
12.2
.48 | 87.71
2.83
30.0
.45 | 156.45
5.21
49.2
.37 | 18.20
.59
1.00
.40 | 20.27
.68
3.45
.35 | 19.37
.62
10.0
.12 | 8.08
.26
2.62
.04 | 14.32
.48
5.91
.04 | CAL YR 1987 TOTAL 1212.86 MEAN 3.32 MAX 133 MIN .03 WTR YR 1988 TOTAL 577.95 MEAN 1.58 MAX 49.2 MIN .04 ### 05431017 DELAVAN LAKE INLET AT U.S. HIGHWAY 50 AT LAKE LAWN, WI LOCATION.--Lat $42^{\circ}37'16''$, long $88^{\circ}34'57''$, in NE 1/4 sec.22, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, on right bank at U.S. Highway 50 bridge, and 1.0 mi east of Lake Lawn. DRAINAGE AREA. -- 21.8 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1985 to current year. GAGE.--Staff gage and reference point. Staff gage destroyed by bridge construction in the fall of 1987. Reference point established in March 1988. Elevation of gage is 927 ft, from topographic map. REMARKS.--1984 and 1985 water year discharges are unpublished, but available and were estimated based on discharges upstream at Jackson Creek at Petrie Road near Elkhorn (05431014) and Jackson Creek tributary near Elkhorn (054310157). In water year 1988, daily mean discharges were also estimated based on discharges from upstream stations 05431014 and 054310157. Records poor. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 823 $\rm ft^3/s$, Mar. 10, 1986; minimum daily (estimated), 0.38 $\rm ft^3/s$, Aug. 7, 1987. EXTREMES FOR CURRENT YEAR.--Maximum daily (estimated), 118 ${\rm ft}^3/{\rm s}$, Jan. 31; minimum daily (estimated), 0.22 ${\rm ft}^3/{\rm s}$, Sept. 15. | | | DISCHA | RGE, CUBIO | C FEET PER | | WATER YEAR
EAN VALUES | C OCTOBER | R 1987 ТО | SEPTEMBER | 1988 | | | |--------------------------------------|-----------------------------------|-----------------------------------|------------------------------------|---------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------------|--|--------------------------------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.2
1.6
2.1
1.0 | 1.1
1.1
1.1
1.0
.93 | 13
9.2
8.1
5.8
4.7 | 5.5
4.1
3.0
2.3
1.8 | 59
24
14
10
8.6 | 8.8
9.2
6.6
5.6
5.1 | 30
28
37
30
27 | 10
9.2
8.0
7.3
6.3 | .98
.90
.88
.84 | . 46
. 45
. 43
. 43 | .38
.35
.31
.35
.90 | .25
.25
.44
1.2
.34 | | 6
7
8
9
10 | 1.2
1.3
.92
.96
.89 | .86
.82
.91
.91 | 4.4
10
29
60
32 | 1.6
1.4
1.3
1.2 | 7.3
6.6
5.8
5.2
4.8 | 6.0
6.8
9.1
9.2
7.0 | 101
48
31
24
19 | 5.7
5.2
5.5
7.8
6.5 | .88
.83
.83
.75
.73 | . 41
. 41
. 39
. 36
. 36 | .54
.46
.85
1.6
.46 | .30
.26
.24
.25
.23 | | 11
12
13
14
15 | .68
.73
.83
.81 | .81
.88
.93
.86
.74 | 23
18
13
9.9
6.6 | 1.1
1.0
1.0
.97
.94 | 4.5
4.3
4.0
3.7
3.7 | 7.0
8.7
7.4
6.0
5.4 | 16
14
12
11
8.8 | 4.4
5.8
4.4
3.5
3.8 | .71
.69
.79
.72
.71 | . 40
. 38
. 35
. 40
. 33 | . 40
. 36
. 30
. 39
. 73 | .23
.36
.25
.23 | | 16
17
18
19
20 | .97
1.4
.82
.86
2.0 | 3.3
4.8
2.4
1.9 | 2.4
1.8
1.5
3.4
27 | 1.1
1.9
3.7
10 | 3.4
3.4
4.3
5.4
4.9 | 5.2
5.5
5.7
5.9
5.6 | 7.6
7.6
6.5
5.7
5.7 | 3.4
3.1
2.6
2.6
2.4 | .65
.67
.62
.57
.59 | 4.9
.51
.45
.45
.92 | .36
.33
2.0
.48
.38 | .27
.27
.50
1.1
.47 | | 21
22
23
24
25 | .79
.80
.71
.87
.95 | 1.6
1.4
2.0
1.4
6.6 | 31
25
20
28
46 | 28
17
11
5.6
3.4 | 3.2
8.8
11
5.6
3.7 | 4.8
4.8
5.9
6.1
9.9 | 5.0
5.1
38
21
16 | 2.1
1.8
1.8
1.7 | .56
.54
.52
.51
.47 | 1.0
.52
.43
.41
.94 | .31
.33
.76
.30
.28 | .28
4.0
2.4
.69
.62 | | 26
27
28
29
30
31 | 1.8
1.3
1.1
1.0
.93 | 2.8
2.6
16
17
16 | 30
21
17
15
11
8.6 | 2.4
2.1
1.8
1.6
74
118 | 7.7
9.9
9.0
9.2 | 9.2
7.3
25
46
41
37 | 13
19
19
15
12 | 1.4
1.3
1.2
1.1
.97 | . 42
. 49
1.2
2.5
. 47 | . 52
. 48
. 38
. 39
. 34
. 33 | .29
.29
.29
.29
.30 | .55
.55
.51
.50
.48 | | TOTAL
MEAN
MAX
MIN
AC-FT | 33.43
1.08
2.1
.68
66 | 95.08
3.17
17
.74
189 | 535.4
17.3
60
1.5
1060 | 360.91
11.6
118
.94
716 | 255.0
8.79
59
3.2
506 | 332.8
10.7
46
4.8
660 |
633.0
21.1
101
5.0
1260 | 123.14
3.97
10
.97
244 | 22.83
.76
2.5
.42
45 | 18.97
.61
4.9
.33
38 | 15.64
.50
2.0
.27
31 | 18.24
.61
4.0
.22
36 | CAL YR 1987 TOTAL 3237.01 MEAN 8.87 MAX 163 MIN .38 AC-FT 6420 WTR YR 1988 TOTAL 2444.44 MEAN 6.68 MAX 118 MIN .22 AC-FT 4850 ### 05431017 DELAVAN LAKE INLET AT U.S. HIGHWAY 50 AT LAKE LAWN, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1983 to current year. PERIOD OF DAILY RECORD. -- TOTAL PHOSPHORUS DISCHARGE: 1984 and 1985 water years (unpublished) to current year. REMARKS.--Records poor. Daily mean discharges are estimated based on discharges from upstream stations 05431014 and 054310157. COOPERATION .-- Observer furnished by Delavan Lake Sanitary District. EXTREMES FOR PERIOD OF RECORD.-TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 3.8 mg/L May 27, 1985; minimum observed, 0.02 mg/L Apr. 10, 1988. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 1,088 lb Feb. 13, 1984; minimum daily, 0.22 lb Sept. 27, 1987. EXTREMES FOR CURRENT YEAR. -- TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.49 mg/L July 16; minimum observed, 0.02 mg/L Apr. 10. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 96 lb Jan. 13; minimum daily, 0.24 lb Nov. 15, Aug. 13. ### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |------------------|-----------------------|--|--| | OCT 1987 | | | | | 01
NOV | 0850 | 1.2 | 0.070 | | 18 | 0959 | 2.4 | 0.060
0.130 | | 30
DEC | 1040 | 16 | 0.130 | | 09 | 0830 | 60 | 0.130 | | 30
FEB 1988 | 0910 | 11 | 0.070 | | 01 | 1035 | 59 | 0.170 | | 01 | 1430 | 59
24 | 0.260
0.240 | | 02 | 0840 | | 0.240 | | 1 8
22 | 0925
0950 | 4.3
8.8 | 0.050 | | MAR | 0,50 | 0.0 | 0.000 | | 22 | 0920 | 4.8 | 0.080 | | 28 | 1355
1445 | 25
25 | 0.040
0.070 | | 28
29 | 0900 | 46 | 0.080 | | 29 | 1505 | 46 | 0.070 | | 30 | 0900 | 41 | 0.150 | | 30 | 1315 | 41 | 0.110 | | 31 | 1120 | 37 | 0.030 | | APR
06 | 1145 | 101 | 0.110 | | 06 | 1745 | 101 | 0.140 | | 07 | 1840 | 48 | 0.090 | | 08 | 1225 | 31 | 0.110 | | 08 | 1515
0925 | 31
24 | 0.110
0.030 | | 09
10 | 0730 | 19 | 0.020 | | MAY | | | | | 05
JUN | 1040 | 6.3 | 0.110 | | 16 | 1115 | 0.65 | | | JUL | 1155 | 0.38 | 0.270 | | 12
16 | 2100 | 4.9 | 0.490 | | 18 | 0835 | 0.45 | 0.370 | | 25 | 1040 | 0.94 | 0.400 | | AUG | 1140 | 0.73 | 0.120 | | 15
18 | 1140
1 7 15 | 2.0 | 0.380 | | 30 | 1215 | 0.30 | | | SEP | | | | | 19 | 1015 | 1.1 | 0.250 | | 23
23 | 1140
1545 | 2.4
2.4 | 0.220
0.240 | | 23 | 0840 | 0.69 | | | 24 | 1545 | 0.69 | 0.220 | | | | | | ROCK RIVER BASIN 05431017 DELAVAN LAKE INLET AT U.S. HIGHWAY 50 AT LAKE LAWN, WI--CONTINUED PHOSPHORUS, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|---------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|--|---------------------------------| | 1
2
3
4
5 | .45
.60
.79
.39
.42 | .36
.36
.36
.32 | 9.1
6.0
5.3
3.5
2.8 | 2.1
1.3
.97
.75
.58 | 68
32
17
11
7.9 | 3.8
4.0
2.9
2.4
2.2 | 6.5
7.6
16
15
15 | 6.5
6.0
4.8
4.3
3.7 | .64
.63
.62
.59 | .55
.56
.53
.56 | .62
.57
.52
.60 | .35
.35
.71
2.4
.68 | | 6
7
8
9
10 | .45
.49
.35
.36
.34 | .28
.27
.29
.29 | 2.6
6.2
19
42
23 | .52
.45
.42
.39 | 5.9
4.6
3.1
2.5
2.1 | 2.6
2.9
3.9
4.5
3.4 | 68
23
18
3.9
2.1 | 3.4
2.8
3.0
4.2
3.5 | .67
.63
.63
.61 | .53
.55
.53
.51 | .96
.82
1.4
2.3
.55 | .58
.48
.41
.40 | | 11
12
13
14
15 | .26
.28
.31
.31 | . 26
. 29
. 30
. 28
. 24 | 16
12
8.4
5.9
3.6 | .30
.27
.27
.26 | 1.7
1.6
1.3
1.2 | 3.4
4.2
3.6
2.9
2.3 | 1,.7
1.5
1.3
1.2 | 2.4
3.1
2.4
1.9
2.1 | .58
.56
.64
.62 | .58
.55
.53
.63 | .43
.33
.24
.27
.47 | .32
.49
.32
.29 | | 16
17
18
19
20 | .37
.53
.31
.32
.74 | 1.1
1.6
.78
.62
.49 | 1.3
.87
.65
1.5 | .36
.62
1.2
4.3 | .92
.92
1.2
1.5 | 2.3
2.4
2.5
2.6
2.4 | .82
.82
.70
.62 | 1.8
1.7
1.4
1.4 | .56
.62
.57
.55 | 13
1.2
.90
.90
1.9 | .29
.44
4.1
.98
.76 | .32
.34
.65
1.5 | | 21
22
23
24
25 | .30
.30
.27
.33
.36 | .52
.45
.65
.53 | 15
14
11
15
25 | 15
.9.2
6.0
3.0
1.7 | .86
2.4
3.0
1.5
1.2 | 2.1
2.1
2.2
2.3
3.2 | .54
.55
31
17
13 | 1.1
.97
1.1
1.0 | .54
.55
.53
.52 | 2.1
1.1
.91
.89
2.0 | .58
.61
1.3
.50
.45 | .38
5.0
3.0
1.1
.74 | | 26
27
28
29
30
31 | .58
.42
.36
.32
.30 | 1.2
1.3
8.6
10 | 15
9.1
7.3
5.7
4.2
3.3 | 1.2
1.0
.87
.86
52
96 | 2.5
3.2
3.4
3.5 | 2.5
1.6
7.4
19
29
6.0 | 9.8
14
13
11
7.8 | .80
.84
.78
.71
.63 | .45
.53
1.4
2.8
.56 | 1.1
.98
.74
.69
.57 | . 45
. 44
. 42
. 42
. 44
. 38 | .65
.65
.63
.62 | | TOTAL | 12.24 | 45.81 | 307.32 | 227.50 | 188.50 | 138.6 | 303.02 | 71.03 | 20.49 | 37.73 | 24.24 | 25.22 | WTR YR 1988 TOTAL 1401.70 ### 423526088380101 DELAVAN LAKE AT SW END NEAR DELAVAN LAKE, WI LOCATION.--Lat 42°35'26", long 88°38'01", sec.32, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, 2.6 mi southeast of Delavan. DRAINAGE AREA. -- 41.2 mi². PERIOD OF RECORD. -- October 1983 to current year. REMARKS. -- Lake ice-covered during January 21 sampling. WATER-QUALITY DATA, OCTOBER 21, 1987 TO MAY 18, 1988 (Milligrams per liter unless otherwise indicated) | | Oct. 21 | | Jan. 21 | | Apr. 28 | | | May 18 | | |---------------------------------------|----------|-------|---------|----------|---------|-------|-------|--------|-------| | | | | | | | | | | | | Depth of sample (ft) | 1.5 | 30.5 | 1.5 | 33.5 | 1.5 | 29.5 | 1.5 | 27.0 | 30.5 | | Specific conductance (µS/cm) | 508 | 509 | 504 | 530 | 528 | 527 | 532 | 535 | 540 | | pH (units) | 8.30 | 8.30 | 7.00 | 7.80 | 8.10 | 8.10 | 8.50 | 8.30 | 8.00 | | Water temperature (°C) | 11.0 | 11.0 | 1.5 | 1.5 | 9.0 | 8.5 | 16.0 | 14.0 | 13.0 | | Secchi-disc (meters) | 0 | .7 | 6 | .1 | 3 | . 2 | 3 | . 1 | | | Dissolved oxygen | 8.3 | 8.0 | 12.6 | 12.6 | 10.0 | 9.8 | 10.7 | 9.3 | 5.6 | | Silica, dissolved (SiO ₂) | | | | | 0.50 | 0.60 | | | | | Nitrogen, nitrate, total (as N) | | | | | 0.480 | 0.380 | | | ~ | | Nitrogen, nitrite, total (as N) | | | | | 0.020 | 0.020 | | | | | Nitrogen, nitrite + nitrate, total | | | | | 0.500 | 0.400 | | | ~ | | Nitrogen, ammonia, total (as N) | | | | | 0.310 | 0.310 | | | ~ | | Nitrogen, organic, total (as N) | | | | | 0.59 | 0.79 | | | ~ | | Mitrogen, total (as N) | - | | | | 1.4 | 1.5 | | | | | Total phosphorus (as P) | 0.087 | 0.092 | 0.076 | 0.085 | 0.068 | 0.065 | 0.051 | | 0.070 | | Phosphorus, ortho, diss (as P) | 0.049 | 0.061 | 0.064 | 0.076 | 0.053 | 0.052 | 0.025 | 0.025 | 0.047 | | Chlorophyll a, phyto. (µg/L) | 16 | | 1.4 | - | 1.3 | | 8.1 | | | 423526088380101 DELAVAN LAKE AT SW END NEAR DELAVAN LAKE, WI--CONTINUED ## WATER-QUALITY DATA, JUNE 16 TO AUGUST 12, 1988 (Milligrams per liter unless otherwise indicated) | | Jun | e 16 | | Jul | y 11 | | Aug. 12 | | | | | |--------------------------------|--------|-------|--------|--------|-------|-------|---------|--------|--------|-------|--| | | | | | | | | | | | | | | Depth of sample (ft) | 1.5 | 29.0 | 1.5 | 18.0 | 24.0 | 30.5 | 1.5 | 24.0 | 27.0 | 31.5 | | | Specific conductance (µS/cm) | 518 | 526 | 494 | 514 | 529 | 537 | 483 | 496 | 520 | 550 | | | pH (units) | 8.80 | 8.70 | 8.70 | 8.30 | 7.90 | 7.80 | 8.80 | 8.40 | 7.70 | 7.40 | | | Water temperature (°C) | 22.0 | 21.0 | 25.5 | 23.5 | 21.5 | 20.0 | 27.0 | 26.0 | 23.0 | 19.0 | | | Secchi-disc (meters) | 1 | .7 | 1 | . 4 | | | 1 | . 7 | | | | | Dissolved oxygen | 10.7 | 8.8 | 10.6 | 5.3 | 1.2 | 0 | 9.4 | 4.2 | 0.1 | 0.1 | | | Total phosphorus (as P) | 0.022 | 0.031 | 0.018 | 0.024 | 0.022 | 0.065 | 0.024 | 0.022 | 0.018 | 0.104 | | | Phosphorus, ortho, diss (as P) | <0.001 | 0.002 | <0.001 | <0.001 | 0.004 | 0.050 | <0.001 | <0.001 | <0.001 | 0.089 | | | Chlorophyll a, phyto. (µg/L) | 9.9 | | 16 | | | | 15 | | | | | ### 423556088365001 DELAVAN LAKE AT CENTER NEAR DELAVAN LAKE, WI LOCATION.--Lat 42°35'60", long 88°36'50", sec.28, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, 2.6 mi southeast of Delavan. DRAINAGE AREA. -- 41.2 mi². PERIOD OF RECORD. -- October 1983 to current year. REMARKS. -- Lake ice-covered during January 21 sampling. ## WATER-QUALITY DATA, OCTOBER 21, 1987 TO MAY 18, 1988 (Milligrams per liter unless otherwise indicated) | | Oct | . 21 | Jan | . 21 | Ap | r. 28 | | May | 18 | | |-----------------------------------|-------|-------|---------|-------|-------------|-------|-------|-------|-------|-------| | Depth of sample (ft) | 1.5 | 52.5 | 1.5 | 53.5 | 1.5 | 53.5 | 1.5 | 24.0 | 39.0 |
53.5 | | Specific conductance (µS/cm) | 507 | 506 | 508 | 728 | 52 9 | 525 | 530 | 533 | 538 | 549 | | pH (units) | 8.30 | 8.30 | 7.40 | 7.20 | 8.00 | 8.10 | 8.50 | 8.30 | 8.00 | 7.70 | | Water temperature (°C) | 11.5 | 11.5 | 0.5 | 3.0 | 9.0 | 8.5 | 16.0 | 15.0 | 11.5 | 10.5 | | Secchi-disc (meters) | 0 | . 7 | 7 | . 3 | 3 | . 2 | 3 | . 6 | | | | Dissolved oxygen | 8.4 | 8.3 | 12.5 | 2.2 | 9.9 | 9.7 | 10.5 | 9.4 | 6.3 | 2.7 | | Silica, dissolved (SiO2) | | | | | | 0.60 | | | | | | Nitrogen, nitrate, total (as N) | | | | | | 0.480 | | | | | | Nitrogen, nitrite, total (as N) | | | | | | 0.020 | | | | | | Nitrogen, nitrite + nitrate, tota | al | | | | | 0.500 | | | | | | Nitrogen, ammonia, total (as N) | | | | | | 0.320 | | | | | | Nitrogen, organic, total (as N) | | | | | | 0.68 | | | | | | Nitrogen, total (as N) | | | | | | 1.5 | | | | | | Total phosphorus (as P) | 0.101 | 0.092 | 0.081 | 0.169 | | 0.078 | 0.053 | 0.072 | 0.099 | 0.239 | | Phosphorus, ortho, diss (as P) | 0.045 | 0.052 | 0.071 | 0.147 | | 0.056 | 0.032 | 0.034 | 0.080 | 0.202 | | Chlorophyll a, phyto. (µg/L) | 22 | | 1.6 | | 1.2 | | 8.4 | | | | | 10-21- | 87 | | 1-21-88 | | 4-28-8 | 38 | 5-1 | 8-88 | | | SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER ### 423556088365001 DELAVAN LAKE AT CENTER NEAR DELAVAN LAKE, WI--CONTINUED WATER-QUALITY DATA, JUNE 16 TO AUGUST 12, 1988 (Milligrams per liter unless otherwise indicated) | | | June | 16 | | July 11 | | | | Aug. 12 | | | | |--------------------------------|-------|-------|-------|-------|---------|---------|-------|---------|---------|--------|--------|-------| | | | | | | | | | | | | | | | Depth of sample (ft) | 1.5 | 21.0 | 36.0 | 53.5 | 1.5 | 15.0 | 27.0 | 52.5 | 1.5 | 18.0 | 24.0 | 52.5 | | Specific conductance (µS/cm) | 515 5 | 517 | 550 | 563 | 489 | 511 | 529 | 574 | 482 | 488 | 504 | 618 | | pH (units) | 8.90 | 8.80 | 7.80 | 7.60 | 8.80 | 8.50 | 7.90 | 7.40 | 8.80 | 8.60 | 8.10 | 7.10 | | Water temperature (°C) | 22.0 | 22.0 | 15.0 | 12.5 | 25.5 | 24.0 | 21.5 | 13.5 | 27.5 | 26.5 | 25.5 | 14.0 | | Secchi-disc (meters) | 1.3 | 3 | | | 1. | . 2 | | | 1 | . 6 | | | | Dissolved oxygen | 11.1 | 9.5 | 0.1 | 0.1 | 11.0 | 6.4 | 1.1 | 0 | 10.0 | 6.7 | 1.9 | 0 | | Total phosphorus (as P) | 0.019 | 0.024 | 0.180 | 0.420 | 0.018 | 3 0.016 | 0.02 | 5 0.450 | 0.018 | 0.021 | 0.021 | 0.634 | | Phosphorus, ortho, diss (as P) | | 0.006 | 0.190 | 0.460 | <0.001 | <0.001 | 0.003 | 3 0.410 | <0.001 | <0.001 | <0.001 | 0.610 | | Chlorophyll a, phyto. (µg/L) | 14 | | | | 29 | | | | 17 | | | | ### 423659088354401 DELAVAN LAKE AT NORTH END NEAR LAKE LAWN, WI DRAINAGE AREA.--41.2 mi². PERIOD OF RECORD. -- October 1983 to current year. 300 500 700 900 300 500 700 900 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER 300 500 700 900 300 500 700 900 REMARKS.--Lake ice-covered during January 21 sampling. ### WATER-QUALITY DATA, OCTOBER 21, 1987 TO MAY 18, 1988 (Milligrams per liter unless otherwise indicated) | (Mi | lligrams per liter w | nless otherwise ind | | | |---|---|--|--|---| | | Oct. 21 | Jan. 21 | Apr. 28 | May 18 | | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Secchi-disc (meters) Dissolved oxygen Silica, dissolved (SiO ₂) Nitrogen, nitrate, total (as N) Nitrogen, nitrite, total (as N) Nitrogen, nitrite + nitrate, total Nitrogen, ammonia, total (as N) Nitrogen, organic, total (as N) Nitrogen, total (as N) Total phosphorus (as P) Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | 1.5 33.5
508 508
8.40 8.30
11.0 11.0
0.9
9.1 8.9
 | 1.5 32.5
525 539
7.90 8.10
1.5 2.0
4.8
12.9 12.8

0.081 0.083
0.066 0.071
6.1 | 1.5 31.5
529 530
8.30 8.20
8.5 8.5
2.2
10.0 9.8
0.50 0.60
0.480 0.480
0.020 0.020
0.500 0.500
0.320 0.310
0.68 0.69
1.5 1.5
0.064 0.067
0.053 0.051
1.8 | 1.5 31.5
534 537
8.40 8.10
15.5 14.0
3.6
10.1 6.8

0.059 0.069
0.030 0.042
4.7 | | 10-21-87 | 1-21-88 | 4-28-88 | 5-18- | 88 | | | DISSOLVED OXYGEN, | N MILLIGRAMS PER LIT | ER | | | | 0 10 20 30 | 0 4 8 12
10 20 30 10 20
E, IN DEGREES CELSIUS | | 12 16 | | | PH. IN STA | NDARD UNITS | | | | Spec. 30 Cond. 3 | 0 7 8 9 10 | 0 7 8 9 | 10 6 7 8 | 9 10 | ### 423659088354401 DELAVAN LAKE AT NORTH END NEAR LAKE LAWN, WI--CONTINUED WATER-QUALITY DATA, JUNE 16 TO AUGUST 12, 1988 (Milligrams per liter unless otherwise indicated) | | | June | 16 | | July 11 | | | | Aug. 12 | | | | |--------------------------------|-------|-------|-------|-------|---------|-------|-------|-------|---------|--------|--------|--------| | | | | | | | | | | | | | | | Depth of sample (ft) | 1.5 | 21.0 | 27.0 | 29.5 | 1.5 | 15.0 | 24.0 | 31.5 | 1.5 | 18.0 | 24.0 | 30.5 | | Specific conductance (µS/cm) | 512 | 527 | 541 | 543 | 487 | 503 | 530 | 536 | 481 | 484 | 515 | 536 | | pH (units) | 8.80 | 8.60 | 8.10 | 8.10 | 8.90 | 8.60 | 7.90 | 7.90 | 8.80 | 8.70 | 7.90 | 7.50 | | Water temperature (°C) | 22.0 | 21.0 | 18.5 | 18.0 | 25.5 | 24.5 | 21.0 | 20.0 | 27.5 | 27.0 | 24.0 | 21.0 | | Secchi-disc (meters) | 1. | 3 | | | 1 | L.0 | | | 1 | 3 | | | | Dissolved oxygen | 10.0 | 7.8 | 3.6 | 2.9 | 10.9 | 6.9 | 0.5 | 0 | 9.7 | 8.5 | 0 | 0 | | Total phosphorus (as P) | 0.025 | 0.034 | 0.028 | 0.062 | 0.022 | 0.022 | 0.022 | 0.078 | 0.029 | | | | | Phosphorus, ortho, diss (as P) | 0.003 | 0.027 | 0.006 | 0.032 | 0.006 | 0.005 | 0.009 | 0.053 | 0.002 | <0.001 | <0.001 | <0.001 | | Chlorophyll a, phyto. (µg/L) | 19 | | | | 37 | | | | 21 | | | | 6-16-88 7-11-88 8-12-88 ### 423706088363400 DELAVAN LAKE NEAR DELAVAN, WI LOCATION.--Lat 42°37'06", long 88°36'34", in SW 1/4 NE 1/4 sec.21, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, at upstream right wingwall of bridge, on North Shore Drive, 0.7 mi northeast of outlet, and 2.0 mi southeast of Delavan. DRAINAGE AREA.--41.4 mi^2 , of which 2.3 mi^2 is non-contributing. PERIOD OF RECORD.--October 1983 to current year. October 1983 to September 1985 data published in Water Resources Investigation series report "Water Quality and Hydrology of Delavan Lake in Southeastern Wisconsin" by Stephen J. Field and Marvin D. Duerk. GAGE.--Staff gage read by Delavan Lake Sanitary District personnel. Datum of gage is 922.92 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Lake levels controlled by Town of Delavan. Lake levels drawn down about 0.75 ft during winter operation from October to May. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 5.85 ft, Sept. 30, 1986; minimum observed, 3.78 ft, Dec. 9, 1983. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 4.96 ft, Apr. 8, 12, 28; minimum observed, 4.15 ft, Jan. 17 | | | | GAGE HEI | GHT, FEET | | EAR OCTOR | | O SEPTEME | BER 1988 | | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.92
4.92
4.88
4.86
4.82 | 4.50
4.50
4.50
4.49
4.45 | 4.40
4.39
4.38
4.38
4.38 | 4.46
4.46
4.44
4.38
4.38 | 4.66
4.65
4.60
4.56
4.56 | 4.20
4.20
4.20
4.20
4.26 | 4.60
4.60
4.68
4.70
4.72 | 4.90
4.90
4.90
4.88
4.88 | 4.84
4.84
4.84
4.84 | 4.49
4.45
4.44
4.42
4.46 | 4.46
4.44
4.44
4.40
4.47 | 4.28
4.26
4.30
4.27
4.29 | | 6
7
8
9
10 | 4.80
4.78
4.78
4.78
4.76 | 4.45
4.43
4.42
4.40
4.38 | 4.38
4.40
4.40
4.43
4.50 | 4.38
4.38
4.34
4.34 | 4.56
4.56
4.35
4.35
4.35 | 4.28
4.24
4.24
4.30
4.30 | 4.82
4.92
4.96
4.80
4.80 | 4.88
4.88
4.88
4.88 | 4.80
4.78
4.78
4.76
4.68 | 4.44
4.42
4.42
4.38
4.36 | 4.44
4.42
4.40
4.50
4.50 | 4.28
4.28
4.25
4.24
4.24 | | 11
12
13
14
15 | 4.75
4.73
4.70
4.68
4.70 | 4.36
4.34
4.34
4.32
4.31 | 4.50
4.47
4.47
4.45
4.48 | 4.20
4.20
4.20
4.18
4.18 | 4.34
4.34
4.29
4.28
4.28 | 4.32
4.30
4.30
4.35
4.32 | 4.80
4.96
4.92
4.92
4.92 | 4.90
4.92
4.92
4.90
4.90 | 4.70
4.69
4.69
4.67
4.67 | 4.38
4.37
4.36
4.36
4.34 | 4.49
4.48
4.48
4.44
4.49 | 4.22
4.22
4.22
4.20
4.20 | | 16
17
18
19
20 | 4.69
4.69
4.68
4.70
4.68 | 4.30
4.30
4.35
4.35
4.32 | 4.46
4.42
4.40
4.46
4.49 |
4.18
4.15
4.20
4.23
4.40 | 4.25
4.25
4.22
4.20
4.21 | 4.35
4.34
4.32
4.32
4.32 | 4.88
4.86
4.86
4.85
4.85 | 4.90
4.90
4.95
4.95
4.93 | 4.67
4.62
4.62
4.58
4.60 | 4.32
4.56
4.52
4.54
4.52 | 4.46
4.46
4.44
4.50
4.48 | 4.20
4.18
4.18
4.20
4.20 | | 21
22
23
24
25 | 4.66
4.65
4.60
4.59
4.58 | 4.30
4.30
4.30
4.28
4.30 | 4.50
4.46
4.46
4.48
4.48 | 4.48
4.48
4.47

4.40 | 4.19
4.19
4.19
4.20
4.20 | 4.32
4.32
4.32
4.30
4.35 | 4.85
4.85
4.90
4.92
4.92 | 4.90
4.90
4.90
4.88
4.88 | 4.58
4.57
4.57
4.54
4.50 | 4.52
4.54
4.50
4.50
4.56 | 4.44
4.46
4.44
4.42
4.39 | 4.20
4.21
4.28
4.28
4.28 | | 26
27
28
29
30
31 | 4.55
4.56
4.55
4.55
4.53
4.50 | 4.31
4.30
4.32
4.37
4.38 | 4.49
4.49
4.50
4.50
4.49
4.49 | 4.32
4.32
4.26
4.20
4.16
4.46 | 4.20
4.20
4.20
4.20 | 4.32
4.33
4.40
4.46
4.56
4.60 | 4.95
4.95
4.96
4.94
4.92 | 4.88
4.86
4.86
4.86
4.85 | 4.50
4.48
4.48
4.52
4.50 | 4.56
4.56
4.52
4.49
4.48
4.48 | 4.38
4.38
4.34
4.34
4.32
4.32 | 4.28
4.25
4.25
4.22
4.22 | | MEAN
MAX
MIN | 4.70
4.92
4.50 | 4.37
4.50
4.28 | 4.45
4.50
4.38 | | 4.33
4.66
4.19 | 4.32
4.60
4.20 | 4.85
4.96
4.60 | 4.89
4.95
4.85 | 4.66
4.84
4.48 | 4.46
4.56
4.32 | 4.43
4.50
4.32 | 4.24
4.30
4.18 | CAL YR 1987 MEAN 4.64 MAX 5.28 MIN 4.14 ### 05431022 DELAVAN LAKE OUTLET AT BORG ROAD NEAR DELAVAN, WI LOCATION.--Lat 42°36'53", long 88°37'29", in SW 1/4 SE 1/4 sec.20, T.2 N., R.16 E., Walworth County, Hydrologic Unit 07090001, on right bank 25 ft upstream from bridge on Borg Road, 1.4 mi southeast of Delavan, and 0.2 mi downstream from Delavan Lake dam outlet. DRAINAGE AREA.--42.1 mi², of which 2.3 mi² is non-contributing. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder. Elevation of gage is 920 ft, from topographic map REMARKS.--Estimated daily discharges: June 16-30 and July 1-12, 17-21. Records good except for estimated daily discharges, which are fair. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 228 ${\rm ft}^3/{\rm s}$ Oct. 1, 1986, gage height, 7.92 ft; minimum daily discharge, 0.01 ${\rm ft}^3/{\rm s}$ on several days during the 1987 water year. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 93 $\rm ft^3/s$ Feb. 1, gage height, 6.63 ft; minimum daily discharge, 0.07 $\rm ft^3/s$ June 4-5. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). | 5.07 | 0.01 | 5.40 | 4.6 | |------|------|------|-----| | 5.10 | 0.15 | 5.50 | 7.9 | | 5.15 | 0.57 | 6.00 | 40 | | 5.20 | 1.1 | 6.50 | 78 | | 5.30 | 2.5 | 7.00 | 124 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|--|---|--|--|--|--|---|--|--|--|--|---| | 1
2
3
4
5 | 7.2
6.6
6.5
6.4
5.9 | 22
22
21
21
21 | 17
17
17
17
16 | 34
32
31
29
28 | 91
90
87
82
77 | 13
13
13
13
13 | 19
20
21
21
22 | 25
26
27
27
27 | .19
.21
.16
.07 | .18
.15
.14
.13
.13 | .33
.36
.33
.32
.28 | .13
.20
.27
.23 | | 6
7
8
9
10 | 5.5
5.4
5.2
5.2
4.6 | 21
20
20
20
20 | 16
16
18
26
33 | 26
25
24
23
22 | 72
68
47
33
32 | 14
14
14
14
15 | 23
25
26
26
26 | 10
. 40
. 45
. 45
. 65 | .11
.14
.18
.13 | .12
.12
.11
.11 | .27
.27
.30
.19 | .13
.12
.12
.12 | | 11
12
13
14
15 | 4.6
4.6
4.2
4.1
4.1 | 18
17
17
17
17 | 39
39
39
39
44 | 22
21
19
9.8
3.0 | 32
31
31
30
29 | 15
14
13
13
14 | 26
25
24
25
25 | .93
1.1
1.0
.95
.85 | .11
.13
.12
.13
.18 | . 25
. 19
. 15
. 13
. 20 | .21
.31
.31
.31
.27 | .10
.09
.08
.10 | | 16
17
18
19
20 | 4.1
3.4
3.1
13
27 | 17
16
17
16
17 | 40
39
38
37
39 | 2.9
2.9
2.9
3.4
40 | 29
28
28
17
12 | 13
14
14
13
13 | 26
25
25
24
25 | .77
.73
.70
.66
.70 | .19
.18
.18
.17 | 3.4
.20
.16
.14 | .27
.27
.24
.10 | .10
.14
.17
.29 | | 21
22
23
24
25 | 26
26
25
25
24 | 16
16
15
15
16 | 39
39
38
38
38 | 65
66
64
64 | 12
13
12
12
12 | 14
14
13
14
13 | 24
24
25
24
23 | .72
.76
.79
.50
.36 | .16
.16
.15
.15 | .25
.15
.11
.10 | .10
.12
.20
.19
.15 | .23
.26
.19
.17 | | 26
27
28
29
30
31 | 24
24
23
23
22
22 | 16
16
17
17
17 | 38
38
38
38
38
36 | 58
55
53
52
55
78 | 13
12
13
12 | 13
13
15
16
17
18 | 24
23
24
24
25 | .19
.15
.20
.22
.23 | .14
.13
.13
1.0
.25 | .12
.15
.20
.24
.28 | .12
.19
.16
.12
.12 | .15
.15
.11
.08
.10 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 394.7
12.7
27
3.1
783
.30 | 538
17.9
22
15
1070
.43
.48 | 1004
32.4
44
16
1990
.77
.89 | 1071.9
34.6
78
2.9
2130
.82 | 1057
36.4
91
12
2100
.87
.93 | 432
13.9
18
13
857
.33
.38 | 719
24.0
26
19
1430
.57
.64 | 156.67
5.05
27
.15
311
.12
.14 | 5.33
.18
1.0
.07
11
.00 | 8.29
.27
3.4
.10
16
.01 | 6.81
.22
.36
.10
14
.01 | 4.63
.15
.29
.08
9.2
.00 | CAL YR 1987 TOTAL 6087.39 MEAN 16.7 MAX 109 MIN .01 AC-FT 12070 CFSM .40 IN. 5.38 WTR YR 1988 TOTAL 5398.33 MEAN 14.7 MAX 91 MIN .07 AC-FT 10710 CFSM .35 IN. 4.77 ### 05431022 DELAVAN LAKE OUTLET AT BORG ROAD NEAR DELAVAN, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1983 to current year. PERIOD OF DAILY RECORD . -- TOTAL PHOSPHORUS DISCHARGE: October 1983 to current year. INSTRUMENTATION.--Automatic pumping sampler from October to December 1983. Observer samples from January 1984 to present. REMARKS. -- Records good. COOPERATION. -- Observer furnished by Delavan Lake Sanitary District. EXTREMES FOR PERIOD OF RECORD.-TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 4.60 mg/L Apr. 22, 1984; minimum observed, 0.02 mg/L Mar. 31, 1988. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 432 lb May 28, 1984; minimum daily, 0.00 lb Aug. 9, 13, 1987. EXTREMES FOR CURRENT YEAR.-TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.48 mg/L Sept. 24; minimum observed, 0.02 mg/L Mar. 31. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 125 lb Feb. 1; minimum daily, 0.03 lb Sept. 29. ### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | | DIS- | DIS- | | |----------------|--------------|------------|--------------|------------------| | | | CHARGE, | CHARGE, | | | | | IN | INST. | PHOS- | | | | CUBIC | CUBIC | PHOROUS | | D.4.00D | marken | FEET | FEET | TOTAL | | DATE | TIME | PER | PER | (MG/L | | | | SECOND | SECOND | AS P)
(00665) | | | | (00060) | (00061) | (00003) | | OCT 1987 | | | | | | 01 | 1317 | ' | 7.2 | 0.030 | | NOV | | | | | | 18 | 1202 | | 16 | 0.050 | | 30 | 1055 | | 17 | 0.060 | | DEC | 0005 | | 10 | 0 000 | | 09 | 0805 | | 19 | 0.090
0.090 | | 30 | 1325 | | 38 | 0.090 | | FEB 1988
01 | 0950 | | 90 | 0.280 | | 01 | 1400 | | 93 | 0.250 | | 02 | 0819 | | 90 | 0.240 | | 18 | 1356 | | 27 | 0.110 | | 22 | 0905 | | 13 | 0.080 | | MAR | 0903 | | 13 | 0.000 | | 22 | 1310 | | 15 | 0.040 | | 28 | 1330 | | 15 | 0.080 | | 28 | 1430 | | 15 | 0.070 | | 29 | 0845 | | 15 | 0.040 | | 29 | 1450 | | 15 | 0.070 | | 30 | 0845 | | 17 | 0.030 | | 31 | 1105 | | 17 | 0.020 | | APR | | | | | | 01 | 1045 | | 19 | 0.030 | | 01 | 1055 | | 19 | 0.050 | | 06 | 1130 | | 23 | 0.090 | | 06 | 1730 | | 25 | 0.090 | | 07 | 1820 | | 26 | 0.080 | | 08 | 1125 | | 25 | 0.060 | | 08 | 1500 | | 25 | 0.060 | | 09 | 0800
0750 | | 25
26 | 0.050
0.060 | | 10
20 | 1130 | | 25
25 | 0.000 | | MAY | 1130 | | 23 | 0.070 | | 05 | 1015 | | 27 | 0.160 | | JUN | 1013 | | ٥. | 0.220 | | 16 | 1540 | 0.19 | | 0.120 | | \mathtt{JUL} | | | | | | 12 | 0935 | 0.19 | | 0.240 | | 16 | 2040 | - <i>-</i> | 0.31 | 0.100 | | 18 | 0810 | 0.16 | | 0.180 | | 25 | 1000 | | 0.23 | 0.170 | | AUG | | | | | | 15 | 1030 | | 0.27 | 0.090 | | 18 | 1655 | | 0.41 | 0.150 | | 30 | 0917 | | 0.12 | 0.130 | | SEP | 0055 | _ | Λ 21 | 0 1/0 | | 19
23 | 0855
1125 | | 0.31
0.19 | 0.140
0.120 | | 23 | 1535 | | 0.19 | 0.120 | | 24 | 0805 | | 0.19 | 0.480 | | 24 | 1530 | | 0.15 | 0.080 | | | 1000 | | 0.13 | 0.000 | ROCK RIVER BASIN ### 05431022 DELAVAN LAKE OUTLET AT BORG ROAD NEAR DELAVAN, WI--CONTINUED PHOSPHORUS, TOTAL, POUNDS PER DAY, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY
JUN JUL AUG SEP 7.20 7.07 5.58 5.43 5.43 4.59 .09 2 1.16 9.36 125 4.10 17.7 .13 . 13 . 24 8.70 8.57 7.97 115 103 4.47 4.34 4.28 6.15 7.04 19.2 21.0 . 26 1.04 .14 .10 .14 1.00 6.83 .11 .10 .23 5.36 8.17 .16 5 .87 6.51 5.16 7.57 77.9 4.14 9.37 22.7 .05 .09 .18 .11 5.15 5.15 6 .80 6.41 7.19 68.0 4.34 11.0 8.12 .07 .08 . 17 .09 .76 6.16 6.91 59.2 10.9 .27 .09 4.26 .08 .16 .09 8 .72 6.07 5.68 6.54 35.0 4.22 8.61 .30 .12 .07 .18 .09 .09 .70 11.8 5.85 6.28 21.4 4.12 7.46 .29 .09 .07 .11 5.98 10 .62 5.77 16.0 20.7 4.18 8.40 .53 .06 .07 .11 .08 .60 5.26 18.9 5.97 20.3 4.19 .07 .07 19.5 12 . 58 4.96 18.8 5.76 3.86 8.21 1.69 .09 .23 .16 .07 13 .52 4.73 19.0 19.1 5.19 2.45 19.1 18.7 3.59 3.50 8.19 8.76 1.43 .08 .16 .06 .16 14 4.68 .09 . 12 15 .49 4.71 21.2 .49 17.9 3.53 8.90 1.01 .12 .15 .13 . 07 . 47 .15 .07 16 4.59 19.7 . 47 17.4 3.35 9.10 .84 .12 2.08 . 47 . 47 . 55 .10 .13 .22 17 4.50 18.8 16.8 3.38 3.32 8.94 8.99 .73 .12 .14 .18 . 34 4.49 18.4 .64 . 12 19 18 16.2 19 4.51 4.50 8.55 3.11 9.10 25.2 20 10.0 4.62 19.1 5.21 3.04 9.33 .60 .11 .12 .08 .21 21 9.66 4.49 19.1 52.0 9.46 .66 .10 .24 .08 .16 5.00 3.00 22 9.35 4.56 19.1 51.9 5.67 2.97 10.1 .09 .18 8.93 8.82 4.40 49.2 2.3 18.6 5.25 2.84 11.0 .83 .09 .10 . 15 .17 24 18.5 18.5 5.10 2.99 .50 .09 .14 .20 11.1 .10 25 4.77 .06 44.5 4.88 2.82 11.5 .32 .09 .11 .11 4.98 26 8.40 18.5 18.2 .15 .08 .09 - 06 41.5 4.90 2.70 12.8 .11 8.28 4.96 5.42 5.50 27 4.68 4.72 .06 38.5 2.91 12.9 .11 .13 .14 .08 18.5 13.9 .09 28 36.1 .04 29 7.67 18.5 4.36 .09 .03 2.84 2.16 111.66 --- 919.35 16.2 293.00 .16 .14 125.89 .27 --- 4.31 .22 .24 6.10 .08 .07 4.42 .04 --- 3.20 WTR YR 1988 TOTAL 2848.83 5.57 160.76 18.4 17.5 465.14 38.0 79.9 635.89 7.40 7.29 TOTAL 119.11 30 31 ### 05431486 TURTLE CREEK AT CARVERS ROCK ROAD NEAR CLINTON, WI LOCATION.--Lat, 42°35'50", long 88°49'45", in SW 1/4 sec.27, T.2 N., R.14 E., Rock County, Hydrologic Unit 07090001, on left bank 25 ft downstream from bridge on Carvers Rock Road, 3.3 mi northeast of Clinton, 13 mi northeast of Beloit, and 17.8 mi upstream from mouth. DRAINAGE AREA. -- 199 mi², of which 2.33 mi² is noncontributing. PERIOD OF RECORD. -- September 1939 to current year. REVISED RECORDS.--WSP 955: 1940. WSP 1308: 1950(M). WDR WI-71-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 823 ft, from topographic map. September 1939 to December 1979, water-stage recorder at site 1.8 mi downstream at a different datum. REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good except for iceaffected periods, which are fair. Some seasonal regulation caused by dams used to maintain levels of Turtle and Delavan Lakes. AVERAGE DISCHARGE. -- 49 years, 125 ft 3/s, 8.62 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,500 $\rm ft^3/s$, Apr. 21, 1973, gage height, 12.85 ft, from rating curve extended above 6,500 $\rm ft^3/s$ on basis of slope-area measurement of peak flow; minimum discharge, 8.0 $\rm ft^3/s$, Dec. 29, 1956, gage height, 2.04 ft, result of freezeup. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,200 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|-------|----------|-----------------------------------|---------------------| | Jan. 31 | | (a) * 1,500 | (a) *9.02 | No ot | her peak | greater than base | discharge. | (a) Backwater from ice. Minimum discharge, 21 ft³/s, Jan. 1, gage height, 3.12 ft, result of freezeup. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 5, 6, and Dec. 16 to Mar. 7.) | 3.3 | 37 | 5.0 | 374 | |-----|------|-----|-------| | 3.5 | 60 | 6.0 | 726 | | 4.0 | 140 | 7.0 | 1.180 | | 4.5 | 2.46 | | , | ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | 1113 | AN VALUED | | | | | | | |--|---------------------------------------|--|--|---|---|---|--|----------------------------------|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2 | 91
85 | 98
100 | 177
142 | 120
120 | 600
350 | 140
140
140 | 223
2 0 7
226 | 149
143
131 | 68
67
67 | 51
51
51 | 47
47
46 | 47
46 | | 1
2
3
4
5 | 85
84
83 | 102
99
96 | 127
107
96 | 120
120
120 | 250
180
170 | 120
110 | 206
189 | 128
128 | 66
65 | 51
51 | 48
52 | 47
52
56 | | 6 | 82 | 93 | 96 | 120 | 160 | 110 | 352 | 124 | 64 | 50 | 50 | 51 | | 7 | 84 | 92 | 111 | 120 | 160 | 120 | 376 | 110 | 63 | 49 | 47 | 49 | | 8 | 84 | 95 | 139 | 120 | 150 | 155 | 282 | 100 | 62 | 47 | 53 | 50 | | 9 | 82 | 95 | 210 | 110 | 150 | 175 | 226 | 106 | 61 | 47 | 104 | 46 | | 10 | 82 | 91 | 191 | 110 | 150 | 156 | 202 | 114 | 60 | 49 | 74 | 47 | | 11 | 81 | 90 | 167 | 110 | 150 | 130 | 191 | 115 | 61 | 51 | 68 | 46 | | 12 | 82 | 93 | 160 | 110 | 150 | 133 | 166 | 113 | 59 | 49 | 64 | 46 | | 13 | 83 | 91 | 154 | 110 | 140 | 132 | 149 | 97 | 58 | 49 | 54 | 46 | | 14 | 81 | 91 | 149 | 110 | 140 | 125 | 145 | 92 | 58 | 51 | 47 | 45 | | 15 | 82 | 90 | 130 | 100 | 140 | 1 30 | 140 | 92 | 57 | 53 | 49 | 45 | | 16 | 83 | 94 | 120 | 100 | 140 | 128 | 138 | 88 | 57 | 65 | 49 | 45 | | 17 | 86 | 136 | 130 | 110 | 140 | 127 | 138 | 84 | 56 | 213 | 46 | 47 | | 18 | 88 | 133 | 130 | 120 | 140 | 127 | 133 | 81 | 54 | 137 | 61 | 49 | | 19 | 87 | 116 | 140 | 130 | 140 | 119 | 138 | 81 | 53 | 64 | 76 | 55 | | 20 | 86 | 105 | 180 | 400 | 140 | 118 | 138 | 80 | 52 | 50 | 60 | 62 | | 21 | 94 | 111 | 200 | 350 | 130 | 115 | 139 | 79 | 52 | 48 | 57 | 61 | | 22 | 99 | 105 | 170 | 220 | 130 | 116 | 134 | 78 | 55 | 49 | 55 | 79 | | 23 | 96 | 102 | 140 | 160 | 120 | 118 | 237 | 76 | 53 | 53 | 63 | 81 | | 24 | 100 | 111 | 140 | 140 | 120 | 126 | 185 | 76 | 52 | 54 | 58 | 63 | | 25 | 103 | 142 | 160 | 130 | 120 | 159 | 168 | 74 | 52 | 66 | 51 | 59 | | 26
27
28
29
30
31 | 100
108
104
102
100
98 | 141
127
133
211
173 | 150
140
130
130
130
120 | 130
120
120
120
300
1000 | 120
130
130
130 | 140
130
162
284
263
269 | 178
194
182
164
156 | 73
73
72
72
70
68 | 50
53
60
68
57 | 60
55
54
53
50
47 | 47
48
50
48
48 | 58
48
43
45
44 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 2785
89.8
108
81
.45 | 3356
112
211
90
.56
.63 | 4466
144
210
96
.72
.83 | 5370
173
1000
100
.87
1.00 | 4870
168
600
120
.84
.91 | 4517
146
284
110
.73
.84 | 5702
190
376
133
.96
1.07 | 2967
95.7
149
68
.48 | 1760
58.7
68
50
.29
.33 | 1868
60.3
213
47
.30
.35 | 1716
55.4
104
46
.28
.32 | 1558
51.9
81
43
.26
.29 | CAL YR 1987 TOTAL 45796 MEAN 125 MAX 734 MIN 59 CFSM .63 IN. 8.56 WTR YR 1988 TOTAL 40935 MEAN 112 MAX 1000 MIN 43 CFSM .56 IN. 7.65 ### 05432055 LIVINGSTON BRANCH PECATONICA RIVER NEAR LIVINGSTON, WI LOCATION.--Lat $42^{\circ}54'01''$, long $90^{\circ}22'23''$, in SW 1/4 SE 1/4 sec.16, T.5 N., R.1 E., Iowa County, Hydrologic Unit 07090003, on the left bank 75 ft upstream from Enloe Road and 2.7 mi east of Livingston. DRAINAGE AREA. -- 16.4 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 19, 1987 to current year. GAGE. -- Water-stage recorder. Elevation of gage is 1,010 ft, from topographic map. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. EXTREMES FOR CURRENT PERIOD.--June 19 to September 1987: Maximum discharge, 108 $\rm ft^3/s$, July 31, gage height, 4.65 $\rm ft$; minimum discharge, 6.2 $\rm ft^3/s$, July 20-22, gage height, 2.96 $\rm ft$. Water year 1988: Maximum discharge, 203 $\rm ft^3/s$, Feb. 29, gage height, 5.59 ft; minimum discharge, 3.3 $\rm ft^3/s$, Aug. 18, gage height, 2.83 ft. ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1986 TO SEPTEMBER 1987 MEAN VALUES | DAY | OCT | Nov | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---------|-----|-----|-----|-----|-----|----------|-----|-----|-----|-------|---------------|---------------| | 1 | ~ | | | | | | | | | 7.5 | 11 | 8.7 | | 2 | | | | | | _ | | | | 8.5 | 9.8 | 8.4 | | 3 | | | | | | | | | | 9.1 | 9.0 | 7.8 | | 4 | ~ | | | | | | | | | 7.4 | 8.9 | 7.9 | | 5 | | | | | | | | | | 7.8 | 8.5 | 7.6 | | _ | | | | | | | | | | • • • | | | | 6 | | | | | | | | | | 8.2 | 8.3 | 7.6 | | 7 | | | | | | | | | | 7.9 | 7.8 | 8.8 | | 8 | | | | | | | | | | 7.6 | 35 | 8.4 | | 9 | | | | | | | | | | 7.7 | 15 | 7.6 | | 10 | | | | | | | | | | 7.5 | 11 | 7.7 | | | | | | | | | | | | | | | | 11 | | | | | | | | | | 7.3 | 10 | 7.9 | | 12 | | | | | | | | | | 7.1 | 9.4 | 7.6 | | 13 | | | | | | | | | | 6.9 | 9.5 | 8.9 | | 14 | | | | | | | | | | 7.0 | 9.8 | 8.9 | | 15 | | | | | | | | | | 9.9 | 9.3 | 10 | | | | | | | | | | | | | | | | 16 | | | | | | | | | | 7.2 | 12 | 13 | | 17 | | | | | | | | | | 6.9 | 10 | 19 | | 18 | | | | | | | | | | 6.9 | 13 | 13 | | 19 | | | | | | | | | 9.3 | 7.2 | 10 | 12 | | 20 | | | | | | | | | 9.0 | 6.6 | 9.1 | 11 | | | | | | | | | | | | | | | | 21 | | | | | | | | | 9.4 | 6.4 | 9.6 | 11 | | 22 | | | | | | | | | 8.7 | 6.4 | 8.7 |
11 | | 23 | | | | | | | | | 8.4 | 7.0 | 7.9 | 10 | | 24 | | | | | | | | | 8.1 | 7.3 | 7.9 | 9.9 | | 25 | | | | | | | | | 8.3 | 7.7 | 8.1 | 9.4 | | | | | | | | | | | | | | | | 26 | | | | | | | | | 7.9 | 7.8 | 11 | 9.5 | | 27 | | | | | | | | | 7.8 | 12 | 10 | 9.4 | | 28 | | | | | | | | | 7.9 | 11 | 16 | 9.1 | | 29 | | | | | | | | | 7.9 | 9.4 | 11 | 9.1 | | 30 | | | | | | | | | 7.6 | 23 | 10 | 8.5 | | 31 | | | | | | | | | | 36 | 9.2 | | | mom A T | | | | | | | | | | 206.2 | 225 0 | 200 7 | | TOTAL | | | | | | | | | | 286.2 | 335.8
10.8 | 288.7
9.62 | | MEAN | | | | | | | | | | 9.23 | | | | MAX | | | | | | | | | | 36 | 35 | 19 | | MIN | | | | | | | | | | 6.4 | 7.8 | 7.6 | ### 05432055 LIVINGSTON BRANCH PECATONICA RIVER NEAR LIVINGSTON, WI--CONTINUED RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 15-19, 1987, Dec. 28, 1987 to Feb. 28, 1988.) 3.2 4.6 7.4 17 2.8 2.9 3.0 3.3 3.6 4.0 4.5 | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YEA
EAN VALUES | | R 1987 TO | SEPTEMBE | R 1988 | | | |----------------------------------|---------------------------------|---------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|--|---------------------------------|--|---------------------------------|---------------------------------| | DAY | OCT | VON | DEC | JAN | FEB | MAR | APR | MAY | JUN | \mathtt{JUL} | AUG | SEP | | 1
2
3
4
5 | 8.8
8.3
7.9
8.2
8.4 | 8.8
8.5
8.2
7.3
7.1 | 12
11
11
12
11 | 11
10
9.6
9.4
9.2 | 35
27
23
21
19 | 63
47
29
24
27 | 18
19
20
18
18 | 11
11
11
10
11 | 9.2
9.4
9.2
9.3
9.5 | 7.5
7.2
6.9
6.5
5.4 | 3.9
3.8
3.7
5.6
9.1 | 4.3
4.3
4.5
4.5 | | 6
7
8
9
10 | 7.9
7.9
7.7
7.8
7.4 | 7.7
8.6
7.2
6.8
7.0 | 10
10
12
19
14 | 9.0
9.0
9.0
8.8
8.8 | 18
17
16
16
15 | 55
42
45
29
25 | 17
16
15
15 | 10
10
14
13 | 9.5
9.8
9.4
8.8
8.9 | 5.6
5.7
5.7
5.4
6.6 | 4.4
4.3
5.2
4.7
4.5 | 4.3
4.3
4.2
4.1 | | 11
12
13
14
15 | 7.3
7.6
7.9
8.2
8.2 | 7.1
7.2
6.8
6.8 | 14
13
12
12
12 | 8.8
8.8
8.8
8.8 | 15
15
15
15
14 | 24
24
20
37
19 | 14
14
14
13 | 10
9.7
9.2
9.2
9.3 | 9.3
9.4
9.4
9.2
9.1 | 5.6
5.7
5.1
6.3
4.9 | 4.4
4.3
4.4
4.6
3.9 | 4.1
4.2
4.0
4.0 | | 16
17
18
19
20 | 8.9
9.6
8.3
8.2
7.9 | 9.4
23
12
12
11 | 11
10
11
13
18 | 8.8
9.0
9.2
9.8
15 | 14
14
14
13
14 | 17
17
17
17
17 | 13
13
13
12
13 | 9.2
9.1
8.7
8.7
8.8 | 9.0
9.2
9.3
9.6
9.7 | 8.7
4.8
5.2
5.2
4.7 | 3.9
4.2
3.7
4.3
4.3 | 4.3
4.6
4.4
10
8.4 | | 21
22
23
24
25 | 7.9
8.2
7.9
7.6
7.8 | 10
10
11
10
9.7 | 16
13
13
14
14 | 13
12
11
10
9.8 | 14
14
14
14
14 | 16
15
15
18
25 | 12
12
13
12
12 | 8.6
8.3
8.1
7.8
7.7 | 9.1
8.8
8.1
8.1 | 5.0
4.5
4.4
4.3 | 4.3
5.0
9.1
4.7
4.4 | 5.2
21
9.2
5.4
4.9 | | 26
27
28
29
30
31 | 7.8
7.4
7.3
7.4
7.7 | 9.7
9.5
17
15
13 | 14
14
13
13
13 | 9.6
9.2
9.0
9.4
20 | 14
16
32
70 | 18
16
23
30
21 | 13
14
13
12
12 | 8.0
8.3
8.8
8.9
8.9
9.0 | 7.5
7.7
7.9
8.3
7.7 | 4.2
4.2
4.1
4.0
4.0
3.8 | 4.3
4.4
4.2
4.3
4.4 | 4.7
4.5
4.4
4.6
4.7 | | TOTAL
MEAN
MAX
MIN | 250.4
8.08
11
7.3 | 294.3
9.81
23
6.8 | 397
12.8
19
10 | 352.6
11.4
50
8.8 | 552
19.0
70
13 | 811
26.2
63
15 | 427
14.2
20
12 | 296.3
9.56
14
7.7 | 267.5
8.92
9.8
7.5 | 165.5
5.34
8.7
3.8 | 144.7
4.67
9.1
3.7 | 163.7
5.46
21
4.0 | WTR YR 1988 TOTAL 4122.0 MEAN 11.3 MAX 70 MIN 3.7 ### 05432055 LIVINGSTON BRANCH PECATONICA RIVER NEAR LIVINGSTON, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1987 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1987 to current year. DISSOLVED OXYGEN: July 1987 to current year. INSTRUMENTATION.--Continuous water temperature and dissolved oxygen recorder since July 17, 1987. REMARKS. -- Water-quality analysis by the State Lab of Hygiene. EXTREMES FOR PERIOD OF RECORD .-- WATER TEMPERATURE: Maximum observed, 32.5°C July 20, 1987; minimum observed, 0.0°C Nov. 20-21, Dec. 4-5, 1987. DISSOLVED OXYGEN: Maximum observed, 16.3 mg/L Apr. 21, 23, 1988; minimum observed, 0.5 mg/L July 31, 1987. EXTREMES FOR CURRENT YEAR .-- WATER TEMPERATURE: Maximum observed, 32.0°C Aug. 1-2; minimum observed, 0.0°C Nov. 20-21, Dec. 4-5. DISSOLVED OXYGEN: Maximum observed, 16.3 mg/L Apr. 21, 23; minimum observed, 1.0 mg/L Sept. 23. ### WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PH
(STAND-
ARD
UNITS)
(00400) | PH
LAB
(STAND-
ARD
UNITS)
(00403) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | TUR-
BID-
ITY
(FTU)
(00076) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(MG/L)
(00530) | NITRO-
GEN,
NO2+NO3
DIS-
SOLVED
(MG/L
AS N)
(00631) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |-------------|------|---|---|--|---|---|--|--|--|--|--| | NOV 1987 | | | | | | | | | | | | | 17 | 0130 | 21 | | 7.90 | | 72 | | 756 | ~- | 0.770 | | | 17 | 0330 | 31 | | 7.80 | | 86 | | 1280 | | 1.90 | | | 18 | 0843 | 12 | | 8.00 | | 49 | | 248 | | 0.430 | | | FEB 1988 | | | | | | | | | | | | | 22 | 1230 | 17 | | 8.10 | | 27 | | 184 | 11.8 | 0.200 | | | 27 | 1530 | 14 | 8.20 | 8.10 | | 39 | | 244 | | | | | 27 <i>.</i> | 1531 | 14 | 8.20 | | | | | | | 1.50 | | | 27 | 1532 | 14 | 8.20 | 8.10 | | 30 | | 107 | | | | | 27 <i>.</i> | 1533 | 14 | 8.20 | 8.10 | | 37 | | 232 | | | | | 27 | 1534 | 14 | 8.20 | | | | | | | 1.50 | | | 27 | 1535 | 14 | 8.20 | | | | | | | 1.50 | | | 28 | 1615 | 42 | | 8.00 | | 98 | | 1210 | | 2.00 | | | 28 | 1715 | 73 | | 7.70 | | 270 | | 4260 | | 2.50 | | | 28 | 1745 | 86 | | 7.60 | | 340 | | 4660 | | 2.80 | | | 29 | 0430 | 35 | | 7.60 | | 66 | | 564 | | 3.40 | | | 29 | 1515 | 53 | | 7.90 | | 82 | | 952 | | 2.00 | | | 29 | 1616 | 119 | | 7.60 | | 260 | | 5060 | | 2.70 | | | 29 | 1800 | 201 | | 7.50 | | 730 | | 9120 | | 4.10 | | | 29 | 2145 | 109 | | 7.40 | | 160 | | 2450 | | 4.20 | | | MAR | | | | | | 100 | | 000 | | 2 20 | | | 01 | 0300 | 50 | | 7.60 | | 100 | | 800 | | 3.20 | | | 01 | 1415 | 34 | 8.00 | 8.00 | | 43 | | 450 | | | | | 01 | 1416 | 34 | 8.00 | 8.00 | | 44 | | 440 | | | | | 01 | 1417 | 34 | 8.00 | | | | | | | 1.90 | | | 01 | 1418 | 34 | 8.00 | | | | | 170 | | 1.90 | | | 01 | 1420 | 34 | 8.00 | 7.90 | | 28 | | 170 | | 1 00 | | | 01 | 1421 | 34 | 8.00 | | | | | | | 1.90 | | | APR | 1015 | | 0.50 | | | | | | | 0 100 | 0 000 | | 06 | 1015 | 17 | 8.50 | 8.20 | 8.0 | 17 | 11.5 | 60 | 11.1 | 0.120 | 0.220 | | MAY | 0015 | | | | 15.0 | | 10.6 | 0.0 | 0 070 | 0 000 | 0 (50 | | 27 | 0845 | 8.2 | 8.30 | 8.30 | 15.0 | 9.5 | 10.6 | 28 | 0.070 | 0.020 | 0.650 | | JUL | 0700 | | | | | | | 1010 | | 40 100 | | | 16 | 0700 | 14 | | 8.00 | | 66 | | 1010 | | <0.100 | | | AUG | 0015 | 1.5 | | 7 00 | | | | 1160 | | 0.220 | | | 04 | 2215 | 15 | | 7.80 | | 68
87 | | 1160
620 | | 0.210 | | | 23 | 0315 | 14 | | 8.10 | | 8/ | | 620 | | 0.210 | | | SEP
19 | 1330 | 13 | | 8.00 | | 25 | | 294 | | 0.260 | | | 22 | 0745 | 16 | | 8.10 | | 120 | | 385 | | 0.260 | | | 22 | 1015 | 25 | | 7.70 | | 130 | | 940 | | 0.720 | | | 22 | 1215 | 25
39 | | 7.70 | | 110 | | 1940 | | 1.20 | | | 22 | 1735 | 31 | | 7.50 | | 190 | | 1130 | | 1.80 | | | 22 | 1735 | 30 | | 7.50 | | 190 | | 690 | | 1.90 | | | 23 | 0030 | 16 | | 7.50 | | 180 | | 680 | | 1.80 | | | 43 | 0030 | 10 | | 1.30 | - - | 100 | | 000 | | 1.00 | | 295 05432055 LIVINGSTON BRANCH PECATONICA RIVER NEAR LIVINGSTON, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |----------------------------------|---|--|--|---|--|--|--------------------------------------|---------------------------------|-------------------------------------|--|--|--| | | | OCTOBER | | | NOVEMBER | | | DECEMBER | , | | JANUARY | | | 1
2
3
4
5 |
17.0
13.5
13.5
15.5
15.0 | 10.0
8.0
5.5
7.5
11.0 | 13.0
10.0
9.0
11.0
12.5 | 11.0
14.5
16.5
15.0
8.0 | 8.5
11.0
11.0
8.0
4.5 | 10.0
12.5
13.5
12.0
6.5 | 4.0
3.0
4.0
2.0
3.0 | 2.5
1.5
.5
.0 | 3.5
2.5
2.5
.5
1.0 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | 6
7
8
9
10 | 11.5
11.5
11.5
11.0
9.0 | 8.5
7.0
5.0
6.5
6.5 | 10.0
8.5
8.0
8.5
8.0 | 7.0
6.5
8.5
7.0
5.5 | 2.5
3.5
6.0
2.5 | 5.0
5.5
7.5
4.5
2.5 | 3.0
4.0
6.5
7.0
5.5 | 1.0
2.5
4.0
5.0
4.0 | 2.0
3.5
5.0
6.0
4.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | 11
12
13
14
15 | 10.5
12.0
13.0
11.0
14.5 | 2.5
4.0
4.5
8.5
9.0 | 6.5
7.5
9.0
10.0
11.0 | 6.0
8.0
8.5
9.5
10.0 | .5
1.5
4.5
3.5
5.5 | 3.0
4.5
6.0
6.0
7.5 | 7.5
4.5
3.5
2.5
1.0 | 4.5
1.5
1.5
1.0 | 5.5
2.5
2.0
2.0 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | 16
17
18
19
20 | 11.5
10.5
12.5
12.0
8.5 | 10.5
7.0
5.5
6.5
4.0 | 9.5 | 10.0 | 9.0
6.0
4.0
3.0 | 9.5
8.5
5.5
4.5
1.5 | .5
.5
.5
1.0
2.0 | . 5
. 5
. 5
. 5 | .5
.5
.5
.5 | .5
1.0
1.0
1.5 | .5
.5
1.0
.5 | .5
1.0
1.0
1.0 | | 21
22
23
24
25 | 9.0
10.5
7.5
8.0
9.0 | 3.0
4.0
5.5
5.0
2.0 | 5.5
7.0
6.0
6.0
5.5 | 3.0
6.0
6.5
5.0
4.5 | .0
.5
4.5
4.0
2.5 | 1.0
3.0
5.5
4.5
4.0 | 1.5
4.5
4.5
5.0
4.0 | .5
1.5
2.0
3.5
1.5 | 1.0
3.0
3.0
4.0
3.0 | 2.0
1.0
.5
.5 | 1.0
.5
.5
.5 | 1.5
1.0
.5
.5 | | 26
27
28
29
30
31 | 6.5
9.5
8.0
10.0
12.0
10.0 | 3.5
3.5
2.5
4.0
4.5
5.5 | 5.5
6.0
5.5
6.5
7.5
8.0 | 5.0
4.5
6.0
6.5
6.0 | 3.5
4.0
4.0
5.5
3.5 | 4.0
4.0
5.0
6.0
4.5 | 2.0
1.0
1.0
.5
.5 | .5
.5
.5
.5 | 1.0
.5
.5
.5
.5 | .5
.5
.5
1.0
1.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | | MONTH | 17.0 | 2.0 | 8.3 | 16.5 | .0 | 5.9 | 7.5 | . 0 | 2.1 | 2.0 | . 5 | .6 | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | .5
.5
1.0
.5 | .5
.5
.5
.5 | .5
.5
1.0
.5 | 6.0
6.5
5.5
7.5
8.0 | 1.0
1.0
.5
.5 | 2.5
3.0
2.5
3.5
3.5 | 14.0
9.5
10.5
18.0
16.5 | 5.5
7.0
7.5
7.5
8.5 | 9.5
8.0
8.5
12.0
12.5 | 20.5
20.5
20.5
18.5
21.5 | 8.0
8.5
8.5
8.0
9.0 | 14.0
14.0
14.0
13.0
15.0 | | 6
7
8
9
10 | .5
.5
.5
.5 | .5
.5
.5
.5 | .5
.5
.5
.5 | 8.5
8.0
9.5
8.0
11.0 | 1.0
1.5
4.5
4.0
2.5 | 3.5
4.5
6.5
5.5
6.5 | 14.0
16.5
17.0
17.0
10.5 | 7.0
5.0
7.0
7.5
6.0 | 10.0
10.5
11.5
12.0
7.5 | 21.5
19.0
18.5
12.5
21.5 | 9.0
10.0
11.5
10.0
9.0 | 15.0
14.5
14.5
11.0
15.0 | | 11
12
13
14
15 | .5
.5
.5
1.0 | . 5
. 5
. 5
. 5 | .5
.5
.5
.5 | 10.0
7.0
3.5
3.5
5.0 | 3.5
3.5
.5
.5 | 7.0
6.0
2.0
1.5
2.5 | 15.5
16.5
14.5
13.5
13.5 | 5.0
5.0
6.5
4.5
3.5 | 9.5
10.5
10.5
8.5
8.0 | 22.5
24.0
22.5
21.5
23.5 | 10.0
12.0
12.0
10.5
14.0 | 16.0
18.0
17.0
16.0
18.0 | | 16
17
18
19
20 | 1.0
2.5
3.5
3.5
2.5 | . 5
. 5
. 5
. 5 | 1.0
1.0
1.5
2.0
1.0 | 8.5
7.5
9.5
8.5
7.0 | 1.5
3.0
2.0
1.5 | 4.5
5.0
5.0
5.0
4.5 | 15.5
15.0
13.5
14.0
13.0 | 4.0
6.0
3.5
4.0
5.0 | 9.5
10.0
8.0
9.0
8.0 | 15.5
22.5
24.0
22.5
25.5 | 12.0
9.5
10.5
11.5
12.0 | 13.5
15.5
17.0
17.5
18.5 | | 21
22
23
24
25 | .5
2.5
1.5
1.0 | .5
.5
.5
.5 | .5
1.0
1.0
.5 | 9.5
12.5
14.0
10.5
14.0 | 1.5
2.0
6.5
6.0 | 5.0
7.0
10.0
8.0
9.5 | 8.0
7.5
7.0
15.0
19.0 | 3.5
5.0
4.5
3.5
6.5 | 6.0
6.0
5.5
9.0
12.5 | 25.5
23.5
23.0
23.5
23.0 | 13.5
15.0
15.0
12.5
10.0 | 19.5
19.5
18.5
17.5
16.5 | | 26
27
28
29
30
31 | 4.0
7.0
6.0
6.5 | .5
.5
.5
.5 | 1.5
2.5
2.0
2.0 | 7.5
12.0
8.0
7.5
13.0
13.5 | 2.5
1.0
5.5
5.0
2.5
4.0 | 5.0
6.0
7.0
6.5
7.5
8.5 | 12.5
7.5
17.0
19.5
20.0 | 6.0
4.0
4.0
6.0
7.5 | 8.5
6.0
10.0
12.5
13.5 | 24.0
23.5
26.0
26.0
26.0
26.5 | 11.5
14.5
15.5
16.5
17.0
17.0 | 17.5
19.0
20.5
21.0
21.5
21.5 | | MONTH | 7.0 | .5 | . 9 | 14.0 | .5 | 5.3 | 20.0 | 3.5 | 9.4 | 26.5 | 8.0 | 16.8 | # ROCK RIVER BASIN 05432055 LIVINGSTON BRANCH PECATONICA RIVER NEAR LIVINGSTON, WI--CONTINUED WATER TEMPERATURE, DEGREES CENTIGRADE, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | |---|--|---|---|--|---|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | 2 | | 1
2
3
4
5 | 27.5
25.5
25.0
24.5
26.0 | 18.0
18.0
15.5
14.5
15.5 | 22.5
21.5
20.0
19.5
20.5 | 25.0
27.0
27.5
29.0
30.0 | 17.5
19.0
20.0
20.5
22.0 | 21.0
22.5
23.5
24.5
26.0 | 32.0
32.0
31.5
31.0
27.5 | 21.5
22.0
22.0
22.0
21.0 | 26.5
26.5
26.5
25.0
23.5 | 24.5
18.5
18.5 | 16.5
14.5
11.0 | 20.0
17.0
14.5 | | 6
7
8
9
10 | 26.0
26.0
24.0
21.5
22.5 | 16.0
16.5
18.0
13.5
13.5 | 21.0
21.0
20.5
17.5
18.0 | 30.0
30.5
29.5
27.5
26.0 | 23.0
24.0
24.0
22.5
22.5 | 26.5
27.0
27.0
25.5
24.5 | 28.0
27.5
27.5
28.5
27.5 | 17.0
17.0
19.5
20.0
17.5 | 22.0
22.0
23.0
23.0
22.5 | 21.5
21.0
22.0
23.0
23.0 | 9.0
10.5
12.5
11.5
12.0 | 14.5
15.5
16.5
17.0
17.0 | | 11
12
13
14
15 | 24.0
24.5
25.5
25.5
26.5 | 14.0
16.0
17.5
19.0
20.0 | 19.0
20.5
21.5
22.5
23.0 | 25.5
27.5
28.5
29.5
29.5 | 21.0
19.5
21.0
23.0
23.0 | 23.5
23.5
24.5
26.0
26.0 |

 | | | 25.0
26.0
24.0
24.5
20.0 | 14.0
18.0
15.5
12.0
14.0 | 19.0
21.5
19.0
17.5
17.0 | | 16
17
18
19
20 | 25.0
22.0
25.5
23.5
28.5 | 18.5
18.0
19.0
20.0
20.5 | 22.0
20.0
22.0
21.5
24.0 | 29.5
31.5
29.0
30.0
23.5 | 22.5
20.5
21.0
20.0
19.5 | 25.5
25.5
24.0
24.5
21.0 | | | | 21.0
30.0
26.5
23.5
16.5 | 15.0
17.5
20.5
16.0
13.5 | 17.0
22.5
23.0
21.0
15.0 | | 21
22
23
24
25 | 28.0
29.0
26.5
25.5
28.5 | 22.5
22.5
21.0
19.5
22.0 | 25.5
25.5
23.5
22.5
25.0 | 24.5
25.5
27.5
26.0
28.5 | 16.5
15.5
15.5
18.0
18.0 | 20.0
20.5
21.5
21.5
23.0 | | | | 21.0
20.5
21.5
21.5
22.5 | 13.5
16.0
14.5
10.5
11.5 | 16.5
18.0
17.5
15.5
16.5 | | 26
27
28
29
30
31 | 26.0
26.0
25.0
23.0
25.0 | 19.5
17.5
19.0
18.0
16.5 | 23.0
22.0
22.0
20.5
20.5 | 28.5
29.5
30.0
30.0
31.0
30.5 | 17.0
18.0
19.0
20.0
21.0 | 22.5
23.5
24.5
24.5
25.5
24.5 | | | | 22.0
22.0
16.0
21.0 | 13.5
14.5
13.0
13.0 | 17.0
17.5
14.0
16.5 | | MONTH | 29.0 | 13.5 | 21.6 | 31.5 | 15.5 | 24.0 | O | XYGEN DIS | SOLVED (M | G/L), WATE | R YEAR O | CTOBER 198 | 37 TO SEPT | EMBER 19 | 88 | | | | DAY | MAX | O) | XYGEN DIS | SOLVED (MO | G/L), WATE
MIN | ER YEAR OO
MEAN | CTOBER 198 | 37 TO SEPT | EMBER 19 | 88
MAX | MIN | MEAN | | DAY | MAX | | | | • | MEAN | | | MEAN | | MIN
JANUARY | MEAN | | DAY 1 2 3 4 5 | MAX | MIN | | | MIN | MEAN | | MIN | MEAN | | | MEAN | | 1
2
3
4 | | MIN
OCTOBER

 | MEAN | 9.0
10.4
10.2
9.9 | MIN
NOVEMBER
6.9
7.4
7.2
7.2 | MEAN
8.1
8.5
8.4
8.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY

 |
 | | 1
2
3
4
5
6
7
8
9 | | MIN OCTOBER | MEAN | 9.0
10.4
10.2
9.9
11.6 | MIN NOVEMBER 6.9 7.4 7.2 7.4 8.9 9.2 | MEAN 8.1 8.5 8.4 10.2 10.4 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 13.9 | MIN OCTOBER | MEAN | 9.0
10.4
10.2
9.9
11.6
11.7
 | MIN NOVEMBER 6.9 7.4 7.2 7.4 8.9 9.2 10.2 | MEAN 8 . 1 8 . 5 8 . 4 10 . 2 10 . 4 11 . 1 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 13.9
14.5
11.4
11.3
12.6
13.0 | MIN OCTOBER 10.0 9.4 8.7 7.9 8.7 8.8 | MEAN 11.4 11.2 10.0 9.4 10.4 10.4 | 9.0
10.4
10.2
9.9
11.6
11.7

12.4
12.0
9.8
9.7
11.6
12.0 | MIN NOVEMBER 6.9 7.4 7.2 7.4 8.9 9.2 10.2 9.6 8.7 7.6 9.7 10.7 | MEAN 8.1 8.5 8.4 10.2 10.4 11.1 10.7 9.3 8.4 10.8 11.3 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
32
44 | 13.9
14.5
11.4
11.3
12.4
13.7
13.0
12.5
12.5 | MIN OCTOBER 10.0 9.4 8.7 7.9 8.8 9.5 10.1 9.5 9.6 9.7 | MEAN 11.4 11.2 10.0 9.4 10.4 10.4 11.0 11.7 10.9 10.6 10.8 | 9.0
10.4
10.2
9.9
11.6
11.7

12.4
12.0
9.8
9.7
11.6
12.0
12.9 | MIN NOVEMBER 6.9 7.4 7.2 7.4 8.9 9.2 10.2 9.6 8.7 7.6 9.7 10.7 11.3 | MEAN 8 .1 8 .5 8 .4 10 .2 10 .4 11 .1 10 .7 9 .3 8 .4 10 .8 11 .3 12 .2 | MAX | MIN DECEMBER | MEAN | MAX | JANUARY | | 297 05432055 LIVINGSTON BRANCH PECATONICA RIVER NEAR LIVINGSTON, WI--CONTINUED OXYGEN DISSOLVED (MG/L), WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAY | MAX | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MÈAN | MAX | MIN | MEAN | |--|--|--|--|--|---|--|--|--|--|--|---|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | 12.5 | 9.6 | 11.0 | | | | | 2
3 | | | | | | | 11.7
11.8 | 9.9
9.5 | 10.7
10.6 | | | | | 4
5 | | | | | | | $12.0 \\ 12.0$ | 8.4
8.2 | 10.3
9.8 | | | | | 6 | | | | | | | 12.2 | 8.8 | 10.4 | | | | | 7
8 | | | | | | | 12.8 | 8.5 | 10.8 | | | | | 9 | | | | | | | $12.7 \\ 12.9$ | 8.3
8.2 | 10.4
10.2 | | | | | 10 | | | | | | | 13.1 | 8.6 | 10.9 | | | | | 11 | | | | | | | 13.9 | 8.9 | 11.3 | | | | | 12
13 | | | | | | | 14.6
14.8 | 8.6
8.9 | $\frac{11.4}{11.2}$ | | | | | 14 | | | | | | | 15.2 | 9.6 | 12.1 | | | | | 15 | | | | | | | 15.3 | 9.6 | 12.3 | | | | | 16
17 | | | | | | | 15.4
14.7 | 8.8
9.1 | 12.0
11.5 | | | | | 18 | | | | | | | 15.3 | 9.7 | 12.2 | 12.2 | 7.4 | 9.9 | | 19
20 | | | | | | | 15.9 | 10.0 | 12.3 | 12.5
12.5 | 7.1
6.6 | 9.8
9.6 | | 21 | | | | | | | 16.3 | 10.3 | 13.0 | 12.8 | 6.1 | 9.3 | | 22
23 | | | | 12.2 | 9.8 | 10.9 | 15.8 | 10.8
11.5 | 12.5
13.4 | 11.8 | 6.1
5.7 | 8.7
8.1 | | 24 | | | | 11.7 | 8.8 | 10.9 | 16.3 | 11.5 | | $\frac{11.6}{12.1}$ | 5.7 | 8.9 | | 25 | | | | 9.7 | 5.7 | 8.6 | | | | 13.1 | 6.3 | 9.7 | | 26 | | | | 12.1 | 9.6 | 11.3 | | | | 12.9 | 5.5 | 9.2 | | 27
28 | | | | $13.0 \\ 11.1$ | 9. 9
8.2 | $\frac{11.6}{10.3}$ | | | | | | | | 29 | | | | 10.9 | 7.1 | 9.8 | | | | | | | | 30
31 | | | | $\frac{12.5}{12.5}$ | 9.4
9.4 | $\frac{11.1}{10.9}$ | | | | | | | | MONTH | JUNE | | | JULY | | | AUGUST | | | SEPTEMBER | | | 1 2 |
10.5 | |
6 9 | 12.9
12.7 | 5.8 | 9.2 | 8.7
8.6 | 4.8 | 6.4 | 14.7
14.3 | 6.6 | 9.5 | | 2
3 | 10.5
11.6 | 3.7
4.4 | 6.9
7.7 | 12.7
12.8 | 5.8
5.4
5.3 | 8.8
8.7 | 8.6
8.5 | 4.8
3.9
3.8 | 6.0
5.9 | 14.3
15.2 | 6.6
5.8
6.1 | 9.5
9.1
9.3 | | 2 | 10.5
11.6
12.3 | 3.7 | 6.9 | 12.7 | 5.8
5.4 | 8.8 | 8.6
8.5
e8.5 | 4.8
3.9 | 6.0 | 14.3 | 6.6
5.8 | 9.5
9.1 | | 2
3
4
5 | 10.5
11.6
12.3
12.9 | 3.7
4.4
4.6
4.4 | 6.9
7.7
8.1
8.3 | 12.7
12.8
12.6
12.7 | 5.8
5.4
5.3
4.9
4.7 | 8.8
8.7
8.4
8.3 | 8.6
8.5
e8.5
e5.5 | 4.8
3.9
3.8
4.0
3.2 | 6.0
5.9
6.1
4.3 | 14.3
15.2
13.4
14.7 | 6.6
5.8
6.1
6.8
7.7 | 9.5
9.1
9.3
9.1
10.4 | | 2
3
4
5
6
7 | 10.5
11.6
12.3
12.9
13.3
13.6 | 3.7
4.4
4.6
4.4
4.4 | 6.9
7.7
8.1
8.3
8.4
8.6 | 12.7
12.8
12.6
12.7
11.7
11.6 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8 | 8.8
8.7
8.4
8.3
7.3
7.2 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2 | 6.0
5.9
6.1
4.3
6.3
7.3 | 14.3
15.2
13.4
14.7
14.7 | 6.6
5.8
6.1
6.8
7.7
7.3 | 9.5
9.1
9.3
9.1
10.4 | | 2
3
4
5
6
7
8 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0 | 3.7
4.4
4.6
4.4
4.3
4.3 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8
4.2 | 8.8
8.7
8.4
8.3
7.3
7.2
7.0 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.1 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3 | | 2
3
4
5
6
7 | 10.5
11.6
12.3
12.9
13.3
13.6 | 3.7
4.4
4.6
4.4
4.4 | 6.9
7.7
8.1
8.3
8.4
8.6 | 12.7
12.8
12.6
12.7
11.7
11.6 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8 | 8.8
8.7
8.4
8.3
7.3
7.2 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2 | 6.0
5.9
6.1
4.3
6.3
7.3 | 14.3
15.2
13.4
14.7
14.7 | 6.6
5.8
6.1
6.8
7.7
7.3 | 9.5
9.1
9.3
9.1
10.4 | | 2
3
4
5
6
7
8
9
10 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8
4.2
4.6
4.7 | 8.8
8.7
8.4
8.3
7.3
7.2
7.0
7.8
8.8 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5
e9.0
e8.5 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.1
5.3
4.5 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8
6.8
6.5 | 14.3
15.2
13.4
14.7
14.7
14.7
16.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3 | | 2
3
4
5
6
7
8
9
10 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0 | 3.7
4.4
4.6
4.4
4.3
4.3
5.6
5.4 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9 | 12.7
12.8
12.6
12.7
11.7
11.0
10.2
12.0 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8
4.6
4.7
5.6 | 8.8
8.7
8.4
8.3
7.3
7.2
7.0
7.8
8.8
9.1 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5
e9.0
e8.5 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.1
5.3
4.5 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8
6.8
6.5
7.1 | 14.3
15.2
13.4
14.7
14.7
14.7
16.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.3
13.4
13.6 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.9
4.9 | 6.9
7.7
8.1
8.3
8.4
8.8
9.2
8.9
8.7
8.7 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9 |
5.8
5.3
4.9
4.7
4.2
3.8
4.6
7
5.4
4.7 | 8.8
8.7
8.4
8.3
7.3
7.0
7.0
7.8
8.8
9.1
7.2
6.1 | 8.6
8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4 | 4.8
3.9
3.8
4.0
3.2
5.1
5.3
4.5
4.6
5.6
5.6
5.2 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8
6.8
6.5
7.1
7.2
7.2 | 14.3
15.2
13.4
14.7
14.7
14.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.3
13.4
13.6 | 3.7
4.4
4.6
4.4
4.3
4.3
5.6
5.4
5.9
4.6
4.7 | 6.9
7.7
8.1
8.3
8.4
8.8
9.2
8.9
8.7
8.6
8.7 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8
4.6
4.7
5.6
4.4
3.9
3.2 | 8.8
8.7
8.4
8.3
7.2
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4 | 8.6
8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.3
4.5
4.6
5.6
5.2
4.4 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8
6.5
7.1
7.2
7.2
6.6 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.3
13.4
13.6
13.6 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.9
4.9 | 6.9
7.7
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.7 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.0
8.1 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8
4.6
4.7
5.4
4.6
3.9
3.2 | 8.8
8.7
8.4
8.3
7.2
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4 | 8.6
8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.7
9.7
9.4
10.1
9.6 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.1
5.3
4.5
4.6
5.6
5.6
5.2
4.4 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8
6.5
7.1
7.2
7.2
6.6 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.3
13.4
13.6
13.6
13.6
e13.5 | 3.7
4.4
4.6
4.4
4.3
4.3
5.6
5.4
5.9
4.6
4.7 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.7
8.7
9.0 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0 | 5.8
5.3
4.9
4.7
4.2
3.8
4.6
4.7
5.4
4.4
3.9
2.5
2.1 | 8.8
8.7
8.3
7.3
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.7 | 8.6
8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6
9.5
10.0 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.3
4.5
4.6
5.6
5.6
4.4
4.3
4.6
5.0 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8
6.5
7.1
7.2
7.2
6.6
6.3
6.3 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.4
13.6
13.6
13.6
e13.5
e12.5 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.9
4.7
4.9 | 6.9
7.7
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.7
9.0
9.4
7.8 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5 | 5.8
5.3
4.9
4.7
4.2
3.2
4.6
7
5.4
4.3
3.2
2.5
1.5 | 8.8
8.7
8.4
8.3
7.2
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.2
7.9 | 8.6
8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6
9.5
10.0
10.8
12.3 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.3
4.5
5.6
6.6
5.6
6.6
6.6 | 6.0
5.9
6.1
4.3
6.3
6.8
6.5
7.1
7.2
6.6
6.3
6.5
7.5 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.3
13.4
13.6
13.6
e13.5
e12.5 | 3.7
4.4
4.6
4.4
4.3
4.3
5.6
5.4
5.0
4.7
4.9
5.0
5.4
4.7
4.7 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.7
8.6
8.7
8.7
8.6
8.7 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5 | 5.8
5.3
4.9
4.7
4.2
3.8
4.6
5.4
4.7
5.4
4.9
3.2
2.5
5.4 | 8.8
8.7
8.3
7.3
7.2
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.7
5.9 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6
9.5
10.8
12.3 | 4.8
3.9
3.8
4.0
3.2
5.1
5.1
5.3
4.6
5.6
5.6
5.6
4.4
4.6
6.6
6.5 | 6.0
5.9
6.1
4.3
6.3
7.3
6.8
6.5
7.1
7.2
7.2
6.3
6.3
6.3
7.5
7.2
7.2
7.2
7.2
7.2
7.3
7.3
7.3 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.3
10.3
10.5
10.3 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.4
13.6
13.6
13.6
13.5
e12.5
e12.5 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.0
4.9
4.7
4.9
5.0
5.4
7.7
3.9 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.6
8.7
8.7
9.0
9.0
7.8
8.3 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5 | 5.8
5.3
4.9
4.7
4.2
3.2
4.6
7
5.4
4.3
3.2
2.5
1.5 | 8.8
8.7
8.4
8.3
7.2
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.2
7.9 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5
e9.6
e8.5
e9.7
9.7
9.4
10.1
9.6
9.5
10.0
10.8
12.3
12.3 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.3
4.5
5.6
6.5
6.5
6.9 | 6.0
5.9
6.3
6.3
6.8
6.8
6.5
7.1
7.2
6.6
6.3
6.5
8.5
9.0
9.3 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6

9.0
7.3 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3
 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 10.5 11.6 12.3 12.9 13.3 13.6 14.0 12.9 13.0 13.2 13.3 13.4 13.6 13.6 13.6 e13.5 e12.5 e12.5 e12.5 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.0
4.6
4.7
4.9
5.4
4.7
4.7
3.9
3.7
3.8 | 6.9
7.7
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.7
8.7
8.7
8.7
8.7
9.0
7.8
8.3 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5
8.0 | 5.8
5.3
4.9
4.7
4.2
3.8
4.6
4.7
5.4
4.4
93.2
2.5
2.1
5.4 | 8.8
8.7
8.3
7.2
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.7
5.9 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.5
10.8
12.3
12.3
13.5
17.9 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.3
4.6
5.6
6.5
5.2
4.3
4.6
6.6
6.5
6.5
6.2
7.3 | 6.0
5.1
4.3
6.3
7.3
6.8
6.5
7.1
7.2
7.6
6.3
6.5
7.5
8.5
9.3
8.5
9.3
8.5
9.3
8.5
9.3
8.5
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6

9.0
7.3 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1

4.4
5.5
6.4
1.7 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3

6.6
6.4
7.6
5.0
3.6 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 10.5
11.6
12.3
12.9
13.3
13.6
14.0
12.9
13.0
13.2
13.3
13.4
13.6
13.6
e13.5
e12.5
e12.5
e12.5 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.0
4.9
4.7
4.9
5.0
4.7
4.9 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.6
8.7
8.7
9.0
9.0
7.8
8.3 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.0
8.1
5.4
6.1
8.0
7.5
8.0
| 5.8
5.3
4.9
4.7
4.2
3.8
4.6
7
5.6
4.7
5.4
4.3
9
2.5
1.5
5.4 | 8.8
8.7
8.4
8.3
7.3
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.2
4.7
5.9
6.7 | 8.6
8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6
9.5
10.0
10.8
12.3
12.3 | 4.8
3.9
3.8
4.0
3.2
5.1
5.3
4.5
4.6
5.6
5.2
4.4
4.3
4.6
6.5
6.5
6.5 | 6.0
5.9
4.3
6.3
6.8
6.5
7.1
7.2
6.6
6.6
7.5
9.0
9.3
8.5 | 14.3
15.2
13.4
14.7
14.7
14.4
15.6

9.0
7.3 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1

4.4
5.5 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3

6.6
6.4
7.6
5.0 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 10.5 11.6 12.3 12.9 13.3 13.6 14.0 12.9 13.0 13.2 13.3 13.4 13.6 13.6 13.6 e13.5 e12.5 e13.5 e12.5 e13.5 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.0
4.7
4.9
5.0
4.7
4.7
4.7
3.9
3.6
3.8
4.7
4.3 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.7
8.7
8.7
8.7
8.7
8.3
7.3
7.9
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.0
8.1
5.4
6.1
8.0
7.5
8.0 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8
4.6
7
5.4
4.6
5.4
4.3
9
3.2
2.5
1.5
5.4 | 8.8
8.7
8.4
8.3
7.3
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.2
4.7
5.7 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6
9.5
10.0
10.8
12.3
12.3
13.5
11.0
7.9
9.3 | 4.8
3.9
3.8
4.0
3.2
5.1
5.2
5.3
4.6
6.5
5.6
6.5
6.5
6.9 | 6.0
5.1
4.3
6.3
7.3
6.8
6.5
7.1
7.2
7.2
7.5
6.3
6.3
7.5
8.5
9.0
9.3
6.6
7.4
8.2 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6

9.0
7.3
10.2
7.4
5.4
9.1
9.8 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1

4.4
5.5
6.4
1.7
1.0
5.5
6.4 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.3
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27 | 10.5 11.6 12.3 12.9 13.3 13.6 14.0 12.9 13.0 13.2 13.3 13.4 13.6 13.6 13.6 13.5 e12.5 e12.5 e12.5 e12.5 e13.5 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.9
4.7
4.9
5.4
7.7
3.9
3.6
3.8
4.7
4.3 | 6.9
7.7
8.1
8.3
8.4
8.8
9.2
8.9
8.7
8.7
9.0
9.4
9.0
9.4
9.0
7.8
8.3
7.3
7.0
7.8
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5
8.0 | 5.8
5.3
4.9
4.7
4.2
3.8
4.6
7
5.6
4.7
5.4
4.3
9
2.5
1.5
5.4 | 8.8
8.7
8.4
8.3
7.2
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.2
7.9
6.7 | 8.6
8.5
e8.5
e9.5
e9.5
e9.6
e8.5
e9.7
9.4
10.1
9.6
9.5
10.0
10.8
12.3
12.3
11.0
7.9
9.3
10.3 | 4.8
3.8
3.8
4.0
3.2
5.1
5.1
5.3
5.3
4.6
6.5
5.6
6.5
6.5
6.9
6.9
6.9 | 6.0
5.9
4.3
6.33
6.88
6.5
7.13
7.26
6.36
7.55
9.35
6.42
8.3
8.3 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6

9.0
7.3
10.2
7.4
5.4
9.1
9.8
9.1
11.5 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1

4.4
5.5
6.4
1.7
1.0
5.5
6.4
6.2
6.8 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3

6.6
6.4
7.6
5.0
3.6
7.8
8.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 10.5 11.6 12.3 12.9 13.3 13.6 14.0 12.9 13.0 13.2 13.3 13.4 13.6 13.6 13.6 13.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.0 e12.5 | 3.7
4.4
4.6
4.4
4.3
5.6
5.4
5.0
4.7
4.9
5.4
7.7
4.7
3.7
4.7
4.7
3.8
4.7
4.3 | 6.9
7.7
8.1
8.3
8.4
8.6
8.8
9.2
8.9
8.7
8.7
8.7
9.0
9.4
9.0
7.8
8.3
7.3
7.0
7.8
8.3
8.3 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5
8.0 | 5.8
5.4
5.3
4.9
4.7
4.2
3.8
4.6
7
5.4
4.6
7
5.4
4.3
9
3.2
2.5
2.1
4.5
5.4 | 8.8
8.7
8.4
8.3
7.3
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.2
4.7
5.9
6.7 | 8.6
8.5
e8.5
e5.5
e7.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6
9.5
10.0
10.8
12.3
12.3
13.5
11.0
7.9
9.3
10.3 | 4.8
3.9
3.8
4.0
3.2
5.1
5.3
4.5
5.6
6.5
5.2
4.4
4.6
6.5
6.5
6.5
6.9
7.3
6.9
7.3 | 6.0
5.1
4.3
6.3
6.8
6.5
7.1
7.2
7.6
6.3
6.5
7.5
8.5
9.3
6.3
8.6
7.4
8.6
8.6
7.5
8.6
8.6
8.6
8.6
8.6
8.6
8.6
8.6 | 14.3
15.2
13.4
14.7
14.7
14.4
15.6

9.0
7.3
10.2
7.4
9.1
9.8
9.1
11.5
13.1 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1

4.4
5.5
6.4
1.7
1.0
5.5
6.4
6.8
8.4 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3

6.6
6.4
7.6
5.0
3.6
7.8
8.1 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
22
24
25
26
27
28
29
30 | 10.5 11.6 12.3 12.9 13.3 13.6 14.0 12.9 13.0 13.2 13.3 13.6 13.6 13.6 13.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 | | 6.9
7.7
8.1
8.3
8.4
8.8
9.2
8.9
8.9
8.7
8.6
8.7
9.0
9.0
7.8
8.3
7.3
7.0
7.8
8.0
8.3
8.3
8.3
8.3
8.3
8.3
8.3
8.4
8.5
8.5
8.5
8.5
8.5
8.5
8.5
8.5 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5
8.0 | 5.8
5.3
4.9
4.2
3.2
4.6
7
5.6
4.4
3.2
2.5
5.4
4.7
5.6
4.7
5.6
4.7
5.6
4.7
5.6
4.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6.7
6 | 8.8
8.7
8.4
8.3
7.2
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.2
7.9
6.7 | 8.6
8.5
e8.5
e9.5
e9.5
e9.6
e8.5
e9.7
9.4
10.1
9.6
9.5
10.0
10.8
12.3
12.3
10.9
11.6
12.3
12.2 | 4.8
3.8
3.8
4.0
2
5.1
5.1
5.3
5.5
4.6
6.5
5.6
6.5
6.9
6.9
7.3
6.6
6.6 | 6.0
5.13
6.33
6.88
6.5
7.13
7.26
6.36
7.55
9.35
6.42
8.32
9.28
8.32
9.88 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6

9.0
7.3
10.2
7.4
9.1
9.1
9.8
9.1
11.5
13.1 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1

4.4
5.5
6.4
1.7
1.0
5.5
6.4
6.8
8.4
8.8 | 9.5
9.1
9.3
9.1
10.4
10.5
10.3
10.5
10.3

6.6
6.4
7.6
5.0
3.6
7.8
8.1
7.6
9.0
10.5 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 10.5 11.6 12.3 12.9 13.3 13.6 14.0 12.9 13.0 13.2 13.3 13.4 13.6 13.6 13.6 13.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 e12.5 | 3.7
4.6
4.4
4.3
4.3
5.4
5.4
5.0
9
4.6
7
4.7
9
5.4
4.7
3.7
4.7
3.8
4.7
4.3
4.3
4.6
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7 | 6.9
7.7
8.1
8.3
8.4
8.8
9.2
8.9
8.7
8.6
8.7
9.0
9.0
7.8
8.3
7.3
7.0
8.0
8.3
8.3
8.3 | 12.7
12.8
12.6
12.7
11.7
11.6
11.0
10.2
12.0
12.3
12.7
9.9
9.0
8.1
5.4
6.1
8.0
7.5
8.0 | 5.8
5.3
4.9
4.7
4.2
3.8
4.6
5.4
4.7
5.4
4.3
3.2
2.5
5.4 | 8.8
8.7
8.3
7.2
7.0
7.0
7.8
8.8
9.1
7.2
6.1
5.4
3.8
4.7
5.9
6.7 | 8.6
8.5
e8.5
e9.5
e9.5
e9.0
e8.5
e9.0
9.7
9.4
10.1
9.6
9.5
10.8
12.3
12.3
10.9
11.5
11.6
12.3 | 4.8
3.8
4.0
3.2
5.1
5.5
4.6
6.6
6.5
5.6
6.6
6.7
6.6
6.9
7.3
6.9
7.3
6.9
7.9
7.9
7.9
7.9
7.9
7.9
7.9
7 | 6.0
5.1
4.3
6.3
6.8
6.5
7.1
6.6
6.5
7.2
6.6
6.5
7.3
8.5
6.5
7.4
8.5
9.3
8.6
8.3
9.3
8.3
9.3
9.3
9.3
9.3
9.3
9.3
9.3
9 | 14.3
15.2
13.4
14.7
14.7
14.4
16.4
15.6

9.0
7.3
10.2
7.4
9.1
9.8
9.1
11.5
13.1
14.1 | 6.6
5.8
6.1
6.8
7.7
7.3
7.4
6.7
7.1

4.4
5.5
6.4
1.0
5.5
6.4
6.8
8.8 |
9.5
9.1
9.3
9.1
10.4
10.5
10.3

6.6
6.4
7.6
5.0
3.6
7.8
8.1
7.6
9.0
10.5
11.2 | e Estimated ## 05432055 LIVINGSTON BRANCH PECATONICA RIVER NEAR LIVINGSTON, WI--CONTINUED PRECIPITATION QUANTITY PERIOD OF RECORD.--July 1987 to current year (during non-freezing periods). GAGE. -- Micrologger. REMARKS. -- Records good. EXTREMES FOR PERIOD OF RECORD.--Maximum daily rainfall, 2.36 in. Aug. 30, 1987. EXTREMES FOR CURRENT YEAR. -- Maximum daily rainfall, 1.80 in. Sept. 19. | | | RAIN | NFALL ACCUM | ULATED | (INCHES), | WATER YEAR
SUM VALUES | | 1987 ТО | SEPTEMBER | 1988 | | | |-------|------|------|-------------|--------|-----------|--------------------------|------|------------|-----------|------|------|------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | . 03 | . 05 | .00 | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 2 | .00 | .06 | - 00 | | | | . 24 | .00 | . 00 | .00 | .00 | .09 | | 3 | .00 | .00 | .00 | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 4 | .00 | .00 | | | | | .00 | .00 | .00 | .00 | 1.04 | . 07 | | 5 | .00 | .00 | | | | | .06 | .00 | .00 | .00 | .16 | .00 | | 6 | .01 | .00 | | | | | . 04 | .00 | .00 | .00 | .00 | .00 | | 7 | .00 | . 17 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 8 | .00 | . 10 | | | | | .00 | . 55 | .00 | .00 | . 22 | .00 | | 9 | .00 | .00 | | | | | .00 | .18 | . 00 | . 23 | .00 | .00 | | 10 | .00 | .01 | | | | | . 00 | .00 | .00 | .36 | .00 | .00 | | 11 | .02 | .03 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 12 | .00 | .00 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 13 | .00 | .00 | | | | | .00 | .00 | .00 | . 14 | . 07 | .00 | | 14 | .03 | .00 | | | | | .00 | .01 | .00 | . 55 | . 00 | .00 | | 15 | .00 | .09 | | | | | .00 | .00 | .00 | .00 | .00 | .00 | | 16 | .42 | .81 | | | | | .00 | .00 | .00 | .73 | .00 | . 22 | | 17 | . 06 | . 58 | | | | | .00 | .00 | . 00 | .00 | .00 | .04 | | 18 | .00 | .00 | | | | | .00 | . 00 | .00 | . 42 | .21 | .01 | | 19 | .00 | .00 | | | | | .00 | .00 | . 05 | . 00 | .00 | 1.80 | | 20 | .00 | .00 | | | | | . 10 | .00 | .00 | . 22 | .00 | . 17 | | 21 | .00 | .00 | | | | | .00 | .00 | .00 | -00 | .00 | .12 | | 22 | . 05 | .03 | | | | .00 | . 36 | . 00 | .10 | .00 | 1.25 | 1.63 | | 23 | .00 | .01 | | | | .00 | . 10 | .00 | .00 | . 00 | .01 | .00 | | 24 | .09 | .05 | | | | .63 | .00 | .01 | .03 | .02 | .00 | .00 | | 25 | .00 | . 07 | | | | .01 | . 01 | .00 | .00 | .00 | .00 | .00 | | 26 | .10 | .00 | | | | .00 | . 41 | .00 | .00 | .00 | .00 | .00 | | 27 | .00 | .01 | | | | .00 | . 17 | .00 | .00 | .00 | .00 | .00 | | 28 | .01 | .80 | | | | . 84 | .01 | .00 | . 12 | .00 | .00 | .02 | | 29 | .00 | .05 | | | | . 04 | .00 | .00 | .13 | .00 | .00 | .01
.00 | | 30 | - 00 | .00 | | | | .00 | .00 | .00
.00 | .00 | .00 | .00 | .00 | | 31 | . 48 | | | | | .00 | | .00 | | | | | | TOTAL | 1.30 | 2.92 | | | | | 1.50 | 0.75 | 0.43 | 2.67 | 2.96 | 4.18 | ### 05432500 PECATONICA RIVER AT DARLINGTON, WI LOCATION.--Lat 42°40'40", long 90°07'07", in NE 1/4 sec.3, T.2 N., R.3 E., Lafayette County, Hydrologic Unit 07090003, on right bank in Darlington, 0.3 mi downstream from Vinegar Branch, and 3.6 mi upstream from Otter Creek. DRAINAGE AREA. -- 273 mi². PERIOD OF RECORD. -- September 1939 to current year. REVISED RECORDS. -- WDR WI-76-1: Drainage area. GAGE. -- Water-stage recorder. Datum of gage is 802.42 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. AVERAGE DISCHARGE.--49 years, 187 ft3/s, 9.30 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,000 ft³/s, July 16, 1950, gage height, 20.71 ft, from rating curve extended above 11,000 ft³/s basis of slope-area determination of peak flow; minimum, 17 ft³/s, Nov. 29, 1966, gage height, 2.09 ft, result of freezeup; minimum gage height, 1.07 ft, Dec. 6, 1968, result of freezeup. EXTREMES OUTSIDE OF PERIOD OF RECORD. -- Flood of Feb. 21, 1937, reached a stage of 17.6 ft, from floodmarks. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Feb. 1 | 0700 | (a) *630 | (a) *7.53 | | | | | (a) Backwater from ice. Minimum discharge, 54 ft³/s Sept. 16, gage height, 1.63 ft. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 17-20 and Dec. 28 to Mar. 5.) | 1.6 | 52 | 5.0 | 385 | |-----|-----|-----|-----| | 2.0 | 86 | 6.0 | 512 | | 3.0 | 176 | 7.0 | 653 | | 4.0 | 270 | | | ### DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--|---|--|--|---|--|---|---|---|---|--|----------------------------------| | 1
2
3
4
5 | 113
111
111
109
111 | 116
130
120
115
108 | 174
158
152
141
135 | 130
120
110
110 | 600
460
380
300
240 | 380
400
350
280
260 | 263
252
286
271
246 | 164
159
155
152
151 | 106
106
104
103
101 | 80
78
77
76
74 | 65
63
61
65
76 | 61
60
60
61
63 | | 6
7
8
9
10 | 111
110
108
106
106 | 102
103
109
113
106 | 139
137
141
196
220 | 100
100
100
100
98 | 220
210
210
200
200 | 256
324
369
389
306 | 242
229
215
207
201 | 149
147
149
176
183 | 100
98
98
97
94 | 71
70
68
69
79 | 85
70
68
73
72 | 62
61
60
59
58 | | 11
12
13
14
15 | 104
105
106
107
108 | 102
103
105
105
102 | 188
184
169
157
129 | 98
96
96
96
96 | 200
190
180
180
180 | 272
268
254
220
219 | 196
193
190
189
182 | 159
148
145
140
138 | 94
94
92
90
88 | 90
80
75
100
89 | 69
67
64
64 | 57
57
57
56
55 | | 16
17
18
19
20 | 112
133
128
116
112 | 107
183
234
158
138 | 110
140
150
160
190 | 96
98
100
100
120 | 180
170
170
160
160 | 214
206
202
197
195 | 177
175
175
170
171 | 136
136
133
130
129 | 87
87
89
89
90 | 93
139
91
87
85 | 62
59
56
60
63 | 56
64
66
74
103 | | 21
22
23
24
25 | 111
111
111
113
114 | 120
123
129
124
124 | 207
194
174
168
183 | 150
130
120
110
100 | 150
150
150
150
150 | 188
184
187
191
252 | 176
174
200
198
176 | 127
125
124
121
117 | 88
84
84
80
82 | 83
85
80
78
78 | 61
61
95
94
70 | 96
110
185
119
81 | | 26
27
28
29
30
31 | 111
117
115
110
108
108 | 124
120
144
234
201 | 171
127
150
160
150
140 | 100
98
98
110
150
420 | 150
160
180
250 | 250
211
215
381
369
291 | 171
197
210
182
170 | 116
116
116
114
111
109 | 80
76
77
83
85 | 76
73
71
68
68
67 | 65
64
65
64
63
62 | 74
70
69
69
71 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3456
111
133
104
.41 | 3902
130
234
102
.48
.53 | 4994
161
220
110
.59 | 3650
118
420
96
. 43
. 50 | 6280
217
600
150
.79
.86 | 8280
267
400
184
.98
1.13 | 6084
203
286
170
.74
.83 | 4275
138
183
109
.51
.58 | 2726
90.9
106
76
.33
.37 | 2498
80.6
139
67
.30
.34 | 2090
67.4
95
56
.25
.28 | 2194
73.1
185
55
.27 | | CAL YR | 1987 | TOTAL 54424 | MEAN 1 | 49 MAX 390 | MIN 89 | CFSM . | 55 IN. 7 | . 42 | | | | | CAL YR 1987 TOTAL 54424 MEAN 149 MAX 390 MIN 89 CFSM .55 IN. 7.42 WTR YR 1988 TOTAL 50429 MEAN 138 MAX 600 MIN 55 CFSM .50 IN. 6.87 ### 05433000 EAST BRANCH PECATONICA RIVER NEAR BLANCHARDVILLE, WI LOCATION.--Lat 42°47'10" long 89°51'40", in SE 1/4 sec. 26, T.4 N., R.5 E., Lafayette County, Hydrologic Unit 07090003, on left bank at downstream side of bridge on State Highway 78, 1.8 mi south of Blanchardville and 4.5 mi upstream from Sawmill Creek. DRAINAGE AREA. -- 221 mi². PERIOD OF RECORD. -- September 1939 to September 1986, October 1987 to September 1988. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 796.8 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 20, 1939, nonrecording gage at bridge 50 ft upstream at same datum. REMARKS.--Estimated daily discharges: Oct. 1 to Nov. 4 and ice periods, Dec. 15-19 and Dec. 27 to Mar. 4. Records good except those for estimated daily discharges, which are fair. AVERAGE DISCHARGE.--48 years (1940-86, 1988), 146 ft^3/s , 8.97 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,700 ft³/s, Feb. 28, 1948, gage height, 15.74 ft; minimum, 18 ft³/s, Nov. 29, 1966. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than
base discharge of 1,300 ft^3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |---------|------|-----------------------------------|------------------|------|------|-----------------------------------|---------------------| | Jan. 31 | 2000 | (a) *610 | (a) *8.73 | | | | | (a) Backwater from ice Minimum discharge, 82 ft³/s, Sept. 15 and 16. | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|--|----------------------------------|---|---|---|--|----------------------------------|---|---|---------------------------------|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 120
120
120
120
120 | 130
140
130
130
121 | 184
166
161
15 5
145 | 160
160
150
150
140 | 500
360
320
280
270 | 250
250
210
190
189 | 212
209
345
278
241 | 156
151
148
146
145 | 130
125
124
123
122 | 106
106
105
104
103 | 92
92
91
92
100 | 86
85
84
84
85 | | 6
7
8
9
10 | 120
120
120
120
120 | 118
118
122
122
116 | 143
146
154
299
275 | 140
140
140
140
140 | 260
250
240
230
220 | 191
229
281
289
239 | 235
224
210
201
194 | 143
141
144
172
172 | 121
118
118
116
116 | 104
104
102
102
115 | 97
94
93
95
95 | 85
85
85
84
84 | | 11
12
13
14
15 | 120
120
120
120
120 | 114
115
116
118
115 | 218
223
189
175
160 | 130
130
130
130
130 | 220
210
210
200
200 | 223
227
215
193
185 | 190
185
183
182
177 | 156
153
150
146
148 | 116
116
116
115
115 | 115
103
103
105
101 | 94
93
91
91
89 | 84
84
83
83 | | 16
17
18
19
20 | 120
140
140
130
120 | 117
234
235
155
142 | 140
150
170
190
238 | 130
130
140
150
170 | 200
190
190
180
180 | 180
179
177
174
171 | 172
171
169
165
166 | 146
145
143
141
141 | 113
112
112
112
112 | 112
126
104
103
101 | 88
87
85
90
88 | 83
88
87
92
99 | | 21
22
23
24
25 | 120
120
120
120
120 | 131
130
133
133
133 | 208
186
178
179
209 | 200
180
160
150
130 | 170
170
160
160
160 | 165
163
168
172
253 | 168
166
203
190
169 | 139
138
137
135
137 | 110
109
109
108
110 | 111
105
101
100
100 | 87
87
112
98
89 | 92
99
136
95
88 | | 26
27
28
29
30
31 | 120
130
130
120
120
120 | 135
133
175
333
215 | 186
150
170
180
170 | 130
120
120
130
230
540 | 170
170
180
210 | 212
181
197
339
270
225 | 163
188
193
168
160 | 136
139
138
137
133 | 106
105
106
109
109 | 98
97
96
94
94 | 87
87
88
87
86
86 | 87
86
86
87
87 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 3790
122
140
120
.55 | 4359
145
333
114
.66 | 5667
183
299
140
.83 | 4920
159
540
120
.72
.83 | 6460
223
500
160
1.01
1.09 | 6587
212
339
163
.96
1.11 | 5877
196
345
160
.89 | 4488
145
172
132
.66
.76 | 3433
114
130
105
.52
.58 | 3214
104
126
94
.47 | 2831
91.3
112
85
.41
.48 | 2657
88.6
136
83
.40
.45 | WTR YR 1988 TOTAL 54283 MEAN 148 MAX 540 MIN 83 CFSM .67 IN. 9.14 ### 05434500 PECATONICA RIVER AT MARTINTOWN, WI LOCATION.--Lat 42°30'34", long 89°47'58", in SE 1/4 sec.32, T.1 N., R.6 E., Green County, Hydrologic Unit 07090003, on right bank about 400 ft downstream from highway bridge in Martintown, 0.3 mi upstream from Wisconsin-Illinois State line and 8.8 mi downstream from Skinner Creek. DRAINAGE AREA. -- 1,034 mi². PERIOD OF RECORD. -- October 1939 to current year. REVISED RECORDS.--WSP 1308: 1949-50(M). WDR WI-71-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 757.83 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 6, 1940, nonrecording gage at same site and datum. Auxiliary recording gage 1.2 mi downstream, at same datum, which records stage above 7.4 ft. REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good except those for ice-affected periods, which are fair. Diurnal fluctuation at low flow caused by powerplant in Argyle, 28.2 mi upstream. AVERAGE DISCHARGE. -- 49 years, 727 ft³/s, 9.55 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 15,100 ft³/s, July 1, 1969, gage height, 21.46 ft; no flow for part of Dec. 14, 1939. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 ft3/s and maximum (*): | DATE | ATE TIME | | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT (ft) | |------|----------|------|-----------------------------------|------------------|------|------|-----------------------------------|------------------| | Feb. | 3 | 0100 | (a) *1,940 | (a) *11.38 | | | | | (a) Backwater from ice. Minimum daily discharge, 289 ft³/s, Sept. 16. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 16-21 and Dec. 30 to Mar. 5.) | 3. 3 | 288 | 7.0 | 1,100 | |-------------|-------------|------|-------| | 4.0 | 396 | 9.0 | 1,600 | | 5.0 | 62 6 | 11.0 | 2,140 | | 6.0 | 856 | | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | •• | | _ | | | | | | |-----------------------|-------|--------------|-------------|-------------|------------|-------|-------|-------|-------|-------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 542 | 519 | 893 | 620 | 1700 | 1200 | 1040 | 730 | 478 | 378 | 322 | 306 | | 2 | 531 | 531 | 784 | 600 | 1900 | 1300 | 968 | 703 | 474 | 376 | 327 | 303 | | 3 | 522 | 552 | 724 | 560 | 1900 | 1200 | 1010 | 682 | 469 | 370 | 305 | 300 | | ĭ | 521 | 548 | 687 | 540 | 1700 | 1100 | 1130 | 671 | 462 | 367 | 309 | 300 | | 1
2
3
4
5 | 522 | 527 | 662 | 52 0 | 1500 | 1000 | 1110 | 654 | 457 | 361 | 326 | 304 | | | | | | | | | | | | | | | | 6
7 | 527 | 507 | 625 | 52 0 | 1200 | 961 | 1040 | 644 | 454 | 355 | 337 | 302 | | 7 | 526 | 509 | 619 | 5 00 | 1100 | 954 | 1000 | 637 | 449 | 351 | 337 | 307 | | 8 | 521 | 517 | 635 | 500 | 1000 | 1030 | 958 | 632 | 444 | 347 | 327 | 304 | | 9 | 516 | 521 | 733 | 490 | 960 | 1150 | 900 | 659 | 435 | 341 | 326 | 299 | | 10 | 514 | 519 | 862 | 490 | 940 | 1170 | 855 | 706 | 431 | 351 | 329 | 298 | | | | 31) | 802 | 4 90 | 340 | 1170 | | 700 | 731 | 331 | | | | 11 | 508 | 504 | 932 | 480 | 920 | 1090 | 832 | 715 | 425 | 371 | 325 | 296 | | 12 | 508 | 494 | 851 | 480 | 900 | 1020 | 825 | 671 | 423 | 378 | 322 | 294 | | 13 | 508 | 496 | 801 | 480 | 880 | 992 | 808 | 635 | 421 | 370 | 314 | 292 | | 14 | 512 | 500 | 755 | 470 | 860 | 952 | 797 | 618 | 415 | 368 | 306 | 291 | | 15 | 511 | 499 | 712 | 470 | 840 | 896 | 785 | 599 | 401 | 370 | 310 | 290 | | 13 | 311 | 433 | /12 | 470 | 840 | 890 | 765 | 399 | 401 | 370 | 310 | 290 | | 16 | 512 | 498 | 6 60 | 470 | 820 | 852 | 769 | 585 | 404 | 374 | 307 | 289 | | 17 | 524 | 575 | 580 | 470 | 800 | 841 | 752 | 584 | 395 | 372 | 299 | 297 | | 18 | 553 | 741 | 580 | 500 | 780 | 825 | 739 | 584 | 397 | 418 | 298 | 313 | | 19 | 565 | 823 | 680 | 520 | 760 | 810 | 730 | 572 | 401 | 404 | 293 | 329 | | 20 | 542 | 713 | 840 | 600 | 760
760 | 795 | 723 | 562 | 404 | 367 | 297 | 332 | | 20 | 342 | /13 | 840 | 800 | /60 | 795 | 723 | 302 | 404 | 307 | 297 | 332 | | 21 | 524 | 620 | 920 | 740 | 760 | 781 | 726 | 553 | 399 | 363 | 301 | 358 | | 22 | 522 | 570 | 905 | 760 | 740 | 767 | 731 | 546 | 392 | 369 | 300 | 377 | | 23 | 523 | 559 | 847 | 720 | 740 | 758 | 798 | 539 | 384 | 366 | 316 | 388 | | 24 | 527 | 567 | 802 | 660 | 740 | 764 | 848 | 534 | 379 | 350 | 351 | 462 | | 25 | 531 | 569 | 816 | 620 | 720 | 815 | 832 | 527 | 378 | 350 | 367 | 453 | | 23 | 331 | 309 | 910 | 020 | /20 | 013 | 032 | 321 | 3/0 | 330 | 307 | 433 | | 26 | 535 | 570 | 833 | 580 | 720 | 907 | 780 | 515 | 376 | 355 | 325 | 365 | | 27 | 537 | 569 | 802 | 560 | 760 | 922 | 777 | 512 | 371 | 338 | 314 | 329 | | 28 | 548 | 6 0 5 | 700 | 540 | 820 | 880 | 813 | 508 | 366 | 335 | 311 | 325 | | 29 | 544 | 807 | 552 | 540 | 940 | 956 | 830 | 504 | 368 | 330 | 313 | 322 | | 30 | 533 | 950 | 620 | 600 | | 1120 | 780 | 497 | 392 | 329 | 310 | 323 | | 31 | 522 | | 660 | 1300 | | 1150 | 700 | 486 | | 320 | 308 | | | 31 | 322 | | 000 | 1300 | | 1130 | | 400 | | 320 | 300 | | | TOTAL | 16331 | 17479 | 23072 | 17900 | 29160 | 29958 | 25686 | 18564 | 12444 | 11194 | 9832 | 9748 | | MEAN | 527 | 583 | 744 | 577 | 1006 | 966 | 856 | 599 | 415 | 361 | 317 | 325 | | MAX | 565 | 950 | 932 | 1300 | 1900 | 1300 | 1130 | 730 | 478 | 418 | 367 | 462 | | MIN | 508 | 494 | 552 | 470 | 720 | 758 | 723 | 486 | 366 | 320 | 293 | 289 | | CFSM | .51 | .56 | .72 | .56 | .97 | .93 |
.83 | .58 | .40 | .35 | .31 | .31 | | IN. | . 59 | .63 | .83 | . 56 | 1.05 | 1.08 | .92 | .67 | .45 | .40 | .35 | .35 | | T1A . | . 59 | .03 | .03 | .04 | 1.03 | 1.08 | .92 | .07 | .43 | . 40 | | | | | | | | | | | | | | | | | CAL YR 1987 TOTAL 240072 MEAN 658 MAX 1230 MIN 422 CFSM .64 IN. 8.64 WTR YR 1988 TOTAL 221368 MEAN 605 MAX 1900 MIN 289 CFSM .58 IN. 7.96 ### 05436500 SUGAR RIVER NEAR BRODHEAD, WI LOCATION.--Lat 42°36'42", long 89°23'53", in SW 1/4 sec.26, T.2 N., R.9 E., Green County, Hydrologic Unit 07090004, on left bank at downstream side of highway bridge, 1.2 mi southwest of Brodhead, and 1.9 mi upstream from Sylvester Creek. DRAINAGE AREA. -- 523 mi². PERIOD OF RECORD. -- January 1914 to current year. Monthly discharge only for January and February 1914, published in WSP 1308. REVISED RECORDS.--WSP 1238: 1914-16, 1918, 1922, 1927, 1933. WSP 1508: 1916-17(M), 1919(M), 1920, 1921(M), 1927-28(M), 1930(M), 1931, 1936(M), 1943(M). WDR WI-71-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 768.14 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 17, 1938, nonrecording gage at same site and datum. REMARKS.--Estimated daily discharges: Ice periods listed in rating table below. Records good except those for periods of ice effect, which are fair. Some regulation from dam and powerplant upstream. AVERAGE DISCHARGE. -- 74 years, 351 ft 3/s, 9.11 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 14,800 ft³/s, Sept. 13, 1915, gage height, 11.4 ft from floodmarks, from rating curve extended above 7,500 ft³/s; minimum, 35 ft³/s, Sept. 19, 1959, gage height, -0.16 ft. EXTREMES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 1,300 ft3/s and maximum (*): | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | DATE | TIME | DISCHARGE
(ft ³ /s) | GAGE HEIGHT
(ft) | |--------|------|-----------------------------------|---------------------|---------|-----------|-----------------------------------|---------------------| | Feb. 2 | 1200 | *1,920 | *5.27 | No othe | er peak g | reater than base | discharge. | Minimum discharge, 152 ft³/s, Sept. 15. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Stage-discharge relation affected by ice Dec. 17-20, Dec. 29 to Jan. 31, and Feb. 4 to Mar. 3.) | 0.10 | 137 | 3.0 | 944 | |------|-----|-----|-------| | 1.0 | 328 | 4.0 | 1,320 | | 2.0 | 612 | 6.0 | วัรวก | | | | DISCHARGE | , CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 то | SEPTEMBER | 1988 | | | |--------|------|-----------|---------|----------|---------|--------------------------|---------|---------|-----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 293 | 293 | 697 | 330 | 1710 | 560 | 494 | 405 | 263 | 218 | 168 | 171 | | 2 | 300 | 302 | 579 | 400 | 1860 | 560 | 472 | 386 | 260 | 213 | 163 | 168 | | 2
3 | 281 | 311 | 474 | 360 | 1630 | 520 | 713 | 358 | 258 | 208 | 166 | 166 | | 3 | | | | | | | | | | 204 | 168 | 165 | | 4 | 277 | 310 | 430 | 330 | 1200 | 491 | 898 | 363 | 257 | | | | | 5 | 279 | 302 | 399 | 320 | 1000 | 457 | 926 | 357 | 254 | 199 | 183 | 169 | | 6 | 277 | 292 | 380 | 310 | 900 | 443 | 828 | 354 | 251 | 198 | 192 | 170 | | 7 | 277 | 288 | 375 | 300 | 820 | 455 | 770 | 346 | 249 | 193 | 186 | 169 | | 8 | 273 | 293 | 389 | 290 | 760 | 508 | 673 | 341 | 246 | 186 | 186 | 168 | | 9 | 274 | 298 | 489 | 290 | 700 | 578 | 559 | 374 | 239 | 184 | 186 | 165 | | 1ó | 274 | 296 | 645 | 280 | 660 | 555 | 503 | 404 | 237 | 187 | 184 | 161 | | 10 | 2/4 | 290 | 043 | 280 | 000 | 555 | 303 | 404 | 237 | 10/ | 104 | 101 | | 11 | 273 | 291 | 717 | 280 | 620 | 509 | 471 | 390 | 240 | 203 | 186 | 156 | | 12 | 283 | 293 | 649 | 280 | 600 | 494 | 453 | 367 | 237 | 200 | 183 | 158 | | 13 | 294 | 292 | 529 | 280 | 580 | 485 | 440 | 350 | 235 | 202 | 178 | 159 | | 14 | 277 | 289 | 470 | 270 | 560 | 459 | 404 | 338 | 232 | 196 | 175 | 155 | | | | | | 270 | | | | 220 | 229 | 197 | 173 | 154 | | 15 | 289 | 288 | 415 | 270 | 540 | 431 | 414 | 336 | 229 | 197 | 1/3 | 154 | | 16 | 278 | 292 | 375 | 270 | 520 | 414 | 406 | 331 | 225 | 188 | 174 | 156 | | 17 | 282 | 340 | 400 | 280 | 520 | 407 | 400 | 324 | 221 | 191 | 176 | 161 | | 18 | 293 | 427 | 410 | 290 | 500 | 406 | 389 | 320 | 219 | 238 | 171 | 166 | | 19 | 292 | 478 | 420 | 320 | 500 | 404 | 381 | 319 | 223 | 221 | 170 | 211 | | 20 | 285 | 418 | 500 | 350 | 480 | 397 | 380 | 316 | 214 | 207 | 175 | 209 | | 20 | 200 | 418 | 500 | 330 | 480 | 397 | 200 | 310 | 214 | 207 | 1/5 | 209 | | 21 | 282 | 361 | 672 | 410 | 460 | 375 | 381 | 308 | 206 | 205 | 178 | 198 | | 22 | 278 | 337 | 587 | 450 | 420 | 381 | 383 | 304 | 213 | 203 | 176 | 187 | | 23 | 279 | 331 | 537 | 500 | 420 | 391 | 436 | 302 | 208 | 208 | 188 | 204 | | 24 | 284 | 330 | 499 | 460 | 420 | 396 | 530 | 295 | 206 | 196 | 205 | 225 | | 25 | 290 | | | | | | | 289 | 208 | 195 | 203 | 216 | | 25 | 290 | 336 | 518 | 440 | 420 | 428 | 518 | 289 | 208 | 193 | 203 | 210 | | 26 | 296 | 349 | 548 | 410 | 420 | 471 | 441 | 277 | 206 | 194 | 188 | 204 | | 27 | 300 | 358 | 511 | 390 | 450 | 458 | 468 | 277 | 201 | 189 | 182 | 187 | | 28 | 313 | 386 | 471 | 380 | 480 | 450 | 471 | 278 | 199 | 187 | 181 | 180 | | 29 | 303 | 537 | 460 | 390 | 520 | 531 | 463 | 276 | 206 | 187 | 180 | 184 | | | | | | 450 | 520 | | | 273 | 217 | 182 | 177 | 195 | | 30 | 296 | 672 | 440 | | | 597 | 433 | | | | | 193 | | 31 | 290 | | 380 | 1000 | | 573 | | 268 | | 180 | 173 | | | TOTAL | 8862 | 10390 1 | 5365 | 11380 | 20670 | 14584 | 15498 | 10226 | 6859 | 6159 | 5574 | 5337 | | MEAN | 286 | 346 | 496 | 367 | 713 | 470 | 517 | 330 | 229 | 199 | 180 | 178 | | MAX | 313 | 672 | 717 | 1000 | 1860 | 597 | 926 | 405 | 263 | 238 | 205 | 225 | | MIN | 273 | 288 | 375 | 270 | 420 | 375 | 380 | 268 | 199 | 180 | 163 | 154 | | CFSM | | | | .70 | 1.36 | .90 | | .63 | .44 | .38 | .34 | .34 | | | . 55 | . 66 | .95 | | | | .99 | | | | | | | IN. | .63 | .74 | 1.09 | . 81 | 1.47 | 1.04 | 1.10 | .73 | .49 | . 44 | . 40 | . 38 | CAL YR 1987 TOTAL 136076 MEAN 373 MAX 902 MIN 230 CFSM .71 IN. 9.68 WTR YR 1988 TOTAL 130904 MEAN 358 MAX 1860 MIN 154 CFSM .68 IN. 9.31 #### 05437500 ROCK RIVER AT ROCKTON, II. LOCATION.--Lat 42°26'55", long 89°04'11", in SW1/4 NE1/4 sec.24, T.46 N., R.1 E., Winnebago County, Hydrologic Unit 07090005, on right bank 750 ft downstream from State Highway 75 in Rockton, 1.0 mi downstream from Pecatonica River, and at mile 156.1. DRAINAGE AREA. -- 6.363 mi². PERIOD OF RECORD.--June 1903 to July 1906, October 1906 to March 1909, July 1914 to September 1919, October 1939 to current year. Published as "below mouth of Pecatonica River at Rockton" 1903-9; as "at Rockford" 1914-19. Monthly discharge only for some periods, published in WSP 1308. REVISED RECORD. -- WSP 325: 1903-9. WSP 895: 1904(M). WSP 1508: 1915, 1916-17(M). WDR IL-75-1: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 707.94 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 1, 1906, nonrecording gage at site 800 ft upstream at datum about 1 ft higher. Oct. 1, 1906, to Mar. 31, 1909, nonrecording gage at site 800 ft upstream at datum about 2 ft higher. July 30, 1914, to Apr. 30, 1919, nonrecording gage at site at Rockford about 21 mi downstream, at different datum. Oct. 1, 1939, to Aug. 10, 1973, at site 800 ft upstream at same datum. REMARKS.--Estimated daily discharges: Dec. 24 to Feb. 26. Water-discharge records good except those for estimated daily discharges, which are poor. Low flow regulated by powerplant above station. U.S. Army Corps of Engineers satellite telemeter at station. AVERAGE DISCHARGE.--56 years (water years 1904-5, 1915-19, 1940-88), 4,101 ft³/s, 8.75 in/yr, discharge for site at Rockford adjusted for difference in drainage area. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 32,500 ${\rm ft}^3/{\rm s}$, Mar. 30, 1916, gage height, 13.06 ft, site and datum then in use; minimum daily, 501 ${\rm ft}^3/{\rm s}$, Sept. 14, 1958. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood in February 1937 reached a stage of 14.6 ft (backwater from ice), from painted floodmark. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 12,000 ft³/s, Feb. 4; maximum gage height, 12.05 ft, Feb. 9 (ice jam); minimum daily discharge, 1,040 ft³/s, Sept. 8, 11, 15. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT SEP NOV DEC JAN FEB MAR APR MAY .TIIN JUI. AUG 6280 2.0 5250 2.5 2.6 ___ TOTAL MEAN •1203 MAX MIN .91 CFSM .58 . 89 .90 1.09 1.04 .19 . 56 .26 1.03 . 29 . 25 . 22 .21 1.04 TOTAL 1542280 MEAN 4225 MAX 7890 TOTAL 1420400 MEAN 3881 MAX 12000 CAL YR 1987 CFSM .66 IN. 9.02 MIN 2370 WTR YR 1988 MIN 1040 CFSM .61 IN. 8.30 ### 05527800 DES PLAINES RIVER AT RUSSELL, IL LOCATION.--Lat 42°29'22", long 87°55'32", in SE1/4 sec.3, T.46 N., R.11 E., Lake County, Hydrologic Unit 07120004, on right bank at upstream side of Russell Road bridge, 0.3 mi west of Russell, 7.2 mi upstream from Mill Creek, and at mile 109.3. DRAINAGE AREA. -- 123 mi². PERIOD OF RECORD.--Occasional low-flow measurements, water years 1961-63, and annual maximum, water years 1962-66. June 1967 to current year. REVISED RECORDS.--WDR IL-75-1: Drainage area. WDR IL-76-1: 1960-68(M), 1973(M). GAGE.--Water-stage recorder. Datum of gage is 662.00 ft above National Geodetic Vertical Datum of 1929. Oct. 17, 1961, to June 29, 1967, crest-stage gage at left downstream side of bridge at datum 4.29 ft higher. REMARKS.--Estimmated daily discharges: Jan. 8-16 and Feb. 12-28. Water-discharge records good except those for estimated daily discharges, which are poor. Gage-height telemeter at station. AVERAGE DISCHARGE.--21 years, 100 ft³/s, 11.04 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,120 ft³/s, Mar. 21, 1979, gage height, 9.69 ft; maximum gage height, 10.75 ft, Mar. 6, 1976, and Sept. 27, 1986; no flow at
times during several years. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 442 ft³/s, Apr. 8, gage height, 7.57 ft; maximum gage height, 8.07 ft, Feb. 2; no flow for many days. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |--|---------------------------------------|---|--|--|--|---|--|--|------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 46
37
32
29
30 | 30
31
33
32
30 | 125
124
116
108
99 | 236
218
189
166
144 | 360
403
384
355
318 | 203
209
203
189
171 | 194
205
247
301
310 | 68
58
49
43
39 | 4.4
3.8
3.7
3.6
3.5 | 1.1
1.2
1.3
1.2 | .00
.00
.00
.00 | .00
.00
.00
.12
.20 | | 6
7
8
9
10 | 23
20
19
19 | 28
27
28
28
27 | 90
102
163
198
225 | 124
107
90
74
62 | 296
265
221
179
154 | 158
152
162
178
177 | 328
407
438
431
402 | 35
32
30
34
49 | 3.8
3.9
3.4
2.7
2.3 | 1.2
1.2
1.0
1.0 | .00
.00
.00
.00 | .10
.13
.09
.04 | | 11
12
13
14
15 | 18
26
30
31
29 | 27
26
14
7.8 | 247
262
260
251
243 | 59
68
62
64
60 | 141
129
120
108
112 | 167
162
152
127
93 | 365
322
302
248
210 | 48
42
28
18
15 | 1.7
.85
1.0
1.3 | 1.2
.94
1.1
1.2
1.0 | .00
.00
.00
.00
.28 | .80
.80
.44
.60 | | 16
17
18
19
20 | 28
31
32
31
32 | 16
20
13
16
15 | 234
211
186
167
186 | 77
116
186
227
297 | 110
100
101
106
100 | 64
53
44
38
30 | 179
158
140
123
105 | 12
10
10
8.8
13 | .72
.86
1.2
1.4
1.2 | 1.1
1.2
.83
.77
.65 | 3.5
4.1
3.4
3.1
2.5 | .78
.98
1.0
1.3 | | 21
22
23
24
25 | 31
31
28
28
31 | 12
11
13
15
25 | 219
239
255
263
282 | 356
359
355
337
311 | 92
100
110
108
103 | 21
14
21
36
45 | 86
74
78
81
77 | 6.8
4.8
4.6
4.6
3.6 | 1.1
1.1
1.2
1.2 | .69
.67
.57
.46 | 2.3
2.1
1.8
1.2
.73 | 1.4
2.4
3.2
2.3
1.7 | | 26
27
28
29
30
31 | 32
33
34
33
33 | 51
61
63
96
115 | 293
289
285
290
268
246 | 286
260
231
209
231
301 | 110
120
148
188 | 43
32
24
60
135
177 | 66
67
76
78
78 | 3.1
2.4
2.1
2.1
3.9
4.7 | .90
.84
.89
1.3
1.1 | .07
.00
.00
.00
.00 | .61
.70
.54
.22
.03 | 1.2
.90
.53
.61
1.6 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 907
29.3
46
18
.24
.27 | 920.8
30.7
115
7.8
.25
.28 | 6526
211
293
90
1.71
1.97 | 5862
189
359
59
1.54
1.77 | 5141
177
403
92
1.44
1.55 | 3340
108
209
14
.88
1.01 | 6176
206
438
66
1.67
1.87 | 684.5
22.1
68
2.1
.18
.21 | 57.13
1.90
4.4
.72
.02 | 24.28
.78
1.3
.00
.01 | 27.11
.87
4.1
.00
.01 | 25.91
.86
3.2
.00
.01 | CAL YR 1987 TOTAL 29583.9 MEAN 81.1 MAX 421 MIN 1.2 CFSM .66 IN. 8.95 WTR YR 1988 TOTAL 29691.73 MEAN 81.1 MAX 438 MIN .00 CFSM .66 IN. 8.98 ### 05543830 FOX RIVER AT WAUKESHA, WI LOCATION.--Lat 43°00'17", long 88°14'37", in SW 1/4 sec.3, T.6 N., R.18 E., Waukesha County, Hydrologic Unit 07120006, on left bank 20 ft downstream from Prairie Street bridge in Waukesha, 1.0 mi downstream from dam and 3.2 mi downstream from Pewaukee River. DRAINAGE AREA. -- 126 mi². PERIOD OF RECORD. -- January 1963 to current year. GAGE.--Water-stage recorder. Datum of gage is 793.04 ft above National Geodetic Vertical Datum of 1929 (levels by city of Waukesha). REMARKS.--Estimated daily discharge: Ice periods listed in rating table below. Records good except for ice-affected periods, which are fair. There is occasional regulation from mill dam 1.0 mi upstream. AVERAGE DISCHARGE. -- 25 years, 99.5 ft³/s, 10.72 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,260 $\rm ft^3/s$, Apr. 22, 1973, gage height, 7.42 ft; minimum, 3.0 $\rm ft^3/s$, Jan. 1, 1964, gage height, 1.52 ft. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 793 ft³/s, Feb. 1, gage height, 5.18 ft; minimum daily, 9.9 ft³/s, July 10. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used July 4-7 and Sept. 1-30; stage-discharge relation affected by ice Dec. 17-19, Dec. 31 to Jan. 11, Jan. 26-28, and Feb. 4-17.) | 1.7 | 6.0 | 2.4 | 64 | |-----|-----|-----|-----| | 1.8 | 10 | 3.0 | 166 | | 2.0 | 21 | 4.0 | 411 | | 2.2 | 40 | 5.0 | 729 | | DISCHARGE, | CUBIC | FEET | PER | SECOND, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | |-------------|-------|------|-----|---------|-------|------|---------|------|----|-----------|------| | MEAN VALUES | | | | | | | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|----------------------------------|----------------------------------|--|--|--|--|--|---|--------------------------------|-----------------------------------|---------------------------------------|----------------------------------| | 1 | 103 | 71 | 164 | 120 | 697 | 125 | 192 | 111 | 30 | 19 | 15 | 21 | | 2 | 84 | 77 | 152 | 110 | 542 | 137 | 193 | 98 | 30 | 15 | 16 | 21 | | 3 | 72 | 78 | 137 | 94 | 466 | 129 | 254 | 77 | 31 | 14 | 16 | 25 | | 4 | 65 | 79 | 109 | 82 | 340 | 107 | 276 | 71 | 28 | 13 | 19 | 47 | | 5 | 64 | 71 | 97 | 74 | 220 | 101 | 265 | 68 | 27 | 15 | 16 | 66 | | 6
7
8
9
10 | 86
65
59
55
53 | 66
66
64
64 | 88
111
197
268
273 | 68
64
60
58
56 | 160
120
110
100
98 | 105
124
161
191
171 | 338
429
376
299
253 | 64
59
56
59
65 | 30
29
24
23
23 | 15
13
14
13
9.9 | 14
13
35
32
27 | 38
28
24
23
19 | | 11 | 50 | 54 | 250 | 58 | 96 | 153 | 220 | 62 | 22 | 12 | 22 | 17 | | 12 | 60 | 96 | 231 | 60 | 94 | 156 | 187 | 62 | 22 | 14 | 20 | 19 | | 13 | 59 | 27 | 207 | 61 | 94 | 152 | 155 | 60 | 23 | 15 | 23 | 20 | | 14 | 30 | 41 | 185 | 60 | 92 | 127 | 135 | 52 | 24 | 14 | 16 | 20 | | 15 | 70 | 43 | 153 | 55 | 92 | 109 | 121 | 49 | 23 | 12 | 28 | 19 | | 16 | 61 | 52 | 124 | 55 | 90 | 104 | 111 | 47 | 22 | 14 | 22 | 19 | | 17 | 56 | 79 | 120 | 79 | 90 | 99 | 104 | 47 | 20 | 15 | 21 | 21 | | 18 | 61 | 80 | 120 | 133 | 91 | 96 | 81 | 48 | 18 | 15 | 30 | 18 | | 19 | 77 | 73 | 130 | 217 | 91 | 98 | 82 | 47 | 18 | 14 | 26 | 30 | | 20 | 58 | 67 | 255 | 501 | 89 | 94 | 83 | 45 | 20 | 13 | 21 | 32 | | 21 | 55 | 56 | 292 | 474 | 81 | 87 | 80 | 43 | 21 | 13 | 16 | 27 | | 22 | 57 | 54 | 283 | 435 | 86 | 83 | 78 | 40 | 20 | 14 | 17 | 88 | | 23 | 57 | 59 | 276 | 343 | 84 | 91 | 133 | 41 | 20 | 15 | 61 | 114 | | 24 | 56 | 60 | 277 | 238 | 82 | 99 | 144 | 39 | 20 | 14 | 40 | 70 | | 25 | 58 | 98 | 301 | 176 | 75 | 105 | 134 | 37 | 21 | 15 | 25 | 43 | | 26
27
28
29
30
31 | 62
76
77
68
30
53 | 113
101
123
175
170 | 284
248
226
191
174
140 | 150
130
120
117
270
646 | 79
92
101
112
 | 114
105
115
172
198
207 | 127
147
158
144
126 | 36
35
29
29
28
28 | 16
18
23
27
21 | 17
16
16
16
15 | 24
21
17
19
21
20 | 34
31
27
25
25 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 1937
62.5
103
30
.50 | 2317
77.2
175
27
.61 | 6063
196
301
88
1.55 | 5164
167
646
55
1.32
1.52 | 4564
157
697
75
1.25
1.35 | 3915
126
207
83
1.00
1.16 | 5425
181
429
78
1.44
1.60 | 1632
52.6
111
28
.42
.48 | 694
23.1
31
16
.18 | 442.9
14.3
19
9.9
.11 | 713
23.0
61
13
.18
.21 | 1011
33.7
114
17
.27 | CAL YR 1987 TOTAL 39849 MEAN 109 MAX 454 MIN 27 CFSM .87 IN. 11.76 WTR YR 1988 TOTAL 33877.9 MEAN 92.6 MAX 697 MIN 9.9 CFSM .73 IN. 10.00 306 ### ILLINOIS RIVER BASIN ### 05544200 MUKWONAGO RIVER AT MUKWONAGO, WI LOCATION.--Lat 42°51'24", long 88°19'40", in NE 1/4 NE 1/4 sec.35, T.5 N ., R.18 E., Waukesha County, Hydrologic Unit 07120006, on left bank 100 ft upstream from bridge on State Highway 83 in Mukwonago, 100 ft downstream from railroad bridge, and 800 ft downstream from dam. DRAINAGE AREA. -- 74.1 mi². PERIOD OF RECORD .-- July 1973 to current year. REVISED RECORDS. -- WDR WI-79-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 779.23 ft above National Geodetic Vertical Datum of 1929 (Southeastern Wisconsin Regional Planning Commission bench mark). Prior to Oct. 19, 1981, at datum 0.85 ft higher. REMARKS.--Estimated daily discharges: Oct. 1-6 and ice effect, Dec. 17. Records good except for estimated daily discharges,
which are fair. Discharge affected by manipulation of gates at dams 800 ft and 11.4 mi upstream. AVERAGE DISCHARGE.--15 years, 58.7 ft³/s, 10.76 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 300 ft³/s, Mar. 5, 1976, gage height, 2.50 ft; maximum gage height, 3.55 ft, Sept. 29, 1986; minimum daily, 1.8 ft³/s, Dec. 23. 1976. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 165 $\rm ft^3/s$, Feb. 2, gage height, 2.82 ft; minimum daily, 10 $\rm ft^3/s$, June 25 and July 15. RATING TABLE (gage height, in feet, and discharge, in cubic feet per second). (Shifting-control method used July 5 to Aug. 10.) | 1.8 | 8 | 2.4 | 64 | |-----|----|-----|-----| | 2.0 | 15 | 2.6 | 103 | | 2.2 | 34 | 2.8 | 151 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |--|--------------------------------|---------------------------------|---|----------------------------------|--|---|---|----------------------------------|--------------------------------|---------------------------------------|---------------------------------------|----------------------------------| | 1
2
3
4
5 | 32
32
30
28
27 | 42
43
44
44 | 54
76
90
76
60 | 64
63
63
63
62 | 115
144
150
133
116 | 57
55
54
55
57 | 102
109
108
106
104 | 76
43
15
20
26 | 16
14
15
16
17 | 14
14
13
12
13 | 13
13
12
12
14 | 19
19
21
25
26 | | 6
7
8
9
10 | 26
26
26
27
26 | 41
41
42
42 | 57
58
56
87
103 | 59
55
50
46
45 | 107
101
54
35
39 | 58
66
77
76
74 | 113
113
108
103
98 | 40
43
42
40
42 | 20
19
16
18
18 | 13
12
12
12
12 | 14
14
16
20
19 | 51
85
100
99
93 | | 11
12
13
14
15 | 26
18
14
17
19 | 43
43
41
40
40 | 105
102
95
80
75 | 41
40
39
39
40 | 43
46
49
51
54 | 73
73
72
72
69 | 92
90
87
81
50 | 46
47
44
42
42 | 17
15
16
15
15 | 12
12
11
11
10 | 23
24
23
21
20 | 84
74
64
54
45 | | 16
17
18
19
20 | 21
25
27
29
32 | 40
45
47
61
65 | 77
76
76
75
83 | 41
41
43
48
66 | 55
56
55
52
51 | 68
67
66
65
63 | 38
40
38
39
40 | 37
39
39
38
35 | 14
14
13
12
11 | 11
12
13
13
15 | 27
29
25
27
26 | 37
34
29
29
31 | | 21
22
23
24
25 | 46
48
45
44
43 | 60
58
46
38
40 | 86
71
67
71
74 | 78
110
115
107
99 | 51
51
50
52
52 | 61
60
62
60 | 41
41
48
50
54 | 30
28
28
29
29 | 11
12
13
12
10 | 16
15
16
16
17 | 25
24
31
29
27 | 29
36
44
47
50 | | 26
27
28
29
30
31 | 43
44
43
43
44 | 41
44
71
98
63 | 75
76
75
74
73
71 | 91
84
81
63
50 | 54
55
57
57
 | 60
59
60
69
78
82 | 72
97
91
85
80 | 28
27
26
25
23
21 | 11
11
12
15 | 16
15
14
14
13 | 24
22
22
21
20
20 | 50
48
39
35
34 | | TOTAL
MEAN
MAX
MIN
CFSM
IN. | 993
32.0
48
14
.43 | 1448
48.3
98
38
.65 | 2374
76.6
105
54
1.03
1.19 | 1955
63.1
115
39
.85 | 1985
68.4
150
35
.92
1.00 | 2028
65.4
82
54
.88
1.02 | 2318
77.3
113
38
1.04
1.16 | 1090
35.2
76
15
.47 | 433
14.4
20
10
.19 | 411
13.3
17
10
.18
.21 | 657
21.2
31
12
.29
.33 | 1431
47.7
100
19
.64 | CAL YR 1987 TOTAL 19221 MEAN 52.7 MAX 141 MIN 10 CFSM .71 IN. 9.65 WTR YR 1988 TOTAL 17123 MEAN 46.8 MAX 150 MIN 10 CFSM .63 IN. 8.60 #### IBBINOID RIVER BROIL LOCATION.--Lat 42°54'25", long 88°08'35", in SE 1/4 NW 1/4 sec.9, T.5 N., R.20 E., Waukesha County, Hydrologic Unit 07120006, at Muskego. 425425088083500 LITTLE MUSKEGO LAKE AT MUSKEGO, WI DRAINAGE AREA. -- 11.6 mi². ### LAKE-STAGE RECORDS PERIOD OF RECORD. -- January 1987 to current year. --- MIN --- --- --- GAGE.--Staff gage at lake inlet read by Wendy Bennett. Datum of gage is 693.40 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Lake levels controlled at dam outlet. Lake levels drawn down approximately 1.5 ft from October through April. Published previously as station number 425450088083500. EXTREMES FOR PERIOD OF RECORD.--Maximum gage-height observed, 99.75 ft, Aug. 17, 1987; minimum observed, 97.44 ft, Jan. 28. EXTREMES FOR CURRENT YEAR.--Maximum gage-height observed, 98.96 ft, Sept. 25; minimum observed, 98.32 ft, July 14-16, Aug. 3, 4. #### GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 98.70 98.42 98.36 98.34 98.90 98.88 98.68 98.42 98.34 98.34 _ _ _ ___ ___ ---___ ------98.88 98.66 98.42 98.32 98.34 ------------_---___ ___ 98.86 98.66 98.42 98.32 98.56 ___ ___ 5 ---------------98.62 98.85 98.66 98.40 98.36 6 ___ 98.84 98.64 98.40 ___ ___ ---___ _ _ _ ------98.84 98.62 98.39 98.34 98.62 ---___ 8 ---------98.86 98.61 98.38 98.34 98.62 ------------___ ---98.84 98.60 98.36 98.41 98.64 10 ___ ---98.82 98.60 98.36 98.42 98.62 ___ ___ ---11 ------___ ---98.82 98.59 98.36 98.42 98.62 12 ---___ ---------------98.58 98.58 98.44 98.62 98.86 98.34 ------------98.34 98.46 13 ---98.82 98.62 ___ ---------___ ___ 98.46 98.64 98.82 ------------___ 15 ------98.84 98.56 98.32 98.46 98.66 16 98.84 98.56 98.32 98.44 98.66 ---17 ------------98.82 98.54 98.36 98.44 98.66 ___ ---___ 18 ---------98.80 98.54 98.42 98.44 98.68 19 ---------------- - **-**---98.78 98.52 98.52 98.42 98.44 98.68 98.70 98.76 98.38 98.42 20 21 ___ 98.76 98.52 98.42 98.42 98.67 98.50 98.48 98.46 22 23 ------98.42 98.42 ---------___ ---98.74 98.42 98.70 ------------98.82 ---------98.74 98.40 98.40 98.42 98.74 98.92 25 ---------------___ 26 ------___ ___ ---98.74 98.74 98 42 98.40 98.42 98.94 ---98.92 27 ---98.77 ---------98.42 98.38 98.40 ------------98.42 98.72 98.36 98.40 ---29 ---___ ---_ _ _ ------98.72 98.44 98.38 98.90 ------___ 30 ---------98.70 98.42 98.36 98.38 98.90 ___ 31 ---------___ ------98.72 98.36 98.36 MEAN 98.80 98.38 98.40 98.68 98.55 MAX ---___ ------___ ___ ---98.90 98.70 98.42 98.46 98.96 --- --- 98.70 98.42 98.32 98.32 98.34 ### 425425088083500 LITTLE MUSKEGO LAKE AT MUSKEGO, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 17, 1986 to current year. REMARKS.--Lake sampled about 1,000 ft north-northwest of dam outlet at an approximate lake depth of 65 ft. An aeration system in the lake may disrupt the physical and chemical measurements in the lake. Water-quality analyses by Wisconsin State Laboratory of Hygiene. January sampling during ice cover. Published previously as station number 425450088083500. WATER-QUALITY DATA, OCTOBER 19, 1987 TO APRIL 13, 1988 (Milligrams per liter unless otherwise indicated) | | 0ct | . 19 | | Jan. 27 | 7 | Apr. 13 | | | |--|------------|-------------|------------|---------|-------------|------------|-------------|--| | Depth of sample (ft)
Specific conductance (µS/cm) | 1.5
612 | 60.0
617 | 1.5
629 | 3.0 | 64.0
750 | 1.5
648 | 34.0
650 | | | pH (units) | 7.90 | 8.10 | 6.90 | 6.90 | 7.50 | 8.40 | 8.30 | | | Water temperature (°C) | 11.5 | 11.5 | 1.5 | 1.5 | 2.5 | 10.5 | 9.5 | | | Color (Pt-Co. scale) | | | | | | 15 | 15 | | | Turbidity (NTU) | | | | | | 3.2 | 7.7 | | | Secchi-disc (meters) | | . 4 | 0. | | _ | | 0.9 | | | Dissolved oxygen | 8.3 | 6.7 | 10.9 | 10.9 | 9.2 | 12.5 | 11.2 | | | Hardness, total (as CaCO3) | - | | | | | 260 | 260 | | | Calcium, dissolved (Ca) | | | | | | 51 | 51 | | | Magnesium, Dissolved (Mg) | | - | | | | 31 | 31 | | | Sodium, dissolved (Na) | | | ~ | | | 32 | 32 | | | Potassium, dissolved (K) | | | | | | 2.5 | 2.5 | | | Alkalinity, total (as CaCO3) | | | ~ | | | 210 | 212 | | | Sulfate, dissolved (SO,) | | | | | | 39 | 39 | | | Fluoride, total (as F) | | | | | | 0.1 | 0.1 | | | Chloride, dissolved (Cl) | | | | | | 61 | 60 | | | Silica, dissolved (SiO ₂) | | | | | | 3.7 | 3.7 | | | Solids, dissolved, at 180°C | | | | | | 368 | 372 | | | Nitrogen, nitrite plus | | | | | | | | | | nitraté, diss (as N) | | | | | | 0.28 | 0.28 | | | Nitrogen, ammonia, diss (as N) | | | | | | <0.02 | <0.02 | | | Nitrogen, ammonia plus | | | | | | | | | | organic, total (as N) | | | | | | 0.80 | 1.0 | | | Total phosphorus (as P) | 0.046 | 0.071 | 0.090 | | 0.121 | 0.041 | 0.046 | | | Phosphorus, ortho, diss (as P) | 0.013 | 0.039 | 0.018 | | 0.093 | 0.005 | 0.005 | | | Iron, dissolved (Fe) µg/L | | | | | | <100 | <100 | | | Manganese, dissolved (Mn) µg/L | | | | | | <40 | <40 | | | Chlorophyll a, phyto. (µg/L) | 17 | | | 42 | | 29 | | | ### 425425088083500 LITTLE MUSKEGO LAKE AT MUSKEGO, WI--CONTINUED ## WATER-QUALITY DATA, MAY 12 TO JUNE 8, 1988 (Milligrams per liter unless otherwise indicated) | | | May 12 | | | May 25 | | June 08 | | | | |-----------------------------------|-------|--------|-------|-------|--------|-------|---------|-------|-------|--| | | | | | | | | | | | | | Depth of sample (ft) | 1.5 | 33.0 | 65.0 | 1.5 | 48.0 | 64.0 | 1.5 | 51.0 | 62.0 | | | Specific conductance (µS/cm) | 654 | 667 | 668 | 640 | 663 | 675 | 622 | 658 | 670 | | | pH (units) | 8.50 | 8.30 | 7.80 | 8.60 | 7.90 | 7.80 | 8.70 | 7.90 | 7.80 | | | Water
temperature (°C) | 15.5 | 12.5 | 9.5 | 16.5 | 12.5 | 9.5 | 22.5 | 15.0 | 10.5 | | | Secchi-disc (meters) | 1. | 6 | | 1.6 | | | 1.1 | | | | | Dissolved oxygen | 9.0 | 6.8 | 0.8 | 9.4 | 2.9 | 0.1 | 9.9 | 2.1 | 0.1 | | | Total phosphorus (as P) | 0.012 | 0.008 | | 0.013 | 0.024 | 0.121 | 0.011 | 0.039 | 0.018 | | | Phosphorus, ortho, diss (as P) | 0.002 | 0.002 | 0.054 | 0.007 | 0.020 | | 0.003 | 0.039 | 0.021 | | | Chlorophyll a, phyto. $(\mu g/L)$ | 6 | | | 11 | | | 11 | | | | ### 425425088083500 LITTLE MUSKEGO LAKE AT MUSKEGO, WI--CONTINUED WATER-QUALITY DATA, JUNE 21 TO AUGUST 9, 1988 (Milligrams per liter unless otherwise indicated) 655 7.20 19.0 0.270 0.240 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER ### ILLINOIS RIVER BASIN ### 425425088083500 LITTLE MUSKEGO LAKE AT MUSKEGO, WI--CONTINUED ## WATER-QUALITY DATA, AUGUST 22 TO SEPTEMBER 21, 1988 (Milligrams per liter unless otherwise indicated) | | Aug. 22 | Aug. 30 | Sep. 07 | Sep. 21 | |---|--|---|---|---| | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Secchi-disc (meters) | 1.5 57.0 60.0
616 630 634
8.20 7.50 7.40
25.5 23.0 22.0 | 1.5 58.0
624 622
8.10 8.10
22.5 22.0 | 1.5 66.0
627 626
8.10 8.10
21.0 20.0 | 1.5 66.0
617 611
8.20 8.20
19.0 19.0 | | Dissolved oxygen Total phosphorus (as P) Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | 5.6 0 0
0.038 0.150 0.17
0.004 0.139 0.14
23 | 6.8 5.5
0 0.039 0.060 | 7.7 6.8
0.035 0.034
0.011 0.012
12 | 7.2 6.8
0.041 0.040
0.005 0.008
23 | | 8-22-88 | 8-30-88 | 9-7-88 | 9-21-88 | 3 | | | DISSOLVED OXYGE | N, IN MILLIGRAMS PER LITEI | २ | | | O 5 10 15 O 20 HL 10 Diss. Oxygen Water Temp. | 0
10
20
30
40
50
60 | 0
10 -
20 -
30 -
40 -
50 - | 20 0 5 10
10 - 10
20 - 30 - 40
50 - 60 - 10 20 | 30 | | | | | | | | | PH, IN | STANDARD UNITS | | | | O 6 7 8 9 O 7 8 9 O 7 8 9 O 8 9 O 8 9 O 7 8 9 O 8 9 O 7 8 9 O 8 9 O 8 9 O 8 9 O 8 9 O 9 9 | 10 6 7 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 6 7 8 9 10 - 20 - 30 - 40 - 50 - 60 - | 10 6 7 8 0 10 - 10 - 20 - 30 - 40 - 50 - 60 - | 9 10 | 500 600 700 · 800 500 600 700 800 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER 500 600 700 800 500 600 700 425344088070100 BIG MUSKEGO LAKE, BASS BAY, NEAR MUSKEGO, WI LOCATION.--Lat 42°53'44", long 88°07'01", in SW 1/4 NE 1/4 sec.15, T.5 N., R.20 E., Waukesha County, Hydrologic Unit 07120006, 1.3 mi southeast of Muskego. PERIOD OF RECORD.--February 16 to September 30, 1988. REMARKS.--Lake ice-covered during Feb. 16 and Mar. 9 sampling. ## WATER-QUALITY DATA, FEBRUARY 16 TO APRIL 14, 1988 (Milligrams per liter unless otherwise indicated) | (Milligi | ams per liter unless | otherwise indicate | ea) | |---|--|---|---| | | Feb. 16 | Mar.^09 | Apr. 14 | | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Secchi-disc (meters) Dissolved oxygen Total phosphorus (as P) Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | 1.5 22
586 728
7.80 7.40
2.0 3.5
0.8
10.8 0
0.111 0.320
0.063 0.265
15 | 1.5 21
529 684
8.10 7.20
5.5 3.5
1.0
19.6 0
0.056 0.183
<0.001 0.158
56 | 1.5 22
553 553
8.50 8.40
10.5 10.5
0.7
11.9 11.6
0.067 0.061
<0.002 <0.002
40 | | 2-16-88 | 39-88 | 4 <u></u> | 1488 | | DIS | SOLVED OXYGEN, IN MILL | IGRAMS PER LITER | | | Water Temp. Water Temp. Diss. Oxygen 0 10 20 | 20 0 5 10 10 10 20 10 20 ATER TEMPERATURE, IN C | 10 - 10 - 10 DEGREES CELSIUS | 20 30 | | | PH, IN STANDARI | O UNITS | | 425344088070100 BIG MUSKEGO LAKE, BASS BAY, NEAR MUSKEGO, WI--CONTINUED WATER-QUALITY DATA, JUNE 15 TO AUGUST 24, 1988 (Milligrams per liter unless otherwise indicated) ### 425301088061300 BIG MUSKEGO LAKE, NORTH SITE, NEAR MUSKEGO, WI LOCATION.--Lat $42^{\circ}53^{\circ}01^{\circ}$, long $88^{\circ}06^{\circ}13^{\circ}$, in SE 1/4 NW 1/4 sec.23, T.5 N., R.20 E., Waukesha County, Hydrologic Unit 07120006, near Muskego. DRAINAGE AREA. -- 33.9 mi². PERIOD OF RECORD.--February 16 to September 30, 1988. REMARKS.--Lake sampled at north end of lake at a depth of about 3 ft. Lake ice-covered during February 16 and March 9 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, FEBRUARY 16 TO AUGUST 24, 1988 (Milligrams per liter unless otherwise indicated) | | Feb. 16 | Mar. 09 | Apr. 14 | June 15 | Jul y 2 0 | Aug. 24 | |-------------------------------|----------------|---------------|---------------|-------------------|-------------------------|---------| | | | | | | | | | Depth of sample (ft) | 0.5 2.7 | 0.5 2.0 | 0.5 2.5 | 0.5 2.5 | 0.5 1.0 | 0.5 | | Specific conductance (µS/cm) | 579 604 | 417 497 | 500 500 | 500 499 | 600 600 | 585 | | pH (units) | 7.30 7.70 | 8.50 8.40 | 8.40 8.40 | 9.20 9.2 0 | 8.60 8.60 | 9.10 | | Water temperature (°C) | 0.0 1.5 | 2.5 4.5 | 11.0 11.0 | 26.0 26.0 | 26.5 26.5 | 20.0 | | Secchi-disc (meters) | 0.3 | 0.7 | 0.5 | 0.2 | 0.2 | 0.1 | | Dissolved oxygen | 18.2 16.5 | 21.0 23.1 | 9.9 9.9 | 10.8 10.8 | 8.8 8.8 | 9.6 | | Total phosphorus (as P) | 0.163 0.134 | 0.038 0.042 | 0.059 0.103 | 0.230 0.240 | 0.230 0.180 | 0.330 | | Phosphorus, ortho, diss (as I | 2) 0.003
0.002 | <0.001 <0.001 | <0.002 <0.002 | 0.004 0.004 | 0.008 0.007 | 0.008 | | Chlorophyll a, phyto. (µg/L) | 290 | 20 | 31 | 46 | 81 | 68 | ### 425212088072800 BIG MUSKEGO LAKE, SOUTH SITE, NEAR MUSKEGO, WI LOCATION.--Lat 42°52'12", long 88°07'28", in NW 1/4 NW 1/4 sec.27, T.5 N., R.20 E., Waukesha County, Hydrologic Unit 07120006, near Muskego. DRAINAGE AREA. -- 33.9 mi². PERIOD OF RECORD. -- February 16 to September 30, 1988. REMARKS.--Lake sampled at south end of lake at a depth of about 3 ft. Lake ice-covered during February 16 and March 9 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, FEBRUARY 16 TO AUGUST 24, 1989 (Milligrams per liter unless otherwise indicated) | | | • | | | | | | | | | | |--|--------------|-------------------|----------------------|----------------------------|--------------------|--------------------|-----------------|-----------------|-------------------------|-----------------|--------------------| | | Feb | . 16 | Mar | . 0 9 | Ap | or. 14 | Ju | ne 15 | Ju | ly 20 | Aug. 24 | | Depth of sample (ft) Specific conductance (µS/cm) pH (units) | 0.5
592 6 | 2.8
38
7.40 | 0.5
200 5
7.40 | 2.0
507
7.2 0 | 0.5
497
8.40 | 2.0
497
8.50 | 0.5

9.20 | 2.0

9.20 | 0.5

9. 00 | 1.0

9.00 | 0.5
594
9.10 | | Water temperature (°C)
Color (Pt-Co. scale) | 0.5 | 2.0 | 0.5 | 3.0 | 10.5
40 | 11.0 | 26.5
 | 26.5 | 28.0 | 28.0 | 23.5 | | Turbidity (NTU) | | | | | 9.1 | | | | | | | | Secchi-disc (meters) | 0. | | 0. | | | 1.4 | | . 2 | | . 1 | 0.1 | | Dissolved oxygen | 16.7 | 9.9 | 6.4 | 12.8 | 10.2 | 10.3 | 11.5 | 11.5 | 12.1 | 12.1 | 10.0 | | Hardness, total (as $CaCO_3$) | | | | | 2 0 0 | | | | | | | | Calcium, dissolved (Ca) | | | | | 42 | | | | | | | | Magnesium, Dissolved (Mg) | | | | | 23 | | | | | | | | Sodium, dissolved (Na) | | | | | 18 | | | | | | | | Potassium, dissolved (K) | | | | | 2.7 | | | | | | | | Alkalinity, total (as $CaCO_3$) | | | | | 17 0 | | | | | | | | Sulfate, dissolved (SO_{λ}) | | | | | 34 | | | | | | | | Fluoride, total (as F) | | | | | 0.1 | | | | | | | | Chloride, dissolved (Cl) | | | | | 33 | | | | | | | | Silica, dissolved (SiO ₂) | | | | | <0.20 | | | | | | | | Solids, dissolved, at 180°C | | | | | 288 | | | | | | | | Nitrogen, nitrite plus | | | | | | | | | | | | | nitrate, diss (as N) | | | | | <0.02 | | | | | | | | Nitrogen, ammonia, diss (as N)
Nitrogen, ammonia plus | | | | | <0.02 | | | | | | | | organic, total (as N) | | | | | 1.7 | | | | | | | | Total phosphorus (as P) | 0.106 | 0.081 | 0.065 | 0.057 | 0.073 | 0.079 | 0.220 | 0.220 | 0.250 | 0.270 | 0.300 | | Phosphorus, ortho, diss (as P) | | 0.003 | 0.002 | 0.002 | 0.003 | | 0.004 | 0.003 | 0.008 | 0.006 | 0.006 | | Iron, dissolved (Fe) µg/L | | | | | <100 | | | | | | | | Manganese, dissolved (Mn) µg/I | | | | | <40 | | | | | | | | Chlorophyll a, phyto. (µg/L) | 19 0 | | 18 | | 36 | | *46 | | *81 | | *68 | ^{*} Approximate value. ### 425109088075000 MUSKEGO LAKE OUTLET NEAR WIND LAKE, WI LOCATION.--Lat 42°51'09", long 88°07'50", in SE 1/4 NE 1/4 sec.33, T.5 N., R.20 E., Waukesha County, Hydrologic Unit 07120006, on right bank 8 ft upstream of dam outlet of Muskego Lake, 700 ft north of Muskego Dam Drive, 2 mi northeast of Wind Lake. DRAINAGE AREA. -- 28.3 mi². ### LAKE-STAGE RECORDS PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder. Datum of gage is 760.00 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 18, 1987, nonrecording gage at same site and datum. REMARKS.--No estimated daily lake levels. Records good. Lake levels regulated by concrete dam with one 5-foot lift gate. EXTREMES FOR CURRENT YEAR.--Maximum gage-height, 12.44 ft, Apr. 6; minimum, 9.81 ft, Sept. 20. | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988
MEAN VALUES | | | | | | | | | | | | | |---|---|---|--|--|---|--|---|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 11.81 | 11.71
11.68
11.58
11.64
11.66 | 11.79
11.79
11.81
11.88 | 11.96

 | 12.26
12.27
12.25
12.21
12.18 | 11.80
11.81
11.81
11.82
11.82 | 11.93
11.90
11.94
11.93
11.94 | 11.77
11.75
11.74
11.72 | 11.36
11.40
11.35
11.29
11.28 | 10.81
10.76
10.74
10.73
10.70 | 10.28
10.24
10.26
10.23
10.29 | 10.11
10.09
10.18
10.36
10.35 | | 6
7
8
9
10 | | 11.65
11.67

11.68
11.68 | 11.89
11.87
11.83
11.82
11.87 | | 12.15
12.11
12.06
12.03
12.01 | 11.81
11.81
11.84
11.85
11.84 | 12.17
12.02
11.99
11.94 | 11.71
11.68
11.56
11.57
11.68 | 11.26
11.24
11.39
11.25
11.16 | 10.68
10.65
10.63
10.60
10.61 | 10.26
10.22
10.27
10.39
10.38 | 10.26
10.20
10.16
10.23
10.23 | | 11
12
13
14
15 | 11.66
11.64

11.64
11.65 | 11.61
11.60
 | 11.91
11.91
11.91
11.91
11.91 | 11.78 | 12.01
11.99
11.97
11.94
11.92 | 11.86
11.87
11.88
11.87
11.86 | | 11.65
11.62
11.67
11.63
11.59 | 11.12
11.09
11.06
11.02
11.05 | 10.61
10.61
10.49
10.54
10.52 | 10.35
10.33
10.27
10.27
10.35 | 10.21
10.17
10.22
10.21
10.20 | | 16
17
18
19
20 | 11.66
11.68
11.69
11.71
11.67 | 11.62

11.70
 | 11.93
11.88
11.90
11.99 | | 11.90
11.88
11.86
11.83
11.83 | 11.84
11.83
11.83
11.82
11.82 | | 11.65
11.64
11.61
11.59
11.58 | 11.06
11.04
10.97
10.89
10.95 | 10.58
10.58
10.57
10.57 | 10.30
10.27
10.39
10.39 | 10.14
10.12
10.15
10.07
10.03 | | 21
22
23
24
25 | 11.68
11.68
11.70
11.73
11.69 | | 12.00
12.01
12.01
12.01
12.02 | 12.07
12.09
12.09
12.09
12.07 | 11.82
11.81
11.80
11.79
11.79 | 11.79
11.74
11.73
11.78
11.73 | 11.67
11.74
11.79
11.77
11.72 | 11.57
11.62
11.63
11.65
11.47 | 10.90
10.93
10.92
10.80
10.84 | 10.56
10.55
10.51
10.48
10.48 | 10.27
10.21
10.27
10.25
10.22 | 10.22
10.30
10.45
10.42
10.42 | | 26
27
28
29
30
31 | 11.67
11.69
11.70
11.70
11.69 | | 12.02
12.01
12.00
12.01
11.99
11.96 | 12.03
12.01
11.98
11.96
11.98
12.16 | 11.78
11.79
11.80
11.80 | 11.76
11.81
11.78
11.87
11.89
11.92 | 11.81 | 11.39
11.38
11.40
11.39
11.38 | 10.90
10.79
10.80
10.93
10.88 | 10.48
10.40
10.38
10.32
10.39
10.33 | 10.21
10.19
10.20
10.20
10.15
10.09 | 10.38
10.45
10.54
10.42
10.40 | | MEAN
MAX
MIN | | | | | 11.96
12.27
11.78 | 11.82
11.92
11.73 | | | 11.06
11.40
10.79 | 10.56
10.81
10.32 | 10.27
10.39
10.09 | 10.26
10.54
10.03 | ### 425109088075000 MUSKEGO LAKE OUTLET NEAR WIND LAKE, WI--CONTINUED ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorders for headwater and tailwater elevations, and concrete dam. Datum of gage is 760.00 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 18, 1987, nonrecording gage for headwater elevations, and concrete dam. REMARKS.--Estimated daily discharges: Oct. 1, 3-10, 13, 31, Nov. 8, 13-15, 17, 19-30, Dec. 1, 16, Jan. 2-13, 15-20, Apr. 10-20, and Apr. 27 to May. 1 Records good except for periods of estimated record, which are fair. One 5-foot lift gate in Muskego Lake dam was in operation during the year; Apr. 6-13 discharge through gate was computed by a rating developed from the tailwater stage. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 115 ${\rm ft}^3/{\rm s}$, Apr. 8; minimum, no flow on many days during current year. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-----------------------------------|---|---|--|--|---|---|---|---|--|---------------------------------|---------------------------------|--------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 22
27
20
16
15 | 14
11
3.2
7.2
8.9 | 27
24
24
27
37 | 49
45
42
39
36 | 102
104
101
94
89 | 26
26
27
28
28 | 44
41
46
45
46 | 23
22
19
18
16 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | | 6
7
8
9
10 | 15
14
13
11 | 7.9
9.9
11
11 | 39
36
30
28
36 |
33
31
29
28
27 | 83
75
67
62
58 | 26
27
32
33
32 | 112
110
115
107
108 | 14
11
3.9
3.2
12 | .0
.0
.59
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | | 11
12
13
14
15 | 8.9
7.2
7.2
7.2
7.9 | 5.1
4.4
4.4
5.1
5.1 | 42
42
42
42
42 | 26
25
24
23
23 | 58
54
51
46
44 | 35
36
37
36
34 | 106
89
60
30
27 | 7.8
5.9
11
6.8
4.5 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | | 16
17
18
19
20 | 8.9
11
12
14
9.9 | 5.8
8.9
13
16
19 | 44
45
38
41
54 | 22
24
29
35
52 | 40
37
35
29
29 | 31
30
29
28
28 | 24
21
19
16
13 | 8.4
7.1
4.8
4.1
3.1 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | | 21
22
23
24
25 | 11
11
13
17
12 | 20
20
21
21
23 | 57
59
59
59
59 | 69
72
73
72
69 | 28
27
25
25
24 | 24
19
17
24
17 | 10
18
25
21
16 | 2.6
6.5
7.3
9.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | | 26
27
28
29
30
31 | 9.9
12
13
13
12 | 26
30
31
31
29 | 59
58
57
58
54
50 | 63
59
53
51
53
84 | 24
25
25
25
 | 21
27
24
36
39
44 | 27
26
25
24
24 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | .0
.0
.0
.0 | | TOTAL MEAN MAX MIN AC-FT CFSM IN. | 394.1
12.7
27
7.2
782
.45
.52 | 433.9
14.5
31
3.2
861
.51
.57 | 1369
44.2
59
24
2720
1.56
1.80 | 1360
43.9
84
22
2700
1.55
1.79 | 1486
51.2
104
24
2950
1.81
1.95 | 901
29.1
44
17
1790
1.03
1.18 | 1395
46.5
115
10
2770
1.64
1.83 | 231.06
7.45
23
.00
458
.26 | 0.59
.020
.59
.00
1.2
.00 | 0.0
.00
.00
.00
.00 | 0.0
.00
.00
.00
.00 | 0.0
.00
.00
.00
.0 | WTR YR 1988 TOTAL 7570.65 MEAN 20.7 MAX 115 MIN .00 AC-FT 15020 CFSM .73 IN. 9.95 ### ILLINOIS RIVER BASIN 425109088075000 MUSKEGO LAKE OUTLET NEAR WIND LAKE, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1987 to September 1988. PERIOD OF DAILY RECORD. -- TOTAL PHOSPHORUS DISCHARGE: October 1987 to September 1988. REMARKS.--Records fair. Total phosphorus discharge was computed using concentration data from samples collected at downstream side of dam at station 05544386; or if very little or no flow, samples were collected at upstream side of dam in Big Muskego Lake. COOPERATION. -- Observer furnished by Wind Lake Management District. EXTREMES FOR CURRENT YEAR.-TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.340 mg/L, Sept. 20; minimum observed, 0.030 mg/L, Jan. 14. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 52.7 lb, Apr. 8; minimum daily, 0.00 lb May 25 to Sept. 30. | | | PHOSPI | HORUS, TOT | TAL, POUNDS | PER I | DAY, WATER MEAN VALU | | ER 1987 | TO SEPTEMBER | 1988 | | | |----------------------------------|--|--------------------------------------|--|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEI | B MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 14.1
16.8
12.1
9.40
8.57 | 3.65
2.86
.83
1.85
2.28 | 6.90
6.16
6.18
6.97
9.59 | 8.10
7.43
6.92
6.42
5.92 | 27.5
28.1
28.1
34.1
41.3 | 6.84
7.24
7.32 | 11.3
10.6
12.1
12.0
12.7 | 6.87
6.50
5.98
6.11
5.86 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 8.34
7.57
6.83
5.62
4.97 | 2.01
2.51
2.78
2.76
2.75 | 10.1
9.39
7.86
7.36
9.49 | 5.41
5.08
4.74
4.57
4.40 | 37.1
30.7
25.4
22.5
20.2 | 6.41
7.36
7.35 | 36.8
43.9
52.7
39.5
30.3 | 5.53
4.68
1.79
1.59
6.41 | 0.00
0.00
0.55
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 4.30
3.38
3.29
3.20
3.41 | 1.27
1.09
1.08
1.25
1.25 | 11.1
11.1
11.2
11.2
11.3 | 4.23
4.06
3.90
3.72
3.67 | 19.4
17.3
15.7
13.6
12.5 | 10.2
11.7
11.0 | 29.0
31.8
22.7
11.3
10.2 | 4.46
3.45
6.51
4.08
2.73 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 3.71
4.43
4.67
5.27
3.60 | 1.41
2.17
3.18
3.93
4.68 | 11.8
12.1
10.3
11.2
14.9 | 3.45
3.69
4.45
5.84
9.55 | 10.9
9.92
9.30
7.66
7.57 | 2 8.03
0 7.69
4 7.36 | 9.07
7.94
7.18
6.05
4.91 | 5.17
4.42
3.03
2.62
2.01 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 3.86
3.73
4.26
5.38
3.67 | 4.94
4.96
5.23
5.24
5.76 | 15.8
16.5
16.5
16.7
16.8 | 14.0
16.0
17.9
19.2
18.2 | 7.26
6.92
6.35
6.36
5.99 | 2 4.87
5 4.32
0 6.04 | 3.77
6.64
9.01
7.39
5.50 | 1.70
4.31
4.90
6.05
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 2.92
3.42
3.58
3.46
3.16
3.41 | 6.54
7.57
7.85
7.87
7.39 | 16.9
16.7
16.5
16.9
15.7
14.5 | 16.2
14.8
13.0
12.7
13.6
22.1 | 5.96
6.13
6.10
6.26 | 3 6.62
0 5.85
4 8.86
- 9.73 | 9.07
8.53
8.01
7.51
7.34 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | TOTAL | 174.41 | 108.94 | 375.70 | 283.25 | 476.04 | 4 232.88 | 474.82 | 106.76 | 0.55 | 0.00 | 0.00 | 0.00 | WTR YR 1988 TOTAL 2233.35 05544386 MUSKEGO CANAL AT MUSKEGO LAKE OUTLET NEAR WIND LAKE, WI (Formerly published as Muskego Canal near Wind Lake) LOCATION.--Lat 42°51'08", long 88°07'52", in SE 1/4 sec.33, T.5 N., R.20 E., Waukesha County, Hydrologic Unit 07120006, on right bank 8 ft downstream of dam outlet of Muskego Lake, 700 ft north of Muskego Dam Drive, 2 mi northeast of Wind Lake. PERIOD OF RECORD. -- February 1987 to current year. REMARKS.--Samples collected upstream of dam in Big Muskego Lake if there was little or no flow. These concentrations were used to compute total phosphorus discharge at station 4251090880750000. WATER QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | |-----------|------|--|---|--|---| | OCT 1987 | | | | | | | 15 | 1200 | 7.9 | | 0.080 | | | 29
NOV | 1510 | 13 | | 0.049 | | | 16
DEC | 1317 | 5.8 | | 0.045 | | | 17 | 1227 | 45 | | 0.050 | | | 17 | 1234 | | | <0.004 | <0.004 | | JAN 1988 | | | | | | | 14 | 1610 | | 22 | 0.030 | | | 28 | 1515 | | 55 | 0.045 | | | FEB | | | | | | | 01 | 1100 | | | 0.050 | | | 03 | 1348 | | | 0.050 | | | 05 | 1200 | | | 0.090 | | | 08 | 1028 | | 67 | 0.070 | | | 16 | 1700 | | 41 | 0.050 | | | MAR | 1,00 | | 7- | 0.050 | | | 03 | 1120 | | 27 | 0.050 | | | 10 | 1130 | | 32 | 0.040 | 0.006 | | 16 | 1140 | | 31 | 0.050 | 0.000 | | APR | 1140 | | 31 | 0.030 | | | 08 | 1315 | | | 0.090 | | | 10 | 1145 | | | 0.050 | | | 11 | 1805 | == | | 0.050 | | | 12 | 1230 | | 85 | 0.070 | | | 21 | 1150 | | 8.5 | 0.070 | | | MAY | 1130 | | 0.5 | 0.070 | | | 02 | 1150 | | | 0.054 | 0.004 | | | 1310 | | | 0.107 | 0.004 | | 11
24 | 1205 | | | 0.126 | 0.007 | | | 1203 | | | 0.120 | 0.007 | | JUN
07 | 1340 | | | 0.240 | | | | | | 0.0 | 0.116 | 0.007 | | 21
JUL | 1320 | | 0.0 | 0.110 | 0.007 | | | 1240 | | 0.0 | 0.172 | | | 06 | 1240 | | 0.0 | 0.172 | | | AUG | 1200 | | 0.0 | 0 220 | 0.007 | | 08 | 1300 | | 0.0 | 0.330 | 0.007 | | 23
SEP | 1225 | | | 0.270 | | | 02 | 1040 | | 0.0 | 0.110 | | | 07 | 1225 | | 0.5 | 0.280 | | | 09 | 1130 | | 0.0 | 0.170 | | | 20 | 1235 | | 0.0 | 0.340 | | | 20 | 1233 | | | 0.570 | | ### 424915088083900 WIND LAKE AT WIND LAKE, WI LOCATION.--Lat 42°49'15", long 88°08'39", in NW 1/4 SW 1/4 sec.9, T.4 N., R.20 E., Racine County, Hydrologic Unit 07120006, at Wind Lake. PERIOD OF RECORD.--February 1985, to current year. REMARKS.--Lake sampled near center at a lake depth of about 52 feet. Lake ice-covered during January 28 and February 16 sampling.
Water-quality analyses by Wisconsin State Laboratory of Hygiene. | | | | | SEPTEMBER | | |--|--|--|--|-----------|--| | | | | | | | | | | | | | | | DATE | TIME | DEPTH TO TOP OF SAMPLE INTER- VAL(IN FEET) | DEPTH TO BOT- TOM OF SAMPLE INTER- VAL(IN FEET) | MOIS-
TURE
CONTENT
DRY WT.
(% OF
TOTAL)
(00495) | NITRO-
GEN,
NO2+NO3
TOT. IN
BOT MAT
(MG/KG
AS N)
(00633) | NITRO-
GEN,NH4
TOTAL
IN BOT.
MAT.
(MG/KG
AS N)
(00611) | NITRO-
GEN,NH4
+ ORG.
TOT IN
BOT MAT
(MG/KG
AS N)
(00626) | PHOS-
PHOROUS
TOTAL
IN BOT.
MAT.
(MG/KG
AS P)
(00668) | IRON,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G
AS FE)
(01170) | MANGA-
NESE,
RECOV.
FM BOT-
TOM MA-
TERIAL
(UG/G)
(01053) | |----------|------|--|---|---|---|---|--|--|---|--| | JAN 1988 | | | | | | | | | | | | 28 | 1200 | 0.0 | 0.33 | 85 | <10 | 910 | 11000 | 1100 | 14000 | 990 | | 28 | 1201 | 0.33 | 0.83 | 84 | | | | 1000 | 14000 | 990 | | 28 | 1202 | 0.83 | 1.33 | 83 | | | | 940 | 15000 | 990 | | 28 | 1203 | 1.33 | 1.83 | 79 | | | | 860 | 15000 | 1100 | WATER-QUALITY DATA, OCTOBER 15 TO DECEMBER 10, 1987 (Milligrams per liter unless otherwise indicated) | | Oct. 15 | | 0ct | . 29 | Nov. 1/ | | Dec. 10 | | | |--------------------------------|---------|-------|-------------|-------|---------|-------|---------|-------|--------| | | | | | | | | | | | | Depth of sample (ft) | 1.5 | 51.0 | 1.5 | 51.0 | 1.5 | 51.0 | 1.5 | 51.0 | 54.0 | | Specific conductance (µS/cm) | 540 | 594 | 5 45 | 636 | 538 | 539 | 541 | 547 | 546 | | pH (units) | 8.00 | 6.60 | 8.60 | 6.80 | 8.40 | 8.40 | 8.30 | 8.30 | 8.30 | | Water temperature (°C) | 11.0 | 10.5 | 8.0 | 7.5 | 7.0 | 7.0 | 2.5 | 2.5 | 2.5 | | Secchi-disc (meters) | 1. | . 0 | 1 | . 4 | 1 | . 0 | 1 | . 4 | | | Dissolved oxygen | 8.7 | 0.6 | 10.0 | 4.7 | 10.7 | 10.4 | 11.7 | 11.6 | 2.5 | | Total phosphorus (as P) | 0.045 | 0.054 | 0.037 | 0.032 | | 0.038 | 0.031 | 0.030 | 0.034 | | Phosphorus, ortho, diss (as P) | | 0.016 | | 0.007 | | | | | <0.004 | | Chlorophyll a, phyto. (µg/L) | 9 | | 9 | | 23 | | 12 | | | ### 424915088083900 WIND LAKE AT WIND LAKE, WI--CONTINUED # WATER-QUALITY DATA, JANUARY 28 TO APRIL 8, 1988 (Milligrams per liter unless otherwise indicated) | | J an. 2 8 | | | | | Feb. 16 | | Apr. 08 | | | |--------------------------------|------------------|------|-------|--------|-------|---------|-------|---------|--------|--| | | | | | | | | | | | | | Depth of sample (ft) | 1.5 | 3.0 | 42.0 | 48.0 | 1.5 | 44.0 | 48.0 | 1.5 | 48.0 | | | Specific conductance (µS/cm) | 603 | 603 | 735 | 736 | 590 | 743 | 749 | 564 | 569 | | | pH (units) | 7.40 | 7.40 | 7.40 | 7.40 | 7.50 | 7.30 | 7.10 | 8.30 | 8.10 | | | Water temperature (°C) | 2.0 | 2.0 | 2.0 | 2.0 | 2.0 | 2.5 | 2.5 | 10.0 | 8.5 | | | Secchi-disc (meters) | 0 | .6 | | | 0 | .6 | | 0 | .8 | | | Dissolved oxygen | 10.4 | 10.4 | 7.2 | 2.7 | 14.4 | 0 | ٠0 | 11.0 | 9.6 | | | Nitrogen, nitrite plus | | | | | • | | | | | | | nitrate, diss (as N) | | | | | | | | 0.27 | 0.26 | | | Nitrogen, ammonia, diss (as N) | | | | | | | | 0.15 | 0.21 | | | Nitrogen, ammonia plus | | | | | | | | | | | | organic, total (as N) | | | | | | | | 1.6 | 1.5 | | | Total phosphorus (as P) | 0.038 | | 0.096 | | 0.077 | 0.118 | 0.600 | 0.056 | 0.042 | | | Phosphorus, ortho, diss (as P) | | | | 0.109 | | | 0.384 | <0.001 | <0.001 | | | Chlorophyll a, phyto. (µg/L) | | 64 | | | 65 | | | 25 | | | | | 1-28-88 | | 2. | _169.8 | | 1-8-88 | | | | | ### DISSOLVED OXYGEN, IN MILLIGRAMS PER LITER ### 424915088083900 WIND LAKE AT WIND LAKE, WI--CONTINUED ## WATER-QUALITY DATA, MAY 2 TO MAY 25, 1988 (Milligrams per liter unless otherwise indicated) | | May 02 | | | May 11 | | | | May 25 | | | | |--------------------------------|--------|------|---------|--------|-------|-------|-------|--------|-------|-------|-------| | Depth of sample (ft) | 1.5 | 44.0 | 48.0 | 1.5 | 21.0 | 42.0 | 48.0 | 1.5 | 27.0 | 42.0 | 50.0 | | Specific conductance (µS/cm) | 553 | 556 | 556 | 563 | 566 | 562 | 563 | 556 | 563 | 570 | 570 | | pĤ (units) | 8.40 | 8.00 | 8.00 | 8.30 | 8.10 | 7.60 | 7.60 | 8.70 | 8.40 | 7.60 | 7.60 | | Water temperature (°C) | 15.5 | 9.5 | 9.5 | 15.0 | 14.0 | 9.5 | 9.5 | 17.0 | 14.0 | 10.0 | 10.0 | | Secchi-disc (meters) | 0 | . 9 | | 1 | . 1 | | | 1. | 0 | | | | Dissolved oxygen | 11.2 | 7.6 | 7.5 | 8.1 | 6.0 | 3.1 | 2.5 | 9.0 | 1.9 | 0.1 | 0.1 | | Total phosphorus (as P) | 0.044 | 0.01 | 5 0.015 | 0.024 | 0.022 | 0.046 | 0.044 | 0.014 | 0.049 | 0.113 | 0.097 | | Phosphorus, ortho, diss (as P) | | | 0.004 | | | | 0.022 | | | | 0.101 | | Chlorophyll a, phyto. (µg/L) | | | | | | | | 7 | | | | ### 424915088083900 WIND LAKE AT WIND LAKE, WI--CONTINUED ## WATER-QUALITY DATA, JUNE 7 TO JULY 18, 1988 (Milligrams per liter unless otherwise indicated) | | June 07 | June 22 | |---|--|---| | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Secchi-disc (meters) Dissolved oxygen | 1.5 18.0 39.0 47.0
536 558 569 574
8.80 8.30 7.50 7.40
23.0 19.0 10.5 10.0
0.9
11.2 4.5 0.2 0.2 | 1.5 15.0 33.0 44.0 49.0 542 560 590 591 594 8.70 8.30 7.40 7.30 7.30 25.0 22.5 11.5 10.5 10.5 7.8 3.9 0.1 0.1 0.1 | | Total phosphorus (as P) Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | 0.011 0.050 0.170 0.180
0.137
8 | 7.8 3.9 0.1 0.1 0.1
0.028 0.016 0.113 0.198 0.300
0.248 | | | July 06 | July 18 | | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Secchi-disc (meters) | 539 564 590 596 60
8.70 7.60 7.10 7.00 | 50.0 1.5 15.0 39.0 48.0 00 537 556 596 598 7.00 8.50 7.70 7.10 7.10 11.0 26.5 23.5 11.5 11.0 | | Dissolved oxygen Total phosphorus (as P) Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | 10.8 0 0 0
0.015 0.026 0.142 0.330
 | 0 8.5 0.2 0.4 0.4
0.380 0.012 0.040 0.360 0.440
0.310 0.340 | | 6-7-88 | 6–22–88 7– | -6-88 7-18-88 | | | DISSOLVED OXYGEN, IN MILLIGRAMS | PER LITER | | O 5 10 15 Diss. O xygen Water Temp. 50 0 10 20 30 | 0 5 10 15 0 5
10 20 30 0 10
WATER TEMPERATURE, IN DEGREES | 10 15 0 5 10 15
10 20 30 40 50 10 20 30 S CELSIUS | | | PH, IN STANDARD UNITS | | | Spec.
Cond.
Spec.
Cond.
PH 30
PH 50
500 700 900 | 6 7 8 9 10 0 6 7
10 20 20 30 40 50 500 | 8 9 10 0 6 7 6 9 10
10 20 30 500 700 900 | SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER ### ILLINOIS RIVER BASIN ### 424915088083900 WIND LAKE AT WIND LAKE, WI--CONTINUED ## WATER-QUALITY DATA, AUGUST 10 TO SEPTEMBER 21, 1988 (Milligrams per liter unless otherwise indicated) | | Aug. 10 | | Aug. 23 | | |---|--|--|--|--| | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Secchi-disc
(meters) | 1.5 15.0 33.0
525 542 607
8.50 8.00 7.00
26.5 25.5 13.0 | 42.0 47.0
612 615
7.00 6.90
11.5 11.5 | 1.5 18.0 30.0
522 530 604
8.50 8.10 7.00
24.0 23.5 13.5 | 44.0 48.0
619 621
6.90 6.90
11.5 11.5 | | Dissolved oxygen Total phosphorus (as P) Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | 8.1 1.2 0
0.029 0.029
0.005 0.006 0.310
17 | 0 0
0.500 0.530
0.470 0.510 | 6.8 3.3 0
0.023 0.030 0.340
0.004 0.004 0.310
14 | 0 0
0.560 0.600
0.470 0.540 | | | Sept. 07 | | Sept. 21 | | | Depth of sample (ft) Specific conductance (µS/cm) pH (units) Water temperature (°C) Secchi-disc (meters) | 1.5 27.0 36.0
538 545 631
8.40 8.10 7.00
19.0 18.0 12.5 | 46.0 1.5
648 531
6.90 8.20
11.5 18.0 | | | | Dissolved oxygen Total phosphorus (as P) Phosphorus, ortho, diss (as P) Chlorophyll a, phyto. (µg/L) | 8.9 6.3 0.4
0.027 0.048 0.470
0.004 0.006 0.440
14 | 0.3
0.640
0.630

13 | 0.3 0.3 0.3
0.260 0.690 0.760
0.650 | | | 8-10-88 | 8-23-88 | 9-7-88 | 9-21-88 | | | | DISSOLVED OXYGEN, IN | MILLIGRAMS PER LITER | | | | 0 5 10 15
0 Diss.
0 xygen
Water
Temp. | 0 5 10 15
10 20 30
WATER TEMPERATURE, | | 30
40
50
10 20 30 | | | | PH, IN STANI | | | | | Spec. | 8 7 8 9 10
10
20
30
40
50
500 700 900 | 8 7 8 9 10
10 20 30
40 50 700 900 | 500 700 900 | | SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER MTN #### ILLINOIS RIVER BASIN ### 424848088083100 WIND LAKE OUTLET AT WIND LAKE, WI LOCATION.--Lat 42°48'48", long 88°08'31", in NE 1/4 NW 1/4 sec.16, T.4 N., R.20 E., Racine County, Hydrologic Unit 07120006, at Wind Lake. DRAINAGE AREA. -- 39.6 mi². ### LAKE-STAGE RECORDS PERIOD OF RECORD. -- March 1985, to current year. 7.39 6.42 5.64 GAGE .-- Water-stage recorder and concrete dam. Datum of gage is 760.30 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 2, 1987, nonrecording gage at same site and datum. REMARKS.--Records good. Lake level regulated by dam with two 10-foot gates at outlet. Previously published as Wind Lake at Wind Lake, WI EXTREMES FOR PERIOD OF RECORD.--Maximum gage-height observed, 8.54 ft Apr. 17, 24, 29, 1985; minimum, 5.57 ft, Feb. 26, 1988. EXTREMES FOR CURRENT YEAR. -- Maximum gage-height, 8.50 ft, May 2-5; minimum, 5.57 ft, Feb. 26. #### GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES DAY OCT NOV DĖC JAN FEB MAR APR MAY JUN JUL AUG SEP 8.09 7.98 7.44 7.38 7.95 7.93 7.34 7.32 8 48 8.18 6.46 8.26 8.48 6.89 6.67 8.29 8.47 8.49 6.87 6.65 8.25 6.55 8.35 8.27 8.41 7.87 7.30 8.20 6.63 8.44 8.49 7.90 7.31 6.85 6.75 8.27 8.36 7.21 8.09 6.70 8.34 8.49 7.30 6.86 5 8.29 8.30 7.57 7.11 7.96 6.77 8.22 8.49 7.86 7.29 6.86 6.90 6.99 6.86 6 8.31 8.23 7.44 7.39 7.78 8.32 8.47 7.85 7.27 6.83 6.87 6.94 7.03 8.34 8.18 7.58 8.38 7.25 6.86 8.41 7.83 6.80 6.85 8 8.33 8.15 7.41 6.78 7.35 8.46 8.28 7.81 7.22 6.82 6.84 7.46 7.50 9 8.33 8.12 6.74 7.11 7.14 8.45 8.20 7.76 7.20 6.97 6.83 10 8.34 8.08 7.73 7.18 6.96 6.81 6.67 6.88 7.22 8.43 8.17 11 8.34 8.03 7.53 6.60 6.81 ___ 8.40 8.12 7.71 7.16 6.95 6.81 8.35 8.35 7.98 7.94 7.90 7.55 7.54 6.54 8.33 7.69 7.67 7.14 6.94 12 6.69 ___ 8.12 6.81 13 ---6.50 8.13 6.80 7.53 8.13 6.42 8.03 7.65 7.10 15 8.36 7.85 7.53 6.44 ___ 7.63 7.08 6.92 6.76 7.10 7.14 7.81 16 8.37 7.64 6.47 8.13 7.61 7.59 6.91 6.75 6.43 7.46 7.71 7.65 7.69 7.79 7.48 7.73 6.89 6.75 17 8.39 6.51 6.43 8.12 7.50 7.51 7.52 7.57 7.54 7.53 7.12 7.11 6.75 6.77 6.78 18 19 8.39 7.75 6.60 6.40 7.77 8.12 6.88 7.70 6.69 8.11 8.40 7.69 6.36 7.79 6.88 7.65 8.41 7.09 6.86 7.80 6.30 7.53 7.53 7.53 7.54 7.08 7.07 7.05 21 8.40 7.59 7.82 7.29 7.83 8.10 7.51 6.84 6.77 7.81 7.77 7.73 6.22 6.07 5.95 22 23 8.40 8.40 7.58 7.60 7.48 7.86 8.10 7.50 7.47 6.81 6.87 6.98 8.09 7.60 7.69 8.01 6.84 8.42 8.08 8.08 7.44 7.61 7.03 6.83 25 7.71 7.74 8.05 7.43 7.02 6.81 6.95 7.72 5.78 7.56 8.13 7.39 7.36 6.94 8.43 7.76 7.74 7.72 26 7.78 7.70 7.65 5.65 7.61 8.19 8.02 7.01 6.77 8.46 7.83 8.30 8.38 6.94 8.01 6.99 6.75 5.64 5.75 7.66 7.74 8.46 7.92 28 7.61 7.99 7.35 6.97 6.75 6.92 29 8.45 8.02 7.57 7.68 6.15 7.89 8.42 7.98 7.40 6.95 6.72 6.91 7.50 6.70 30 8.46 8.09 7.69 8.03 8.45 7.97 7.37 6.93 6.90 8.46 6.91 7.94 7.96 6.68 8.15 MEAN 7.96 7.12 6.74 8.16 8.18 7.63 6.85 6.83 MAX ---8.48 7.58 8.09 7.94 8.25 ---8.46 8.49 7.95 7.34 6.97 6.98 6.68 7.71 7.96 6.91 6.65 # ILLINOIS RIVER BASIN 424848088083100 WIND LAKE OUTLET AT WIND LAKE, WI--CONTINUED ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder and concrete dam. Datum of gage is 760.30 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Estimated daily discharge: Oct. 1 and Mar. 11-16. Records are poor. Lake level regulated by dam with two 10-foot gates at outlet. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 172 ${\rm ft}^3/{\rm s}$, Feb. 3; minimum daily, 0.20 ${\rm ft}^3/{\rm s}$, many days during current year. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, | WATER YE
EAN VALUE | CAR OCTOBE | R 1987 TO | SEPTEMBER | 1988 | | | |---|--|---|---|--|---|---|--|---|---|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.0
3.7
3.2
3.4
3.9 | 14
47
68
65
47 | 54
80
98
102
100 | 80
85
85
84
81 | 86
149
172
170
165 | 1.8
1.8
1.9
1.9
2.0 | 22
26
74
131
131 | 14
15
15
15
15 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | . 20
. 20
. 20
. 20
. 20 | | 6
7
8
9
10 | 4.8
6.0
5.6
5.8
6.2 | 27
26
25
24
25 | 78
62
53
49
54 | 79
76
53
43
42 | 158
150
144
132
111 | 2.0
2.0
2.0
2.0
2.1 | 113
125
137
142
141 | 14
8.5
3.8
1.6
1.0 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | . 20
. 20
. 20
. 20
. 20 | | 11
12
13
14
15 | 6.4
6.6
6.8
6.7
7.1 | 25
24
24
24
24 | 56
56
58
59
54 | 41
41
36
34
35 | 99
94
89
87
71 | 13
17
19
18
18 | 141
138
130
128
128 | .90
.85
.80
.75 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | | 16
17
18
19
20 | 7.5
8.6
8.8
9.3
9.5 | 24
23
35
26
26 | 57
61
60
80
87 | 37
37
36
38
19 | 53
54
53
53
48 | 18
18
18
17
18 | 33
1.1
1.1
1.1
1.1 | .65
.60
.55
.50
.45 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | | 21
22
23
24
25 | 9.3
9.2
9.3
10 | 27
27
28
28
28 | 87
87
88
86
82 | 35
41
41
43
53 | 40
41
43
42
40 | 18
17
17
17
17 | 1.1
1.2
1.1
1.1 | .40
.35
.30
.25 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | | 26
27
28
29
30
31 | 11
13
13
12
13 | 28
28
28
28
30 | 82
85
86
87
88
85 | 60
60
61
61
52
41 | 36
31
30
21 | 17
18
18
18
19
20 | 1.5
5.0
8.2
11
13 | .20
.20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | .20
.20
.20
.20
.20
.20 | .20
.20
.20
.20
.20
.20 | .20
.20
.20
.20
.20 | | TOTAL
MEAN
MAX
MIN
AC-FT
CFSM
IN. | 247.7
7.99
13
3.2
491
.20 | 903
30.1
68
14
1790
.76
.85 | 2301
74.2
102
49
4560
1.87
2.16 | 1610
51.9
85
19
3190
1.31
1.51 | 2462
84.9
172
21
4880
2.14
2.31 | 389.5
12.6
20
1.8
773
.32
.37 | 1788.6
59.6
142
1.0
3550
1.51
1.68 | 112.35
3.62
15
.20
223
.09 | 6.00
.20
.20
.20
.12
.01 | 6.20
.20
.20
.20
.12
.01 | 6.20
.20
.20
.20
.20
.12
.01 | 6.00
.20
.20
.20
.12
.01 | WTR YR 1988 TOTAL 9838.55 MEAN 26.9 MAX 172 MIN .20 AC-FT 19510 CFSM .68 IN. 9.24 ### 424848088083100 WIND LAKE OUTLET AT WIND LAKE, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1987 to current year. PERIOD OF DAILY RECORD.--TOTAL PHOSPHORUS DISCHARGE: October 1987 to September 1988 REMARKS.--Records fair. Total phosphorus discharge was computed using concentration data from samples collected in Wind Lake at station 424915088083900. EXTREMES FOR CURRENT YEAR.-TOTAL PHOSPHORUS CONCENTRATIONS: Maximum observed, 0.078 mg/L, Sept. 21; minimum observed, 0.011 mg/L, June 7. TOTAL PHOSPHORUS DISCHARGE: Maximum daily, 61.1 lb, Feb. 8; minimum daily, 0.01 lb on many days. | | | PHOSPHO | ORUS, I | COTAL, POUNDS | | WATER
AN VALU | YEAR OCTOBER | 1987 | TO SEPTEMBER | 1988 | | | |----------------------------------|--|--------------------------------------|--------------------------------------|--|--------------------------------------
--|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------| | DAY | OCT | NOV | DEC | . JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.08
.99
.85
.90
1.02 | 2.76
9.23
13.3
12.7
9.12 | 9.39
13.9
16.9
17.5
17.1 | 16.2
17.2
17.2
17.0
16.4 | 18.3
31.9
37.8
42.3
47.1 | . 56
. 55
. 57
. 56
. 57 | 4.27
4.98
14.2
27.3
30.0 | 3.01
3.50
3.50
3.43
3.37 | .01
.01
.01
.01 | .02
.02
.02
.02
.02 | .01
.02
.02
.02 | .03
.03
.03
.03 | | 6
7
8
9
10 | 1.25
1.55
1.43
1.47
1.56 | 5.22
5.00
4.79
4.58
4.75 | 13.3
10.5
8.95
8.24
9.05 | 8.74 | 51.8
56.6
61.1
56.7
47.5 | . 56
. 55
. 54
. 53
. 55 | 28.5
34.6
41.0
42.7
42.2 | 3.08
1.81
.72
.27
.15 | .01
.01
.01
.01 | .02
.02
.02
.02
.02 | .02
.02
.03
.03 | .03
.03
.03
.03 | | 11
12
13
14
15 | 1.60
1.64
1.68
1.64
1.73 | 4.73
4.52
4.50
4.48
4.46 | 9.38
9.38
9.72
9.90
9.06 | 8.35
7.33
6.93 | 42.2
39.8
37.5
36.5
29.7 | 3.33
4.29
4.74
4.43
4.37 | 42.0
40.9
38.3
37.5
37.1 | .12
.11
.10
.09
.08 | .02
.02
.02
.02
.02 | .01
.01
.01
.01 | .03
.03
.03
.03 | .04
.04
.05
.05 | | 16
17
18
19
20 | 1.80
2.04
2.05
2.14
2.16 | 4.45
4.24
6.43
4.76
4.74 | 9.57
10.2
10.1
13.5
14.6 | 7.55
7.55
7.35
7.76
3.88 | 22.0
22.0
21.1
20.7
18.3 | 4.31
4.26
4.20
3.92
4.09 | 9.20
.29
.28
.27
.26 | .07
.06
.05
.05 | .02
.02
.02
.03 | .01
.01
.01
.01 | .03
.03
.03
.03 | .06
.06
.07
.07 | | 21
22
23
24
25 | 2.08
2.03
2.02
2.14
2.33 | 4.90
4.88
5.04
5.01
4.99 | 14.6
14.6
14.8
14.5
13.8 | 7.16
8.39
8.39
8.81
10.9 | 15.0
15.0
15.5
14.8
13.8 | 4.04
3.76
3.71
3.67
3.62 | . 24
. 26
. 22
. 21
. 19 | .04
.03
.02
.02 | .03
.03
.03
.03 | .01
.01
.01
.01 | .03
.03
.02
.03 | .08
.09
.09
.09 | | 26
27
28
29
30
31 | 2.29
2.67
2.63
2.40
2.59
2.58 | 4.97
4.95
4.93
4.91
5.24 | 13.8
14.4
14.5
14.7
14.9 | 12.3
12.3
12.5
12.6
10.9
8.63 | 12.2
10.3
9.74
6.68 | 3.57
3.73
3.68
3.63
3.79
3.93 | .27
.85
1.35
1.96
2.54 | .01
.01
.01
.01
.01 | .03
.02
.02
.02
.02 | .01
.01
.01
.01
.01 | .03
.03
.03
.03
.03 | .09
.09
.09
.10 | | TOTAL | 56.34 | 168.58 | 389.24 | 328.54 | 853.92 | 88.61 | 483.94 | 23.80 | 0.58 | 0.41 | 0.84 | 1.79 | WTR YR 1988 TOTAL 2396.59 424937088103400 LONG (KEE NONG GO-MONG) LAKE AT WIND LAKE, WI LOCATION.--Lat 42°49'37", long 88°10'34", in NW 1/4 NW 1/4 sec.7, T.4 N., R.20 E., Racine County, Hydrologic Unit 07120006, at Wind Lake. DRAINAGE AREA. -- 4.29 mi². 31 ### LAKE-STAGE RECORDS PERIOD OF RECORD. -- February 15 to September 30, 1988. GAGE.--Staff gage at lake outlet read by Jack Puetz. Elevation of lake is 777 ft, from topographic map. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 6.05 ft, Apr. 7; minimum observed, less than 3.92 ft, Sept. 6. | | | | GAGE HEI | GHT, FEET | | EAR OCTOBEI
AN VALUES | R 1987 | TO SEPTEMBER | 1988 | | | | |-----|----------|-----|----------|-----------|----------|--------------------------|----------|--------------|------|------|------|----------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | | | | | 2 | | | | | | | | | | | 4.17 | | | 3 | | | | | | | | | | | | | | 4 | | | | | | | | | | | | | | 5 | | | | | | | | | | 4.75 | | | | 6 | | | | | | | - | | 5.29 | | | - | | 7 | | | | | | ~ | 6.05 | | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | | | | | 4.44 | | | 10 | | | | | | | | | | | | | | 11 | | | | | | ~ | | | | | | | | 12 | | | | | | | | | | 4.56 | | | | 13 | | | | | | | | | 5.14 | | | 4.25 | | 14 | | | | | | | | | | | | | | 15 | | | | | 5.55 | | | 5.50 | 5.09 | | | | | 16 | | | | | | | | | | | 4.33 | | | 17 | | | | | | | | | | | | | | 18 | | | | | | ~ | | | | | | | | 19 | | | | | | | | | | 4.54 | | | | 20 | | | | | | | | | 5.00 | | | 4.33 | | 21 | | | | | | ~ | | | | | | | | 22 | | | | | | | | | | | | | | 23 | - | | | | | | | 5.48 | | | 4.27 | | | 24 | | | | | | | | | | | | | | 25 | | | | | - | | | | | 4.45 | | 4.58 | | 26 | | | | | | | | | | 4.42 | | | | 27 | | | | | | | | | 4.79 | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | 30 | | | | | | | | 5.40 | | | 3.92 | | 400 500 600 700 400 500 600 700 ### ILLINOIS RIVER BASIN 424937088103400 LONG (KEE NONG GO-MONG) LAKE AT WIND LAKE, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 15 to September 30, 1988. REMARKS.--Lake sampled in southwest end of lake at an approximate lake depth of 28 ft. Lake ice-covered during February 15 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ### WATER-QUALITY DATA, FEBRUARY 15 TO AUGUST 23, 1988 | | | -QUALITY DATA, FEBRUARY
igrams per liter unless | | | | |--|----------------------|---|---|--------------------------------------|----------------------------------| | | Feb. 15 | Apr. 07 | June 15 | July 25 | Aug. 23 | | Depth of sample (ft) Specific conductance (µS/cm) | 1.5 27.0
546 657 | 1.5 26.0
498 508 | 1.5 26.0
498 532 | 1.5 25.0
468 552 | 1.5 25.0
457 570
8.30 6.90 | | pH (units)
Water temperature (°C) | 7.50 6.70
2.0 3.0 | 8.00 7.60
12.0 8.0 | $ \begin{array}{ccc} 8.70 & 7.50 \\ 23.0 & 11.0 \end{array} $ | 8.70 7.00
27.0 12.0 | 25.5 13.0 | | Color (Pt-Co. scale) Turbidity (NTU) | | $ \begin{array}{ccc} 100 & 100 \\ 2.8 & 1.9 \end{array} $ | | | | | Secchi-disc (meters) | | 1.0 | 1.5 | 2.0 | 7.5 0 | | Dissolved oxygen
Hardness, total (as CaCO ₃) | 7.8 0 | 10.0 7.9
230 230 | 8.2 0.1 | 8.5 0.3 | 7.5 | | Calcium, dissolved (Ca) Magnesium, Dissolved (Mg) | | 51 51
26 26 | | | | | Sodium, dissolved (Na) | | 9.0 9.0 | | | | | Potassium, dissolved (K) Alkalinity, total (as CaCO ₃) | | 3.6 3.4
200 198 | | | | | Sulfate, dissolved (SO4) | | 43 43 | | | | | Fluoride, total (as F) Chloride, dissolved (Cl) | | $ \begin{array}{ccc} 0.1 & 0.1 \\ 20 & 20 \end{array} $ | | | | | Silica, dissolved (SiO ₂) | | 1.5 1.7 | | | | | Solids, dissolved, at 180°C
Nitrogen, nitrite plus | | 310 312 | | | | | nitrate, diss (as N) | | 0.16 0.16 | | | | | Nitrogen, ammonia, diss (as N)
Nitrogen, ammonia plus | | <0.02 0.09 | | | | | organic, total (as N) | | 1.2 1.4 | 0.011 0.340 | 0.012 0.252 | 0.033 0.520 | | Total phosphorus (as P) Phosphorus, ortho, diss (as P) | | 0.036 0.044
<0.002 <0.002 | 0.290 | 0.234 | 0.450 | | Iron, dissolved (Fe) µg/L | | <100 <100
<40 <40 | | | | | Manganese, dissolved (Mn) $\mu g/L$
Chlorophyll a, phyto. ($\mu g/L$) | | 13 | 6 | 13 | 16 | | 2-15-88 | 4-7-88 | 6-15-88 | 7-25-88 | 8-23 | 3–88 | | | DISSOL | VED OXYGEN, IN MILLIGRAM | IS PER LITER | | | | 0 5 10 15 0 | 5 10 15 | 0 5 10 15 | 0 5 10 | 15 0 5 | 10 15 | | Water Temp. 5 Z 10 Diss. 10 Sygen 15 Oxygen 20 20 20 20 25 O 10 20 30 0 | 10 20 30
WATE | TEMPERATURE, IN DEGREE | 5
10
15
20
25
0 10 20 | 5
10
15
20
25
30 0 10 | 20 30 | | | | PH, IN STANDARD UNIT | S | | | | 6 7 8 9 10 6 | 7 6 9 10 | 6 7 8 9 10 | 6 7 8 9 | 10 6 7 8 | 8 9 10 | | Spec. 5 PH Cond. 10 H L L 15 DH Cond. 20 20 20 25 | | 5
10
15
20
25 | 5
10
15
20
25 | 5
10
15
20
25 | | 400 500 600 700 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER 700 600 400 500 600 400 500 700 ### 424857088101500 WAUBEESEE LAKE AT WIND LAKE, WI LOCATION.--Lat 42°48'57", long 88°10'15", in SE 1/4 SE 1/4 sec.7, T.4 N., R.20 E., Racine County, Hydrologic Unit 07120006, at Wind Lake. DRAINAGE AREA. -- 5.16 mi². ### LAKE-STAGE RECORDS PERIOD OF RECORD. -- February 15 to September 30, 1988. GAGE .-- Staff gage read by Robert Anschutz. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 5.03 ft, Feb. 15; minimum observed, 3.40 ft, Aug. 29. | | | | GAGE HEI | GHT, FEET | | TEAR OCTOR | | TO SEPTEMB | ER 1988 | | | | |-----|-----|-----|----------|-----------|------|------------|------|------------|---------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | | | | | | 2 | | | | | | + | | | 4.66 | | | 3.36 | | 3 | | | | | | | | | | | 3.58 | 3.42 | | 4 | | | | | | | | | | | 3.54 | 3.54 | | 5 | | | | | | | | | 4.60 | 4.05 | 3.56 | 3.54 | | 6 | | | | | | | | | 4.58 | 4.04 | 3.54 | | | 7 | | | | | | | | | 4.56 | | 3.52 | | | 8 | | | | | | | | | 4.52 | | | | | 9 | | | | | | | | | | | 3.66 | 3.48 | | 10 | | | | | | | | | | | 3.64 | | | 11 | | | | | | | | | 4.46 | 3.92 | | | | 12 | | | | | | | | 5.01 | | | | 3.46 | | 13 | | | | | | | | 5.00 | 4.43 | | 3.62 | | | 14 | | | | | | | | | | 3.87 | 3.60 | | | 15 | | | | | 5.03 | | | 4.97 | 4.38 | | | | | 16 | | | | | | | | | | 3.82 | | | | 17 | | | | | | | | 4.90 | 4.36 | 3.86 | 3.58 | 3.40 | | 18 | | | | | | | | 4.90 | | | | | | 19 | | | | | | | | | | 3.84 | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | 4.86 | | 3.82 | | | | 22 | | | | | | | 4.97 | | | | | 3.56 | | 23 | | | | | | | | | | 3.78 | 3.52 | 3.58 | | 24
| | | | | | | | | 4.20 | 3.74 | | | | 25 | | | | | | | • • | | | 3.74 | | 3.56 | | 26 | | | | | | | | | 4.14 | | 3.46 | | | 27 | | | | | | | | 4.75 | + | 3.70 | | | | 28 | | | | | | | | 4.74 | 4.10 | 3.68 | | | | 29 | | | | | | | | | 4.16 | | 3.40 | | | 30 | | | | | | | | | 4.13 | | | 3.54 | | 31 | | | | | | | | | | 3.64 | | | ### 424857088101500 WAUBEESEE LAKE AT WIND LAKE, WI--CONTINUED ### WATER-QUALITY RECORDS PERIOD OF RECORD. -- February 15 to September 30, 1988. REMARKS.--Lake ice-covered during Feb. 15 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. Lake sampled near southwest end at about a lake depth of 70 ft. ## WATER-QUALITY DATA, FEBRUARY 15 TO AUGUST 17, 1988 (Milligrams per liter unless otherwise indicated) | | | | | , FEBRUARY
ter unless | | | | | | | |--|------------|-------------|---------------------------|----------------------------------|-----------------------------------|------------------------|-------------|-----------------------------------|-----------|-------------| | | Fe | b. 15 | Ap | r. 07 | Jun | e 15 | Jul | y 28 | Aug | . 17 | | Depth of sample (ft)
Specific conductance (µS/cm) | 1.5
497 | 72.0
535 | 1.5
496 | 71.0
493 | 1.5
507 | 66.0
509 | 1.5 | 68.0
501 | 1.5 | 66.0
507 | | pH (units) | 7.80 | 7.40 | 8.10 | 7.80 | 8.60 | 7.50 | 8.60 | 7.20 | 8.60 | 7.20 | | Water temperature (°C) Color (Pt-Co. scale) | 2.0 | 3.0 | 8.0
40 | 5.5
40 | 23.5 | 7.0 | 26.5 | 7.5
 | 29.0 | 7.5
 | | Turbidity (NTU) | | | 1.6 | 1.0 | | ~ | | | | | | Secchi-disc (meters) Dissolved oxygen | 9.9 | 0 | 10.1 | .4
8.9 | 8.8 | 8 | 8.8 | 2.9 | 2.
8.6 | 0 | | Hardness, total (as CaCO ₃) | | | 220 | 230 | | | | | | | | Calcium, dissolved (Ca) Magnesium, Dissolved (Mg) | | | 47
25 | 48
26 | | | | | | | | Sodium, dissolved (Na) | | | 11 | 11 | | | | | | | | Potassium, dissolved (K) Alkalinity, total (as CaCO ₃) | | | 3.2
182 | 3.6
182 | | | | | | | | Sulfate, dissolved (SO ₄) | | | 41 | 42 | | | | | | | | Fluoride, total (as F) Chloride, dissolved (C1) | | | 0.1
22 | 0.1
23 | | | | | | | | Silica, dissolved (SiO ₂) | | | 1.6 | 2.0 | | | | | | | | Solids, dissolved, at 180°C | | | 294 | 294 | | | | | | | | Nitrogen, nitrite plus
nitrate, diss (as N) | | | 0.28 | 0.29 | | | | | | | | Nitrogen, ammonia, diss (as N) | | | 0.03 | 0.06 | | | | | | | | Nitrogen, ammonia plus organic, total (as N) | | | 1.0 | 1.0 | | | | | | | | Total phosphorus (as P) | | | 0.018 | 0.016 | 0.008 | 0.063 | 0.005 | 0.090 | 0.010 | 0.061 | | Phosphorus, ortho, diss (as P) Iron, dissolved (Fe) µg/L | | | <0.002
<100 | 0.003
<100 | | 0.074 | | 0.069 | | 0.045 | | Manganese, dissolved (Mn) µg/L | | | <40 | <40 | | | | | | | | Chlorophyll a, phyto. (µg/L) | | | 3 | | 2 | | 4 | | <5 | | | 2-15-88 | 4-7 | -88 | | 6-15-88 | | 7–28 | -8 8 | | 8-17-88 | | | | | DISSO | LVED OXYG | EN, IN MILLIG | RAMS PER | LITER | | | | | | Water Temp. Diss. 0xygen 30 45 45 60 75 0 10 20 30 75 | - | 0 15 20
 | | 5 10 15
10 20
TURE, IN DEC | | 0 5 10
0 10
SiUS | 20 30 | 0
15
30
45
60 | 10 20 | 30 | | 6 7 8 9 10 (| 87 (| B 9 10 | PH, IN | STANDARD U | JNITS
10 | 8 7 8 | 9 10 | 6 | 789 | 10 | | O PH Spec. 75 | | | 0
15
30
45
60 | | 0
- 15
- 30
- 45
- 60 | | | 0
15 -
30 -
45 -
60 - | | | SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER ### 424727088332300 PLEASANT LAKE NEAR LA GRANGE, WI ### LAKE-STAGE RECORDS $\begin{tabular}{ll} LOCATION.--Lat $42^047^127^n$, long $88^033^123^n$, in SW $1/4$ sec. 24, T.4N., R.16 E., Walworth County, Hydrologic Unit 07120006, 2.6 mi southeast of LaGrange. \end{tabular}$ PERIOD OF RECORD. -- October 1984 to current year. GAGE.--Staff gage read by Gordon Dobbs. Elevation of gage is 879 ft, from topographic map. EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed, 8.90 ft, Apr. 30, 1987; minimum observed, 7.28 ft, Sept. 18, 1988. EXTREMES FOR CURRENT YEAR.--Maximum gage height observed, 8.62 ft, Apr. 9; minimum observed, 7.28 ft, Sept. 18. | | | | GAGE HEI | GHT, FEET | | EAR OCTO | | TO SEPTEM | BER 1988 | | | | |-----|------|-----|----------|-----------|-----|----------|------|-----------|----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | 8.0 | | | | | | | | | | | | 2 | | | | | | | | | | | | | | 3 | | | | | | | | | | 7.60 | | | | 4 | 8.1 | | | | | | | | | | 7.42 | 7.37 | | 5 | | | | | | | | | 7.95 | | | | | 6 | | | | | | | | | | | | | | 7 | | 8.0 | | | | | | 8.32 | | | | | | 8 | | | | | | | | | | | | | | 9 | | | | | | | 8.62 | | | | 7.42 | | | 10 | 8.0 | | | | | | | | | 7.52 | | | | 11 | | | | | | | | | | | | 7.30 | | 12 | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | 14 | | | | | | | | | 7.82 | | | | | 15 | | | | | | | | 8.32 | | | | | | 16 | | | | | | | 8.52 | | | | 7.50 | | | 17 | | | | | | | | | | 7.60 | | | | 18 | 8.0 | | | | | | | | | | | 7.28 | | 19 | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | 22 | | | | | | | | 8.22 | 7.72 | | 7.47 | | | 23 | | | | | | | | 8.16 | | | | | | 24 | | | | | | | 8.47 | | | 7.52 | | | | 25 | 7.98 | | | | | | | | | | | 7.37 | | 26 | | | | | | | | | 7.62 | | 7.38 | | | 27 | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | 29 | | | | | | | | | | 7.52 | | | | 30 | | | | | | | 8.47 | | | | | | | 31 | | | | | | | | 8.10 | | | | | ### WATER-QUALITY RECORDS LOCATION.--Lat 42°47'16", long 88°33'02", in SE 1/4 sec.24, T.4N., R.16 E., Walworth County, Hydrologic Unit 07120006, near center of lake, and 2.7 mi southeast of LaGrange. PERIOD OF RECORD. -- June 1985 to current year. REMARKS.--Secchi disc readings made by Gordon Dobbs. ### SECCHI DISC TRANSPARENCY (IN METERS) WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | SECCHI
DEPTH | |--------------|-----------------|-------------|-----------------|--------------|-----------------|----------|-----------------|---------|-------------------| | Oct. 4
10 | 2.3 | Apr. 9 | 4.3 | May 22 | 3.5 | July 3 | 3.4 | Aug. 16 | $\frac{2.1}{2.4}$ | | 18 | 2.4
3.1 | 16
24 | 4.1
4.0 | 31
June 5 | 3.2
3.2 | 10
17 | 4.3
3.3 | 26 | 2.4 | | 25
Nov. 1 | 3.7 | 30 | 4.6 | 14 | 3.1 | 24
29 | 2.6 | Sept. 4 | 2.5 | | 7 | 4.0
4.4 | May 7
15 | 3.7 | 22
26 | 2.6
2.4 | Aug. 4 | 2.3 | 18 | 2.4 | | | | | | | | 9 | 2.3 | 25 | 2.3 | ### 05546500 FOX RIVER AT WILMOT, WI LOCATION.--Lat 42°30'40", long 88°10'45", in SW 1/4 sec.30, T.1 N., R.20 E., Kenosha County, Hydrologic Unit 07120006, on right bank 100 ft downstream from bridge on County Trunk Highway C, 300 ft upstream from Wilmot Dam, 1.0 mi north of Wisconsin-Illinois State line, and 6.0 mi upstream from Fox Chain of Lakes. DRAINAGE AREA. -- 868 mi². PERIOD OF RECORD. -- October 1939 to current year. REVISED RECORDS.--WSP 1308: 1943(M), 1945(M). WDR WI-67-1: Drainage area. GAGE.--Water-stage recorder and concrete dam. Datum of gage is 735.22 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 1, 1965, nonrecording gage and concrete dam. REMARKS.--Estimated daily discharges: Jan. 13-15 and ice periods, Dec. 15-18, 30, and Jan. 1, 3-6. Records are good, except for estimated periods and Feb. 12-17, which are fair. Three 6-ft lift gates in Wilmot dam were in operation during the year; discharge through gates computed by weir and orifice formulas and added to flow over dam. Gage-height telemeter and data-collection platform at station. AVERAGE DISCHARGE. -- 49 years, 548 ft3/s, 8.57 in/yr. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,520 ft³/s, Mar. 31, 1960, gage height, 9.25 ft, from graph based on gage readings; no flow part of day Oct. 26, 1945; minimum daily discharge, 35 ft³/s, Sept. 9, 1958. EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,390 $\rm ft^3/s$, Feb. 1, gage height, 6.97 ft; minimum daily, 65 $\rm ft^3/s$, Aug. 5. | | | DISCHAI | RGE, CUBIC | FEET PER | SECOND, | WATER YEAR
EAN VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |----------|------------|------------|------------|--------------|------------|--------------------------|------------|---------|--------------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 417 | 374 | 881 | 860 | 2220 | 700 | 1140 | 775 | 190 | 124 | 88 | 92 | | 2 | 422 | 380 | 893 | 792 | 2260 | 844 | 1100 | 732 | 183 | 123 | 80 | 88 | | 3 | 451 | 453 | 862 | 780 | 2180 | 890 | 1320 | 694 | 177 | 118 | 70 | 118 | | 3
4 | 413 | 453 | 820 | 760 | 1970 | 760 | 1470 | 651 | 167 | 114 | 66 | 185 | | 5 | 390 | 453 | 771 | 740 | 1730 | 740 | 1470 | 582 | 159 | 112 | 65 | 375 | | 6 | 420 | 472 | 744 | 720 | 1470 | 722 | 1460 | 505 | 155 | 110 | 71 | 354 | | 7 | 410 | 386 | 778 | 713 | 1340 | 751 | 1910 | 427 | 150 | 103 | 73 | 196 | | 8 | 323 | 329 | 943 | 694 | 1320 | 824 | 1900 | 429 | 154 | 94 | 85 | 145 | | 9 | 241 | 380 | 1170 | 683 | 1250 | 868 | 1750 | 444 | 150 | 87 | 163 | 145 | | 10 | 232 | 441 | 1290 | 671 | 1130 | 908 | 1580 | 496 | 140 | 83 | 204 | 142 | | 11 | 275 | 417 | 1240 | 517 | 958 | 956 | 1490 | 507 | 129 | 82 | 180 | 153 | | 12 | 286 | 312 | 1190 | 423 | 765 | 981 | 1390 | 482 | 125 | 81 | 153 | 159 | | 13 | 286 | 374 | 1150 | 360 | 686 | 986 | 1360 | 489 | 121 | 77 | 139 | 155 | | 14 | 281 | 392 | 1090 | 320 | 648 | 946 | 1410 | 468 | 114 | 79 | 138 | 148 | | 15 | 286 | 404 | 1000 | 300 | 639 | 883 | 1270 | 437 | 108 | 72 | 130 | 132 | | 16 | 286 | 357 | 880 | 298 | 611 | 853 | 925 | 425 | 105 | 88 | 92 | 113 | | 17 | 352 | 369 | 720 | 310 | 595 | 813 | 671 | 410 | 106 | 133 | 80 | 115 | | 18 | 286 | 415 | 620 | 383 | 587 | 762 | 678 | 393 | 105 | 120 | 95 | 119 | | 19 | 302 | 461 | 807 | 515 | 596 | 719 | 551 | 348 | 105 | 114 | 140 | 129 | | 20 | 329 | 471 | 1120 | 879 | 485 | 639 | 557 | 299 | 103 | 108 | 143 | 137 | | 21 | 340 | 471 | 1370 | 1230 | 394 |
606 | 518 | 259 | 98 | 108 | 130 | 129 | | 22 | 352 | 4/1 | 1450 | 1400 | 422 | 558 | 492 | 259 | 97 | 124 | 113 | 168 | | 23 | 346 | 430 | 1440 | 1360 | 422
475 | 525 | 634 | 267 | 93 | 134 | 121 | 349 | | 23
24 | 340
363 | 430
398 | 1380 | | 473
458 | | | 260 | 93
91 | 123 | 123 | 369 | | 24
25 | 303
374 | 398
467 | 1430 | 1260
1170 | 458
442 | 570
631 | 855
806 | 239 | 93 | 123 | 123 | 339 | | | | | _ | | | | | | | | | | | 26 | 374 | 502 | 1490 | 1120 | 449 | 668 | 750 | 225 | 89 | 127 | 127 | 310 | | 27 | 392 | 501 | 1430 | 1070 | 527 | 652 | 807 | 220 | 90 | 120 | 119 | 312 | | 28 | 410 | 533 | 1350 | 1020 | 571 | 681 | 903 | 216 | 98 | 105 | 114 | 185 | | 29 | 404 | 739 | 1270 | 972 | 605 | 981 | 881 | 218 | 119 | 97 | 108 | 200 | | 30 | 398 | 882 | 1200 | 1050 | | 1120 | 822 | 211 | 116 | 105 | 100 | 208 | | 31 | 386 | | 1100 | 1470 | | 1150 | | 197 | | 94 | 96 | | | TOTAL | 10827 | 13461 | 33879 | 24840 | 27783 | | 32870 | 12564 | 373 0 | 3287 | 3535 | 5769 | | MEAN | 349 | 449 | 1093 | 801 | 958 | 796 | 1096 | 405 | 124 | 106 | 114 | 192 | | MAX | 451 | 882 | 1490 | 1470 | 2260 | 1150 | 1910 | 775 | 190 | 134 | 204 | 375 | | MIN | 232 | 312 | 620 | 298 | 394 | 525 | 492 | 197 | 89 | 72 | 65 | 88 | | CFSM | . 40 | .52 | 1.26 | .92 | 1.10 | .92 | 1.26 | . 47 | . 14 | . 12 | .13 | .22 | | IN. | . 46 | . 58 | 1.45 | 1.06 | 1.19 | 1.06 | 1.41 | . 54 | .16 | . 14 | . 15 | . 25 | CAL YR 1987 TOTAL 234244 MEAN 642 MAX 2240 MIN 193 CFSM .74 IN. 10.04 WTR YR 1988 TOTAL 197232 MEAN 539 MAX 2260 MIN 65 CFSM .62 IN. 8.45 30 300 400 500 600 ### ILLINOIS RIVER BASIN ### 423246088175800 POWERS LAKE AT POWERS LAKE, WI LOCATION.--Lat $42^{\circ}32^{\circ}46^{\circ}$, long $88^{\circ}17^{\circ}58^{\circ}$, in NW 1/4 SE 1/4 sec.13, T.1 N., R.18 E., Walworth County, Hydrologic Unit 07120006, at Powers Lake. DRAINAGE AREA. -- 3.42 mi². PERIOD OF RECORD. -- March 4, 1986 to current year. 30 300 400 500 600 300 400 500 SPECIFIC CONDUCTANCE, IN MICROSIEMENS PER CENTIMETER 600 300 400 500 600 300 400 500 600 REMARKS.--Lake sampled near center at a lake depth of about 33 ft. Lake ice-covered during Feb. 15 sampling. Water-quality analyses by Wisconsin State Laboratory of Hygiene. ## WATER-QUALITY DATA, FEBRUARY 15 TO AUGUST 24, 1988 | | | (WITTIGEA | ms per lit | er miress | OffierArze | indicated |) | | | | |--|-------------|----------------|-----------------------------|----------------------------|---|--------------|--------------|--|--------------|--------------| | | | b. 15 | | r. 13 | | e 14 | | у 25 | Aug. | . 24 | | Depth of sample (ft) Specific conductance (µS/cm) | 1.5
478 | 32.5
504 | 1.5
464 | 32.5
463 | | 32.0
478 | | 31.0
474 | | 31.0 | | pH (units)
Water temperature (°C) | 7.20
1.5 | 7.70
3.0 | 8.30
10.5 | 8.50
10.0 | 8.50
22.5 | 7.60
14.0 | 8.60
26.0 | 7.50
19.0 | 8.40
25.0 | 7.20
20.0 | | Color (Pt-Co. scale) Turbidity (NTU) | | | 10
0.80 | 5
0.70 | | | | | | | | Secchi-disc (meters) Dissolved oxygen | 12.9 | 3.6 | 10.7 | 9.9 | 2.
9.4 | 2
0.2 | 8.7 | 0.3 | 1.8
8.3 | 0 | | Hardness, total (as CaCO ₃)
Calcium, dissolved (Ca) | | | 200
35 | 200
35 | | | | | | | | Magnesium, Dissolved (Mg) | | | 28 | 28 | | | | | | | | Sodium, dissolved (Na) Potassium, dissolved (K) | | | 11
2.7 | 11
2.6 | | | | | | | | Alkalinity, total (as $CaCO_3$)
Sulfate, dissolved (SO_L) | | | 174
30 | 174
31 | | | | | | | | Fluoride, total (as F) | | | 0.1 | 0.1 | | | | | | | | Chloride, dissolved (Cl) Silica, dissolved (SiO ₂) | | | 24
5.7 | 24
5.9 | | | | | | | | Solids, dissolved, at 180°C
Nitrogen, nitrite plus | | | 258 | 258 | | | | | | | | nitrate, diss (as N) | | | 0.05 | 0.03 | | | | | | | | Nitrogen, ammonia, diss (as N)
Nitrogen, ammonia plus | | . | <0.02 | 0.02 | | | | | | | | organic, total (as N) Total phosphorus (as P) | | | 0.40
0.008 | 0.40
0.012 | 0.006 | <0.020 | 0.005 | 0.012 | 0.052 | 0.040 | | Phosphorus, ortho, diss (as P) | | | 0.004 | | | 0.003 | | 0.003 | | 0.003 | | Iron, dissolved (Fe) µg/L
Manganese, dissolved (Mn) µg/L | | | <40 | <40 | | | | | | | | Chlorophyll a, phyto. (µg/L) | | | <5 | | 3 | | <5 | | 5 | | | 2-15-88 | 4-13- | 88 | 6 | -14-88 | | 7-25-8 | 38 | 8- | -24-88 | | | | | DISSOLV | ED OXYGEN | , IN MILLIGRA | AMS PER LIT | ER | | | | | | 0 5 10 15 20 0 | 5 10 | 15 20 | 0 5 | 10 15 | 20 0 | 5 10 | 15 20 | 0 5 | 10 15 20 |) | | | : 1 | i i | | | 1 1 | _ ' ' | ' | | ' | | | Water 5 | | 1 | 5 - | | 5 | 1 | 11 | 5 | 1 1 | | | Z 10 Temp. 10 | - 1 | 1 | 10 - | 1 : | 1 10 L | 1 | • 1 | •0 | | | | _ ' ' ' ' ' ' | | | | | 1 10 | j | : 7 | 10 | 1 : 7 | | | 宝 15 日 人 15 日 | : 1 | | 15 | | 15 | | | 15 | [] | | | H 15 15 15 20 1 | | 1 | 15 | | 15 | | | 15 | | | | H 20 Diss. | | | 15
20 - | | 15 - | | | 15 20 | | | | H 15 20 Diss. Oxygen 25 | | - | 15 | | 15 | | | 15 | | | | Diss. 20 | | - | 15
20 - | | 15 - |) | | 15 20 | | | | 30 [:/ | 10 | 20 30 | 15 -
20 -
25 -
30 | 20 20 | 15 -
20 -
25 -
30 | | | 15 -
20 -
25 -
30 | 20 10 | | | THE 15 Oxygen 25 Oxygen 30 O | 10 2 | 20 30
WATER | 15
20
25
30 | | 15 20 -
25 30 0 | 10 20 | 0 30 | 15 -
20 -
25 - | 20 30 | 1 | | 30 [:/ | 10 2 | | 15
20
25
30 | o 20
JRE, IN DEGR | 15 20 -
25 30 0 | | 0 30 | 15 -
20 -
25 -
30 | 20 30 | , | | 30 [:/ | 10 2 | | 15 - 20 - 25 - 30 TEMPERATU | JRE, IN DEGR | 15 20 25 30 0 0 DEES CELSIU | | 0 30 | 15 -
20 -
25 -
30 | 20 30 | , | | 0 10 20 30 0 | | WATER | 15 20 25 30 TEMPERATU | JRE, IN DEGR
[ANDARD UN | 15
20
25
30
0
EEES CELSIU | S | | 15 -
20 -
25 -
30 0 10 | | | | 30 [:/ | 10 2 | | 15 - 20 - 25 - 30 TEMPERATU | JRE, IN DEGR
[ANDARD UN | 15 20 25 30 0 0 DEES CELSIU | | 9 10 | 15 -
20 -
25 -
30 | 20 30 | | | 0 10 20 30 0 | | WATER | 15 20 25 30 TEMPERATU | JRE, IN DEGR
[ANDARD UN | 15
20
25
30
0
EEES CELSIU | S | | 15 - 20 - 25 - 30 0 10 6 7 | | | | 0 10 20 30 0 | | WATER | 15 - 20 - 25 - 30 | JRE, IN DEGR
[ANDARD UN | 15
20
25
30
0
EES CELSIU | S | | 15 - 20 - 25 30 0 10 10 5 5 - 10 10 | | | | 0 10 20 30 0 | | WATER | 15 - 20 - 25 - 30 | JRE, IN DEGR
[ANDARD UN | 15 20 - 25 30 0 0 EEES CELSIU | S | | 15 - 20 - 25 - 30 - 10 - 10 - 10 | | | | 0 10 20 30 0 | | WATER | 15 - 20 - 25 - 30 | JRE, IN DEGR
[ANDARD UN | 15
20
25
30
0
EES CELSIU | S | | 15 - 20 - 25 30 0 10 10 5 5 - 10 10 | | | | 0 10 20 30 0 | | WATER | 15 - 20 - 25 - 30 | JRE, IN DEGR
[ANDARD UN | 15 20 - 25 30 0 0 EEES CELSIU | S | 9 10 | 15 - 20 - 25 - 30 - 10 - 10 - 10 | | | | 0 10 20 30 0 Spec. Cond. 10 | | WATER | 15 - 20 - 25 - 30 | JRE, IN DEGR
[ANDARD UN | 15 20 25 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | S | 9 10 | 15 - 20 - 25 - 30 - 10 - 15 - 15 - 15 - 15 - 15 - 15 - 1 | | | ### CREST-STAGE PARTIAL-RECORD STATIONS The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device which will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual minimum has been determined. | | ANNUAL MAXIMUM DI | SCHARGE AT CREST-STAGE PARTIAL-RECORD STATE | ONS DOKING | WAIER IEE | | AL MAXIM | IIM | |----------------|---|---|--|-----------------------------|----------|----------|--| | STATION
NO. | STATION NAME | LOCATION | DRAINAGE
AREA
(MI ²) | PERIOD
OF
RECORD | DATE | GAGE | DIS-
CHARGE
(FT ³ /S) | | | | STREAMS TRIBUTARY TO LAKE SUPERIOR | | | | | | | 04024400 | STONY BROOK NEAR
SUPERIOR, WI | LAT 46°35'01", LONG 92°07'10", IN SE 1/4 SEC.4, T.47 N., R.14 W., DOUGLAS COUNTY, AT BOX CULVERT ON STATE HIGHWAY 35, 12.5 MI SOUTH OF TOLL BRIDGE ON U.S. HIGHWAYS 2 AND 35 AT ST. LOUIS RIVER AT SUPERIOR. | | 1959-88 | 03-24-88 | 12.40 | 85 | | 04025200 | PEARSON CREEK
NEAR MAPLE, WI | LAT 46°38'51", LONG 91°42'55", ON COMMON
BOUNDARY OF SECS.11 AND 14, T.48 N.,
R.11 W., DOUGLAS COUNTY, AT BOX CULVERT
ON STATE HIGHWAY 13, 4.0 MI NORTH OF MAP | | 1957-88 | 09-20-88 | 12.78 | 265 | | 04026200 | SAND RIVER
TRIBUTARY NEAR
RED CLIFF, WI | LAT 46°53'53", LONG 90°56'47", IN NE 1/4
SEC.14, T.51 N., R.5 W., BAYFIELD
COUNTY, AT BOX CULVERT ON STATE HIGH-
WAY 13, 8.0 MI NORTHWEST OF RED CLIFF. | 1.14 | 1959-88 | 05-09-88 | 12.41 | 200 | | *04026300 | SIOUX RIVER NEAR
WASHBURN, WI | LAT 46°41'20", LONG 90°57'02", IN NE 1/4
SEC.35, T.49 N., R.5 W., BAYFIELD
COUNTY, ON COUNTY TRUNK HIGHWAY C,
2.5 MI WEST OF WASHBURN. | E 33.9 | 1959-65
1966#
1967-88 | 05-09-88 | 10.02 | 170 | | 04026450 | BAD RIVER NEAR
MELLEN, WI | LAT 46°16'14", LONG 90°42'26", IN NE 1/4
NW 1/4 SEC.26, T.44 N., R.3 W., ASHLAND
COUNTY, ON LEFT BANK 150 FT DOWNSTREAM
FROM BRIDGE ON U.S. FOREST SERVICE ROAD,
4.4 MI SOUTHEAST OF MELLEN. | 83.4 | 1971-75#
1976-88 | 10-21-87 | 4.47 | 704 | |
*04027200 | PEARL CREEK AT
GRANDVIEW, WI | LAT 46°22'05", LONG 91°05'27", IN NE 1/4 SEC.22, T.45 N., R.6 W., BAYFIELD COUNTY, AT BOX CULVERT ON U.S. HIGHWAY 63, 0.8 MI EAST OF GRANDVIEW. | 16.9 | 1960-88 | 09-20-88 | 10.98 | 115 | | | | STREAMS TRIBUTARY TO LAKE MICHIGAN | | | | | | | *04059900 | ALLEN CREEK TRIBUTARY NEAR ALVIN, WI | LAT 45°58'05", LONG 88°47'24", ON NORTH BOUNDARY SEC.7, T.40 N., R.14 E., FOREST COUNTY, AT CULVERT ON STATE HIGHWAY 70, 2.2 MI SOUTHEAST OF ALVIN. | 1.24 | 1960-88 | 04-02-88 | 11.17 | 19 | | 04063640 | NORTH BRANCH PINE
RIVER AT WINDSOR
DAM NEAR ALVIN, WI | LAT 45°55'43", LONG 88°51'38", IN SE 1/4 SEC.21, T.40 N., R.13 E., FOREST COUNTY, AT BRIDGE ON COUNTRY ROAD, AT WINDSOR DAM, 3.8 MI UPSTREAM FROM CONFLUENCE OF NORTH AND SOUTH FORKS, 4.0 MI SOUTHWEST OF ALVIN. | 27.8 | 1967-68#
1970-88 | 04-02-88 | 2.30 | 48 | | 04063688 | SOUTH BRANCH
POPPLE RIVER
NEAR NEWALD, WI | LAT 45°44'42", LONG 88°35'31", IN NW 1/4
SEC.26, T.38 N., R.15 E., FLORENCE
COUNTY, AT CORRUGATED TWIN BARREL
CULVERTS ON U.S. FOREST SERVICE ROAD
2159, 5.4 MI EAST OF NEWALD. | 9.47 | 1970-88 | 09-03-88 | 11.89 | 48 | | *04063800 | WOODS CREEK NEAR
FENCE, WI | LAT 45°49'53", LONG 88°23'17", IN SE 1/4 SEC.29, T.39 N., R.17 E., FLORENCE COUNTY, AT BOX CULVERT ON STATE HIGHWAY 101, 6.0 MI NORTH OF FENCE. | 41.40 | 1958-88 | 04-03-88 | 11.05 | 200 | | 04064800 | LITTLE POPPLE
RIVER NEAR
AURORA, WI | LAT 45°47'34", LONG 88°11'40", IN SW 1/4 SEC.1, T.38 N., R.18 E., FLORENCE COUNTY, AT 3-BARREL CORRUGATED CULVERT ON COUNTY TRUNK HIGHWAY N, 5.5 MI WEST OF AURORA. | 35.0 | 1970-88 | 04-03-88 | 11.84 | 200 | | 04067760 | PESHTIGO RIVER
NEAR CAVOUR, WI | LAT 45°39'20", LONG 88°38'52", IN SW 1/4
SEC.29, T.37 N., R.15 E., FOREST
COUNTY, AT BRIDGE ON U.S. HIGHWAY 8,
0.7 MI NORTHWEST OF CAVOUR. | 150 | 1970-88 | 04-03-88 | 12.90 | 790 | | | ANNUAL MAXIMUM DI | SCHARGE AT CREST-STAGE PARTIAL-RECORD STATION | 2 DOKTING | WAIER IEF | | AL MAXIM | UM | |----------------|--|---|---------------------------------------|--------------------------------|----------|------------------------|--| | STATION
NO. | STATION NAME | LOCATION | RAINAGE
AREA
(MI ²) | PÈRIOD
OF
RECORD | DATE | GAGE
HEIGHT
(FT) | DIS-
CHARGE
(FT ³ /S) | | | : | STREAMS TRIBUTARY TO LAKE MICHIGANCONTINUED | | | | | | | 04067800 | ARMSTRONG CREEK
NEAR ARMSTRONG
CREEK, WI | LAT 45°39'29", LONG 88°28'44", IN W 1/2
SEC.27, T.37 N., R.16 E., FOREST
COUNTY, AT BRIDGE ON U.S. HIGHWAY 8,
1.8 MI NORTHWEST OF ARMSTRONG CREEK. | 23.2 | 1958-88 | 1988 | В | <70 | | 04069700 | NORTH BRANCH
OCONTO RIVER
NEAR WABENO, WI | LAT 45°26'19", LONG 88°37'40", IN SW 1/4 SEC.9, T.34 N., R.15 E., FOREST COUNTY, AT PIPE ARCH CULVERT ON COUNTY TRUNK HIGHWAY C, 0.6 MI EAST OF INTER- SECTION WITH STATE HIGHWAY 32 AT WABENO. | 34.1 | 1970-88 | 04-03-88 | 11.38 | 92 | | 04071700 | NORTH BRANCH
LITTLE RIVER
NEAR COLEMAN, WI | LAT 45°00'37", LONG 88°02'43", ON COMMON BOUNDARY OF SECS.2 AND 3, T.29 N., R.20 E., OCONTO COUNTY, AT BRIDGE ON U.S. HIGHWAY 141, 3.8 MI SOUTH OF COLEMAN. | 21.4 | 1958-88 | 03-29-88 | 11.91 | 130 | | *04071800 | PENSAUKEE RIVER
NEAR PULASKI, WI | LAT 44°45'48", LONG 88°15'07", IN NE 1/4
SEC.1, T.26 N., R.18 E., SHAWANO
COUNTY, AT BRIDGE ON STATE HIGHWAY 32,
6.1 MI NORTH OF PULASKI. | 41.80 | 1961-88 | 04-02-88 | 11.56 | 270 | | *04073400 | BIRD CREEK AT WAUTOMA, WI | LAT 44°06'00", LONG 89°18'00", IN S 1/2 SEC.34, T.19 N., R.10 E., WAUSHARA COUNTY, AT CONCRETE CULVERT ON STATE HIGHWAY 21, 0.2 MI WEST OF WAUTOMA. | 3.59 | 1959-88 | 07-16-88 | 10.97 | 45 | | 04074300 | MUD CREEK NEAR
NASHVILLE, WI | LAT 45°34'19", LONG 89°02'39", IN SW 1/4
SEC.30, T.36 N., R.12 E., FOREST
COUNTY, AT CONCRETE CIRCULAR CULVERT ON
U.S. HIGHWAY 8, 3.5 MI NORTH OF NASHVILLE. | 10.0 | 1970-88 | 04-04-88 | 12.52 | 48 | | *04074700 | HUNTING RIVER
NEAR ELCHO, WI | LAT 45°25'10", LONG 89°11'15", IN N 1/2
SEC.24, T.34 N., R.10 E., LANGLADE
COUNTY, AT TWIN CULVERTS ON U.S. HIGH-
WAY 45 AND STATE HIGHWAY 47, 1.5 MI
SOUTH OF ELCHO. | 9.00 | 1958-88 | 04-04-88 | 11.62 | 62 | | *04074850 | LILY RIVER NEAR
LILY, WI | LAT 45°20'59", LONG 88°49'52", IN SE 1/4 SEC.11, T.33 N., R.13 E., LANGLADE COUNTY, AT CULVERT ON COUNTY TRUNK HIGHWAY A, 3.2 MI NORTH FROM JUNCTION OF STATE HIGHWAYS 55 AND 52 AT LILY. | 52.4 | 1970-88 | 04-04-88 | 9.64 | 46 | | *04075200 | EVERGREEN CREEK
NEAR LANGLADE, WI | LAT 45°10'11", LONG 88°48'12", IN NW 1/4
SEC.18, T.31 N., R.14 E., LANGLADE
COUNTY, AT CULVERT ON STATE HIGHWAY 64,
3.5 MI SOUTHWEST OF LANGLADE. | 8.00 | 1959-65
1966-72#
1973-88 | 07-17-88 | 11.06 | 53 | | *04079700 | SPAULDING CREEK
NEAR BIG FALLS, WI | LAT 44°38'13", LONG 89°01'20", ON COMMON BOUNDARY OF SECS.14 AND 15, T.25 N., R.12 E., WAUPACA COUNTY, AT CULVERT ON COUNTY TRUNK HIGHWAY E, 1.5 MI NORTH OF BIG FALLS. | 4.90 | 1959-65
1966#
1967-88 | 04-02-88 | 10.58 | 40 | | 04081900 | SAWYER CREEK AT
OSHKOSH, WI | LAT 44°02'00", LONG 88°35'00", IN SW 1/4 SEC.15, T.18 N., R.16 E., WINNEBAGO COUNTY, AT BRIDGE ON U.S. HIGHWAY 41, 1.0 MI SOUTHWEST OF BRIDGE ON ALGOMA STREET AT FOX RIVER, AT OSHKOSH. | 15.3 | `1961-88 | 04-02-88 | 11.44 | 215 | | *04085030 | APPLE CREEK NEAR
KAUKAUNA, WI | LAT 44°19'15", LONG 88°17'33", ON WEST BOUNDARY SEC.2, T.21 N., R.18 E., OUTAGAMIE COUNTY, AT BRIDGE ON STATE HIGHWAY 55, 3.0 MI NORTH OF KAUKAUNA. | 15.0 | 1960-88 | 04-02-88 | 14.59 | 1,050 | | 04085300 | NESHOTA RIVER
TRIBUTARY NEAR
DENMARK, WI | LAT 44°23'43", LONG 87°52'13", IN NE 1/4
SEC.7, T.22 N., R.22 E., BROWN COUNTY,
AT BOX CULVERT ON U.S. HIGHWAY 141,
3.8 MI NORTHWEST OF DENMARK. | 3.08 | 1959-88 | 03-29-88 | 12.44 | 145 | | *04085400 | KILLSNAKE RIVER
NEAR CHILTON, WI | LAT 44°03'33", LONG 88°08'36", IN E 1/2
SEC.6, T.18 N., R.20 E., CALUMET
COUNTY, AT BRIDGE ON COUNTRY ROAD,
2.4 MI NORTHEAST OF CHILTON. | 29.5 | 1961-88 | 01-31-88 | 11.00 | 350 | | *04087050 | LITTLE MENOMONEE
RIVER NEAR
FREISTADT, WI | LAT 43°12'24", LONG 88°02'24", ON COMMON
BOUNDARY OF SECS.29 AND 32, T.9 N.,
R.21 E., OZAUKEE COUNTY, AT BRIDGE ON
DONGES BAY ROAD, 2.0 MI SOUTH OF FREISTADT | | 1958-88 | 01-31-88 | 11.91 | 215 | | | ANNUAL MAXIMUM D | ISCHARGE AT CREST-STAGE PARTIAL-RECORD STATION | NS DURING | WATER YE. | AR 1988 | AL MAXIM | TTM | |----------------|---|---|--|-----------------------------|----------|------------------------|-------| | STATION
NO. | STATION NAME | LOCATION | DRAINAGE
AREA
(MI ²) | PERIOD
OF
RECORD | DATE | GAGE
HEIGHT
(FT) | DIS- | | | | STREAMS TRIBUTARY TO LAKE MICHIGANCONTINUE | D | | | | | | 04087100 | HONEY CREEK AT
MILWAUKEE, WI | LAT 42°58'41", LONG 87°59'52", IN SE 1/4 SEC.15, T.6 N., R.21 E., MILWAUKEE COUNTY, 400 FT UPSTREAM FROM BRIDGE ON S. 68TH STREET, 6.0 MI SOUTHWEST OF MOUTH OF MILWAUKEE RIVER, AT MILWAUKEE | | 1959-88 | 01-30-88 | 20.55 | 450 | | *04087200 | OAK CREEK NEAR
SOUTH MILWAUKEE,
WI | LAT 42°52'58", LONG 87°53'31", ON COMMON BOUNDARY OF SECS.21 AND 22, T.5 N., R.22 E., MILWAUKEE COUNTY, AT BRIDGE ON WEST NICHOLSON ROAD, 3.0 MI SOUTHWEST OF SOUTH MILWAUKEE. | 13.8 | 1958-88 | 01-30-88 | 15.51 | 275 | | 04087230 | WEST BRANCH ROOT
RIVER CANAL
TRIBUTARY NEAR
NORTH CAPE, WI | LAT 42°45'44", LONG 88°01'04", IN SE 1/4
SEC.33, T.4 N., R.21 E., RACINE COUNTY,
AT CULVERT ON COUNTY TRUNK HIGHWAY U,
3.0 MI SOUTHEAST OF NORTH CAPE. | 3.92 | 1962-88 | 01-30-88 | 12.49 | 152 | | *04087250 | PIKE CREEK NEAR
KENOSHA, WI | LAT 42°36'12", LONG 87°53'41", IN W 1/2
SEC.27, T.2 N., R.22 E., KENOSHA
COUNTY, AT BOX CULVERT ON STATE HIGHWAY
43, 3.0 MI NORTHWEST OF KENOSHA. | 7.25 | 1960-88 | 05-06-88 | 14.98 | 90 | | | | ST. CROIX RIVER BASIN | | | | | | | *05333100 | LITTLE FROG CREEK
NEAR MINONG, WI | LAT 46°05'48", LONG 91°46'39", IN NW 1/4
SEC.29, T.42 N., R.11 W., WASHBURN
COUNTY, AT CULVERT ON COUNTRY ROAD,
2.5 MI EAST OF MINONG. | 13.0 | 1961-88 | 11-17-87 | 14.48 | 200 | | *05335380 | BASHAW BROOK NEAR
SHELL LAKE, WI | LAT 45°47'02", LONG 92°07'51", IN SW 1/4
SEC.8, T.38 N., R.14 W., BURNETT
COUNTY, AT TWIN BOX CULVERTS ON COUNTRY
ROAD, 10.5 MI NORTHWEST OF SHELL LAKE. | 24.9 | 1959-65
1966#
1967-88 | 03-08-88 | 11.90 | 70 | | *05340300 | TRADE RIVER NEAR FREDERIC, WI | LAT 45°37'41", LONG 92°29'19", IN SW 1/4
SEC.4, T.36 N., R.17 W., POLK COUNTY,
AT BOX CULVERT ON STATE HIGHWAYS 35 AND
48, 2.5 MI SOUTHWEST OF FREDERIC. | 6.34 | 1958-88 | 05-09-88 | 11.37 | D 60 | | 05341900 | KINNICKINNIC
RIVER TRIBUTARY
AT RIVER FALLS, W | LAT 44°49'57", LONG 92°38'23", IN NE 1/4 SEC.14, T.27 N., R.19 W., PIERCE I COUNTY, AT BRIDGE ON COUNTY TRUNK HIGHWAY FF, 1.6 MI SOUTHWEST OF RIVER FALLS. | 7.26 | 1959-88 | 08-09-88 | 15.99 | 5,200 | | | | CHIPPEWA RIVER BASIN | | | | | | | 05357360 | BEAR RIVER NEAR
POWELL, WI | LAT 46°04'40", LONG 90°00'52", IN NE 1/4
SEC.32, T.42 N., R.4 E., IRON COUNTY,
AT BRIDGE ON STATE HIGHWAY 182, 3.0 MI
WEST OF POWELL. | 118 | 1970-88 | 04-04-88 | 11.33 | 265 | | 05357390 | WEBER CREEK NEAR
MERCER, WI | LAT 46°11'16", LONG 90°07'57", IN SE 1/4
SEC.21, T.43 N., R.3 E., IRON COUNTY,
AT CULVERT ON U.S. HIGHWAY 51, 3.7 MI
NORTHEAST OF MERCER. | 7.10 | 1970-88 | 04-04-88 | 10.84 | 56 | | 05358100
 SMITH CREEK NEAR
PARK FALLS, WI | LAT 45°57'06", LONG 90°28'07", IN NE 1/4
SEC.15, T.40 N., R.1 W., PRICE COUNTY,
AT CULVERT ON STATE HIGHWAY 13, 1.5 MI
NORTHWEST OF PARK FALLS. | E 9.46 | 1970-88 | 04-04-88 | 12.32 | 480 | | *05359600 | PRICE CREEK NEAR
PHILLIPS, WI | LAT 45°43'33", LONG 90°40'12", IN SW 1/4 SEC.31, T.38 N., R.2 W., PRICE COUNTY, AT CULVERT ON COUNTY TRUNK HIGHWAY W, 13.0 MI WEST OF PHILLIPS. | 16.9 | 1958-65
1966#
1967-88 | 1988 | В | <70 | | *05361400 | HAY CREEK NEAR
PRENTICE, WI | LAT 45°32'32", LONG 90°21'37", IN SE 1/4
SEC.4, T.35 N., R.1 E., PRICE COUNTY,
AT CULVERT ON U.S. HIGHWAY 8, 3.5 MI
WEST OF PRENTICE. | 21.9 | 1961-88 | 04-04-88 | 12.32 | 480 | | 05361420 | DOUGLAS CREEK
NEAR PRENTICE, WI | LAT 45°31'06", LONG 90°15'28", IN NE 1/4 SEC.17, T.35 N., R.2 E., PRICE COUNTY, AT CULVERT ON COUNTY TRUNK HIGHWAY C, 2.3 MI SOUTHEAST OF INTERSECTION WITH STATE HIGHWAY 13 AT PRENTICE. | E 25.2 | 1970-88 | 04-04-88 | 13.19 | 510 | | | ANNUAL MAXIMUM DI | SCHARGE AT CREST-STAGE PARTIAL-RECORD STATI | ONS DURING | WATER YEA | | AL MAXIM | UM | |----------------|--|--|--|------------------------|----------|------------------------|-------| | STATION
NO. | STATION NAME | LOCATION | DRAINAGE
AREA
(MI ²) | PERIOD
OF
RECORD | DATE | GAGE
HEIGHT
(FT) | DIS- | | | | CHIPPEWA RIVER BASINCONTINUED | | | | | | | 05361600 | NORTH FORK
JUMP RIVER NEAR
PHILLIPS, WI | LAT 45°37'45", LONG 90°23'32", IN SW 1/4
SEC.5, T.36 N., R.1 E., PRICE COUNTY,
AT CULVERT ON STATE HIGHWAY 13, 4.0 MI
SOUTH OF PHILLIPS. | 10.4 | 1970-88 | 04-04-88 | 11.00 | 28 | | *05364000 | YELLOW RIVER AT CADOTT, WI | LAT 44°57'21", LONG 91°08'48", IN NE 1/4
SEC.31, T.29 N., R.6 W., CHIPPEWA
COUNTY, AT BRIDGE ON STATE HIGHWAY 27,
AT CADOTT. | 351 | 1943-61#
1962-88 | 10-16-87 | 9.26 | 2,000 | | 05364100 | SETH CREEK NEAR
CADOTT, WI | LAT 44°59'24", LONG 91°08'48", IN SW 1/4
SEC.17, T.29 N., R.6 W., CHIPPEWA
COUNTY, AT CULVERT ON STATE HIGHWAY 27,
3.1 MI NORTH OF CADOTT. | 3.04 | 1962-88 | 10-16-87 | 12.46 | 145 | | 05364500 | DUNCAN CREEK AT
BLOOMER, WI | LAT 45°07'00", LONG 91°30'00", IN SEC.8,
T.30 N., R.9 W., CHIPPEWA COUNTY,
0.2 MI BELOW BLOOMER DAM, AT BLOOMER. | 49.2 | 1945-51#
1958-88 | 10-16-87 | 3.32 | 165 | | *05365700 | GOGGLE-EYE CREEK
NEAR THORP, WI | LAT 44°58'40", LONG 90°48'00", ON WEST
BOUNDARY SEC.19, T.29 N., R.3 W.,
CLARK COUNTY, AT CULVERT ON STATE
HIGHWAY 73, 1.3 MI NORTH OF THORP. | 6.70 | 1958-88 | 10-16-87 | 12.80 | 290 | | *05366500 | EAU CLAIRE RIVER
NEAR FALL CREEK,
WI | LAT 44°48'35", LONG 91°16'50", IN NW 1/4
SEC.19, T.27 N., R.7 W., EAU CLAIRE
COUNTY, 500 FT EAST OF COUNTY TRUNK
HIGHWAY K, 3.2 MI NORTH OF FALL CREEK. | 758 | 1943-55#
1958-88 | 10-16-87 | 8.32 | 4,750 | | 05367030 | WILLOW CREEK NEAR
EAU CLAIRE, WI | LAT 44°44'11", LONG 91°26'48", ON COMMON BOUNDARY OF SECS.14 AND 15, T.26 N., R.9 W., EAU CLAIRE COUNTY, AT BOX CULVERT ON STATE HIGHWAY 93, 4.0 MI SOUTH OF EAU CLAIRE. | 4.38 | 1958-88 | 10-16-87 | 12.09 | 203 | | *05367480 | EAST BRANCH PINE
CREEK TRIBUTARY
NEAR DALLAS, WI | LAT 45°16'50", LONG 91°48'30", IN SW 1/4
SEC.1, T.32 N., R.12 W., BARRON COUNTY,
AT CULVERT ON COUNTY TRUNK HIGHWAY O,
1.5 MI NORTH OF DALLAS. | 3.85 | 1960-88 | 03-05-88 | 11.89 | 96 | | 05367700 | LIGHTNING CREEK
AT ALMENA, WI | LAT 45°25'17", LONG 92°01'57", IN NW 1/4
SEC.19, T.34 N., R.13 W., BARRON
COUNTY, AT BRIDGE ON COUNTY TRUNK
HIGHWAY P, AT ALMENA. | 19.8 | 1958-88 | 03-08-88 | 11.42 | D 200 | | 05370600 | ARKANSAW CREEK
TRIBUTARY NEAR
ARKANSAW, WI | LAT 44°38'31", LONG 92°03'09", IN SW 1/4
SEC.14, T.25 N., R.14 W., PEPIN COUNTY,
AT BOX CULVERT ON U.S. HIGHWAY 10,
1.2 MI NORTHWEST OF ARKANSAW. | 2.56 | 1959-88 | 1988 | В | <100 | | *05370900 | SPRING CREEK NEAR
DURAND, WI | LAT 44°34'13", LONG 91°57'48", IN S 1/2 SEC.9, T.24 N., R.13 W., BUFFALO COUNTY, AT BRIDGE ON COUNTRY ROAD, 4.0 MI SOUTH OF BRIDGE ON CHIPPEWA RIVER AT DURAND. | 6.49 | 1962-88 | 03-01-88 | 11.95 | 100 | | | | BUFFALO RIVER BASIN | | | | | | | 05371800 | BUFFALO RIVER
TRIBUTARY NEAR
OSSEO, WI | LAT 44°35'01", LONG 91°05'40", IN S 1/2
SEC.3, T.24 N., R.6 W., JACKSON COUNTY.
AT CULVERT ON U.S. HIGHWAY 10, 6.5 MI
EAST OF OSSEO. | 1.44 | 1960-88 | 02-29-88 | 10.89 | 45 | | 05371920 | BUFFALO RIVER
NEAR MONDOVI, WI | LAT 44°31'36", LONG 91°41'46", IN SW 1/4
SE 1/4 SEC.27, T.24 N., R.11 W.,
BUFFALO COUNTY, AT BRIDGE ON STATE
HIGHWAY 88, 4.0 MI SOUTH OF MONDOVI. | E 279 | 1974-88 | 03-24-88 | 10.83 | 605 | | | | WAUMANDEE CREEK BASIN | | | | | | | *05378200 | EAGLE CREEK NEAR FOUNTAIN CITY, WI | LAT 44°09'49", LONG 91°42'28", IN SW 1/4 SEC.33, T.20 N., R.11 W., BUFFALO COUNTY, AT BRIDGE ON COUNTY TRUNK HIGHWAY G, 2.5 MI NORTH OF FOUNTAIN CITY. | 26.8 | 1961-8 8 | 03-24-88 | 14.19 | 900 | | | ANNUAL MAXIMUM D | ISCHARGE AT CREST-STAGE PARTIAL-RECORD STATI | ONS DURING | WATER YE | AR 1988
ANNII | AL MAXIM | TIM | |----------------|---|---|--|-----------------------------|------------------|----------|--| | STATION
NO. | STATION NAME | LOCATION | DRAINAGE
AREA
(MI ²) | PERIOD
OF
RECORD | DATE | GAGE | DIS-
CHARGE
(FT ³ /S) | | | | BLACK RIVER BASIN | | | | | | | 05380800 | BLACK RIVER
TRIBUTARY NEAR
WHITTLESEY, WI | LAT 45°12'34", LONG 90°19'05", IN SW 1/4
SEC.35, T.32 N., R.1 E., TAYLOR COUNTY,
AT BRIDGE ON STATE HIGHWAY 13, 1.1 MI
SOUTH OF WHITTLESEY. | 2.12 | 1960-88 | 03-10-88 | 11.98 | 161 | | *05380900 | POPLAR RIVER
NEAR OWEN, WI | LAT 44°53'10", LONG 90°34'17", IN NW 1/4
SEC.25, T.28 N., R.2 W., CLARK COUNTY,
AT BRIDGE ON COUNTY TRUNK HIGHWAY N,
4.2 MI SOUTH OF OWEN. | 157 | 1958-65
1966#
1967-88 | 03-10-88 | 17.59 | 7,200 | | *05380970 | CAWLEY CREEK NEAR
NEILLSVILLE, WI | LAT 44°36'42", LONG 90°34'31", IN SW 1/4
SEC.25, T.25 N., R.2 W., CLARK COUNTY,
AT BRIDGE ON STATE HIGHWAY 73, 3.7 MI
NORTH OF NEILLSVILLE. | 38.6 | 1961-88 | 03-25-88 | 16.88 | 3,050 | | *05382200 | FRENCH CREEK NEAR
ETTRICK, WI | LAT 44°11'04", LONG 91°18'49", IN NE 1/4 SEC.27, T.20 N., R.8 W., TREMPEALEAU COUNTY, AT BRIDGE ON COUNTY TRUNK HIGHWAYS D AND T, 2.5 MI WEST OF ETTRICK. | 14.3 | 1960-88 | 1988 | В | <75 | | | | MORMON CREEK BASIN | | | | | | | *05386300 | MORMON CREEK NEAR
LA CROSSE, WI | LAT 43°46'00", LONG 91°08'27", IN NE 1/4
SEC.19, T.15 N., R.6 W., LA CROSSE
COUNTY, AT BRIDGE ON COUNTRY ROAD,
6.0 MI SOUTHEAST OF LA CROSSE. | 25.5 | 1961-88 | 03-24-88 | 7.25 | 100 | | | | BAD AXE RIVER BASIN | | | | | | | *05387100 | NORTH FORK BAD
AXE RIVER NEAR
GENOA, WI | LAT 43°33'10", LONG 91°08'58", IN SW 1/4
SEC.36, T.13 N., R.7 W., VERNON COUNTY,
AT BRIDGE ON STATE HIGHWAY 56, 4.1 MI
SOUTHEAST OF GENOA. | 80.9 | 1959-65
1966#
1967-88 | 1988 | В | <500 | | | | WISCONSIN RIVER BASIN | | | | | | | *05390140 | MUSKRAT CREEK
AT CONOVER, WI | LAT 46°03'27", LONG 89°15'24", IN SW 1/4
SEC. 4, T. 41 N., R.10 E., VILAS COUNTY,
AT CORRUGATED CULVERT ON U.S. HIGHWAY
45, 0.1 MI NORTH OF CONOVER. | 10.2 | 1970-88 | 04-03-88 | 11.75 | 58 | | 05390240 | FOURMILE CREEK NEAR THREE LAKES, WI | LAT 45°50'17", LONG 89°04'32", IN NE 1/4
SEC.26, T.39 N., R.11 E., ONEIDA
COUNTY, AT 2-BARREL CORRUGATED CULVERT
ON FOURMILE CREEK ROAD, 5.5 MI NORTHEAST
OF THREE LAKES. | 10.3 | 1970-88 | 04-03-88 | 12.28 | 92 | | 05391260 | GUDEGAST CREEK
NEAR STARKS, WI | LAT 45°41'41", LONG 89°15'42", IN NW 1/4 SEC.16, T.37 N., R.10 E., ONEIDA COUNTY, AT CORRUGATED CULVERT ON COUNTRY ROAD, 3.0 MI NORTHWEST OF STARKS. | 14.0 | 1970-88 | 04-04-88 | 11.63 | 54 | | 05391950 | SQUAW CREEK NEAR
HARRISON, WI | LAT 45°32'47", LONG 89°29'16", IN SW 1/4 SEC.3, T.35 N., R.8 E., LINCOLN COUNTY, AT CULVERT ON COUNTY TRUNK HIGHWAY A, 5.0 MI NORTHEAST OF HARRISON. | 3.23 | 1970-88 | 07-09-88 | 10.51 | 15 | | *05392150 | MISHONAGON CREEK
NEAR WOODRUFF, WI | LAT 45°54'41", LONG 89°45'30", IN NE 1/4
SEC.32, T.40 N., R.6 E., VILAS COUNTY,
AT TWIN CULVERTS ON STATE HIGHWAY 47,
3.0 MI NORTHWEST OF WOODRUFF. | 17.6 | 1958-88 | 04-04-88 | 10.40 | 70 | | *05392350 | BEARSKIN CREEK
NEAR HARSHAW, WI | LAT 45°38'43", LONG 89°41'12", IN SW 1/4 SEC.36, T.37 N., R.6 E., ONEIDA COUNTY, AT CULVERT ON COUNTY TRUNK HIGHWAY K, 2.1 MI SOUTHWEST OF HARSHAW. | 31.1 | 1958-65
1966#
1967-88 | 04-03-88 | 9.27 | 54 | | 05393640 | LITTLE PINE CREEK
NEAR IRMA, WI | LAT 45°23'37", LONG 89°40'20", IN NW 1/4 SEC.31, T.34 N., R.7 E., LINCOLN COUNTY, AT BOX CULVERT ON U.S. HIGHWAY 51, 3.0 MI NORTH OF IRMA. | 22.0 | 1970-88 | 03-09-88 | 12.62 | 104 | | | ANNUAL MAXIMUM DI | SCHARGE AT CREST-STAGE PARTIAL-RECORD STATE | ONI DUKING | WAIER IEA | | AL MAXIM | JM | |----------------|---|--|--|--|----------|------------------------|--| | STATION
NO. | STATION NAME | LOCATION | DRAINAGE
AREA
(MI ²) | PERIOD
OF
RECORD | DATE | GAGE
HEIGHT
(FT) |
DIS-
CHARGE
(FT ³ /S) | | | | WISCONSIN RIVER BASINCONTINUED | | | | | | | *05394200 | DEVIL CREEK NEAR
MERRILL, WI | LAT 45°08'56", LONG 89°47'13", IN N 1/2
SEC.30, T.31 N., R.6 E., LINCOLN
COUNTY, AT CULVERT ON COUNTY TRUNK
HIGHWAY F, 5.8 MI SOUTHWEST OF MERRILL. | 9.58 | 1961-88 | 03-09-88 | 13.97 | 400 | | 05395020 | LLOYD CREEK NEAR
DOERING, WI | LAT 45°13'57", LONG 89°22'04", IN SE 1/4
SEC.21, T.32 N., R.9 E., LANGLADE
COUNTY, AT BRIDGE ON COUNTY TRUNK
HIGHWAY C, 4.5 MI EAST OF DOERING. | 7.80 | 1970-88 | 03-09-88 | 12.90 | 265 | | 05395100 | TRAPPE RIVER TRIBUTARY NEAR MERRILL, WI | LAT 45°08'07", LONG 89°30'08", IN SW 1/4
SEC.28, T.31 N., R.8 E., LINCOLN
COUNTY, AT CULVERT ON COUNTY TRUNK
HIGHWAY P, 9.5 MI SOUTHEAST OF MERRILL. | 1.58 | 1959-88 | 03-09-88 | 11.91 | 80 | | 05396100 | PET BROOK
TRIBUTARY NEAR
EDGAR, WI | LAT 44°56'40", LONG 89°57'05", IN SE 1/4
SEC.31, T.29 N., R.5 E., MARATHON
COUNTY, AT CULVERT ON STATE HIGHWAY 29,
1.5 MI NORTHEAST OF EDGAR. | 6.86 | 1962-88 | 03-09-88 | 16.41 | 1,180 | | 05396300 | WISCONSIN RIVER
TRIBUTARY AT
WAUSAU, WI | LAT 44°57'28", LONG 89°39'52", IN NE 1/4
NW 1/4 SEC.34, T.29 N., R.7 E., MARATHON
COUNTY, ON ROAD RIGHT-OF-WAY OF 24TH
AVENUE OPPOSITE THE ACE MOTEL, 300 FT
EAST OF U.S. HIGHWAY 51, AT WAUSAU. | | 1982-88 | 07-24-88 | 5.70 | 135 | | 05397600 | BIG SANDY CREEK
NEAR WAUSAU, WI | LAT 45°01'55", LONG 89°27'00", IN SE 1/4
SEC.31, T.30 N., R.9 E., MARATHON
COUNTY, AT BRIDGE ON STATE HIGHWAY 52,
10.0 MI NORTHEAST OF WAUSAU. | 11.5 | 1959-88 | 03-09-88 | 12.19 | 400 | | 05400025 | JOHNSON CREEK NEAR
KNOWLTON, WI | LAT 44°44'19", LONG 89°36'39", IN SE 1/4 NE 1/4 SEC.13, T.26 N., R.7 E., MARATHON COUNTY, AT BRIDGE ON COUNTY TRUNK HIGHWAY X, 2.7 MI EAST OF KNOWLTON | 25.1 | 1973-88 | 03-09-88 | 13.65 | 460 | | 05401800 | YELLOW RIVER TRIBUTARY NEAR PITTSVILLE, WI | LAT 44°28'58", LONG 90°07'05", ON COMMON BOUNDARY OF SECS.11 AND 14, T.23 N., R.3 E., WOOD COUNTY, AT BRIDGE ON COUNTY TRUNK HIGHWAY C, 2.0 MI NORTH OF PITTSVILLE. | 7.23 | 1959-88 | 02-29-88 | 11.83 | 265 | | *05403520 | WEBSTER CREEK AT
NEW LISBON, WI | LAT 43°51'23", LONG 90°10'25", IN NE 1/4
SEC.19, T.16 N., R.3 E., JUNEAU COUNTY,
AT BRIDGE ON STATE HIGHWAY 80, 1.2 MI
SOUTH OF NEW LISBON. | 11.8 | 1961-88 | 03-08-88 | 11.92 | 55 | | *05403550 | ONEMILE CREEK
NEAR MAUSTON, WI | LAT 43°45'50", LONG 90°04'45", IN SE 1/4
SEC.24, T.15 N., R.3 E., JUNEAU COUNTY,
AT BRIDGE ON STATE HIGHWAY 58, 2.4 MI
SOUTH OF MAUSTON. | 30.2 | 1958-88 | 03-08-88 | 11.39 | 105 | | 05403630 | HULBERT CREEK NEAR
WISCONSIN DELLS,
WI | LAT 43°37'37", LONG 89°48'36", IN SE 1/4
SW 1/4 SEC.5, T.13 N., R.6 E., SAUK
COUNTY, 1.6 MI UPSTREAM FROM MOUTH, AND
2.0 MI WEST OF WISCONSIN DELLS. | 11.2 | 1971-77#
1978-88 | 09-21-88 | 3.37 1 | 52 | | 05403700 | DELL CREEK NEAR
LAKE DELTON, WI | LAT 43°33'05", LONG 89°51'55", IN NW 1/4 SEC.2, T.12 N., R.5 E., SAUK COUNTY, ON RIGHT BANK 50 FT UPSTREAM FROM HIGHWAY BRIDGE, 6.0 MI SOUTHWEST OF LAKE DELTON, AND 7.0 MI UPSTREAM FROM MOUTH. | 44.9 | 1957-65#
1966-70
1971-80#
1983-88 | 09-21-88 | 4.96 | 131 | | *05404200 | NARROWS CREEK AT LOGANVILLE, WI | LAT 43°26'32", LONG 90°02'06", IN SE 1/4
SEC.8, T.11 N., R.4 E., SAUK COUNTY,
AT BRIDGE ON STATE HIGHWAYS 23 AND 154,
0.2 MI NORTH OF LOGANVILLE. | 40.1 | 1958-65
1966#
1967-88 | 01-31-88 | 10.67 | 310 | | *05405600 | ROWAN CREEK AT
POYNETTE, WI | LAT 43°23'13", LONG 89°23'25", IN S 1/2 SEC.35, T.11 N., R.9 E., COLUMBIA COUNTY, AT BRIDGE ON U.S. HIGHWAY 51, AT POYNETTE. | 10.4 | 1961-88 | 1988 | В | <30 | | 05406800 | ROCKY BRANCH NEAR
RICHLAND CENTER,
WI | LAT 43°18'52", LONG 90°23'22", IN E 1/2
SEC.29, T.10 N., R.1 E., RICHLAND
COUNTY, AT CULVERT ON STATE HIGHWAY 80,
1.5 MI SOUTH OF RICHLAND CENTER. | 1.68 | 1960-88 | 1988 | В | <50 | | | ANNUAL MAXIMUM DI | SCHARGE AT CREST-STAGE PARTIAL-RECORD STATE | ONS DOKING | WAIER IEA | | AL MAXIM | UM | | | | |--------------------------------|---|---|--|--|----------|------------------------|--|--|--|--| | STATION
NO. | STATION NAME | LOCATION | DRAINAGE
AREA
(MI ²) | PERIOD
OF
RECORD | DATE | GAGE
HEIGHT
(FT) | DIS-
CHARGE
(FT ³ /3) | | | | | WISCONSIN RIVER BASINCONTINUED | | | | | | | | | | | | *05407100 | RICHLAND CREEK
NEAR PLUGTOWN, WI | LAT 43°11'12", LONG 90°44'23", IN NW 1/4
SEC.9, T.8 N., R.3 W., CRAWFORD COUNTY,
AT BRIDGE ON U.S. HIGHWAY 61, 2.0 MI
SOUTH OF PLUGTOWN. | 19.2 | 1958-88 | 1988 | В | <75 | | | | | *05407200 | CROOKED CREEK
NEAR BOSCOBEL, WI | LAT 43°06'27", LONG 90°42'18", IN SE 1/4
SEC.2, T.7 N., R.3 W., GRANT COUNTY,
AT BRIDGE ON U.S. HIGHWAY 61, 1.6 MI
SOUTH OF BOSCOBEL. | 12.9 | 1959-88 | 1988 | В | <75 | | | | | | | GRANT RIVER BASIN | | | | | | | | | | *05413400 | PIGEON CREEK NEAR
LANCASTER, WI | LAT 42°49'00", LONG 90°43'20", IN SW 1/4
SEC.15, T.4 N., R.3 W., GRANT COUNTY,
AT CULVERT ON COUNTRY ROAD, 2.0 MI
SOUTH OF LANCASTER. | 6.93 | 1960-65
1966#
1967-88 | 1988 | В | 150 | | | | | | | PLATTE RIVER BASIN | | | | | | | | | | *05414200 | BEAR BRANCH NEAR
PLATTEVILLE, WI | LAT 42°45'46", LONG 90°30'06", IN NW 1/4
SEC.4, T.3 N., R.1 W., GRANT COUNTY,
AT BOX CULVERT ON STATE HIGHWAY 81,
2.3 MI NORTHWEST OF PLATTEVILLE. | 2.80 | 1958-88 | 1988 | В | <160 | | | | | | | GALENA RIVER BASIN | | | | | | | | | | *05414900 | PATS CREEK NEAR
ELK GROVE, WI | LAT 42°40'03", LONG 90°22'40", IN SW 1/4
SEC.4, T.2 N., R.1 E., LAFAYETTE
COUNTY, AT BRIDGE ON STATE HIGHWAY 81,
7.0 MI SOUTHEAST OF PLATTEVILLE. | 8.49 | 1960-88 | 1988 | В | <200 | | | | | 05414915 | MADDEN BRANCH
NEAR BELMONT, WI | LAT 42°40'03", LONG 90°19'45", IN NE 1/4
NE 1/4 SEC.11, T.2 N., R.1 E.,
LAFAYETTE COUNTY, AT STATE HIGHWAY 81,
4.7 MI SOUTH OF BELMONT. | 2.83 | 1981-82#
1984-88 | 1988 | В | <100 | | | | | | | ROCK RIVER BASIN | | | | | | | | | | *05423800 | EAST BRANCH ROCK
RIVER TRIBUTARY
NEAR SLINGER, WI | LAT 43°23'06", LONG 88°18'29", IN S 1/2 SEC.26, T.11 N., R.18 E., WASHINGTON COUNTY, AT CULVERT ON U.S. HIGHWAY 41, 4.0 MI NORTHWEST OF SLINGER. | 4.42 | 1960-88 | 01-30-88 | 11.75 | 150 | | | | | *05425700 | ROBBINS CREEK
AT COLUMBUS, WI | LAT 43°20'48", LONG 89°01'55", IN SE 1/4 SEC.11, T.10 N., R.12 E., COLUMBIA COUNTY, AT CULVERT ON U.S. HIGHWAY 16, AT COLUMBUS. | 8.01 | 1960-88 | 01-31-88 | 10.79 | 71 | | | | | 05425827 | MAUNESHA RIVER
NEAR SUN PRAIRIE,
WI | LAT 43°13'37", LONG 89°09'33", IN SE 1/4 SEC.23, T.9 N., R.11 E., DANE COUNTY, AT BRIDGE ON TOWN ROAD, 4.2 MI NORTHEAST OF SUN PRAIRIE. | 26.0 | 1973-88 | 01-31-88 | 12.89 | 620 | | | | | *05427200 | ALLEN CREEK NEAR
FORT ATKINSON, WI | LAT 42°53'54", LONG 88°51'35", IN NE 1/4 SEC.17, T.5 N., R.14 E., JEFFERSON COUNTY, AT BOX CULVERT ON STATE HIGHWAY 26, 2.5 MI SOUTHWEST OF FORT ATKINSON. | 10.2 | 1958-88 | 01-31-88 | 12.04 | 255 | | | | | 05427800 | TOKEN CREEK NEAR
MADISON, WI | LAT 43°10'52", LONG 89°19'28", IN SW 1/4 SEC.4, T.8 N., R.10 E., DANE COUNTY, AT CULVERT ON U.S. HIGHWAY 51, 8 MI NORTHEAST OF STATE CAPITOL IN MADISON. | 24.3 | 1961-65
1966#
1967-75
1976-81#
1982-88 | 01-31-88 | 11.04 | 106 | | | | | 05430403 | FISHER CREEK
TRIBUTARY AT
JANESVILLE, WI | LAT 42°40'18", LONG 89°03'31", IN SW 1/4
SE 1/4 SEC.34, T.3 N., R.12 E., ROCK
COUNTY, AT CULVERT ON ROCKPORT ROAD,
0.4 MI WEST OF SOUTH CROSBY AVENUE,
AND 0.6 MI UPSTREAM FROM COUNTY TRUNK
HIGHWAY D, AT JANESVILLE. | 1.95 | 1982-88 | 08-08-88 | 7.28 | 640 | | | | | | ANNUAL MAXIMUM DI | SCHARGE AT CREST-STAGE PARTIAL-RECORD STATE | ONS DUKING | WALER IEE | ANNII | AL MAXIM | TJM | |----------------|--|--|--|------------------------|----------|------------------------|--| | STATION
NO. | STATION NAME | LOCATION | DRAINAGE
AREA
(MI ²) | PERIOD
OF
RECORD | DATE | GAGE
HEIGHT
(FT) | DIS-
CHARGE
(FT ³ /S) | | | | ROCK RIVER BASINCONTINUED | | | | | | | *05431400 | LITTLE TURTLE
CREEK AT ALLENS
GROVE, WI | LAT 42°34'46", LONG 88°45'33", IN NE 1/4
SEC.6, T.1 N., R.15 E., WALWORTH
COUNTY, AT BRIDGE ON COUNTRY ROAD,
0.2 MI SOUTH OF ALLENS GROVE. | 41.8 | 1962-88 | 01-18-88 | 12.40 | 465 | | *05432300 | ROCK BRANCH NEAR
MINERAL POINT, WI | LAT 42°50'02", LONG 90°09'15", IN SE 1/4
SEC.8, T.4 N., R.3 E., IOWA COUNTY,
AT BOX CULVERT ON STATE HIGHWAY 23,
2.5 MI SOUTH OF MINERAL POINT. | 4.83 | 1959-88 | 1988 | В | <100 | | *05433500 | YELLOWSTONE RIVER
NEAR BLANCHARD-
VILLE, WI | LAT 42°46'55", LONG 89°59'50", IN NE 1/4
SEC.34, T.4 N., R.4 E., LAFAYETTE
COUNTY, 0.6 MI UPSTREAM FROM BRIDGE
ON COUNTY TRUNK HIGHWAY F, 7.0 MI
WEST-SOUTHWEST OF BLANCHARDVILLE. | 28.5 | 1954-65#
1966-88 | 01-31-88 | 3.32 | 144 | | 05435900 | SUGAR RIVER
TRIBUTARY NEAR
PINE BLUFF, WI | LAT 43°02'48", LONG 89°38'42", IN SE 1/4
SEC.27, T.7 N., R.7 E., DANE COUNTY,
AT CULVERT ON COUNTY TRUNK HIGHWAY J,
1.1 MI SOUTHEAST OF PINE BLUFF. | 7.42 | 1961-88 | 1988 | В | <30 | | *05436200 | GILL CREEK NEAR
BROOKLYN, WI | LAT 42°49'38", LONG 89°26'43", IN NW 1/4
SEC.16, T.4 N., R.9
E., GREEN COUNTY,
AT CULVERT ON STATE HIGHWAY 92, 4.3 MI
WEST OF BROOKLYN. | 3.34 | 1961-88 | 01-31-88 | 11.40 | 32 | | *05437200 | EAST FORK RACCOON
CREEK TRIBUTARY
NEAR BELOIT, WI | LAT 42°30'44", LONG 89°06'40", ON COMMON
BOUNDARY OF SECS.30 AND 31, T.1 N.,
R.12 E., ROCK COUNTY, AT CULVERT ON
STATE HIGHWAY 81, 2.9 MI WEST OF BELOIT. | | 1958-88 | 04-06-88 | 11.89 | 115 | | | | ILLINOIS RIVER BASIN | | | | | | | 05545100 | SUGAR CREEK AT
ELKHORN, WI | LAT 42°41'05", LONG 88°30'50", IN SW 1/4
SEC.29, T.3 N., R.17 E., WALWORTH
COUNTY, AT CULVERT ON STATE HIGHWAY 11,
2.0 MI NORTHEAST OF ELKHORN. | 6.68 | 1962-88 | 01-31-88 | 12.30 | 145 | | 05545200 | WHITE RIVER
TRIBUTARY NEAR
BURLINGTON, WI | LAT 42°41'03", LONG 88°21'37", ON COMMON BOUNDARY OF SECS.27 AND 34, T.3 N., R.18 E., WALWORTH COUNTY, AT BOX CULVERT ON STATE HIGHWAY 11, 4.5 MI WEST OF BURLINGTON. | 2.42 | 1958-88 | 01-20-88 | 11.19 | 80 | | *05548150 | NORTH BRANCH
NIPPERSINK CREEK
TRIBUTARY NEAR
GENOA CITY, WI | LAT 42°30'15", LONG 88°23'01", IN E 1/2
SEC.32, T.1 N., R.18 E., WALWORTH
COUNTY, AT BRIDGE ON COUNTY TRUNK
HIGHWAY B, 3.0 MI WEST OF GENOA CITY. | 13.8 | 1962-88 | 01-19-88 | 10.97 | 130 | ^{*} Also a low-flow partial-record station. # Operated as a continuous-record station. B Peak did not reach bottom of gage. D Backwater from beaver dam. E Revised. G Backwater from ice. ### MEASUREMENTS AT MISCELLANEOUS SITES Measurements of streamflow at points other than gaging stations or partial-record stations are given in the following table. | | DIDOMENOD II | MIDORIMINIO INDI AI NICOMMANICOS SITUS | 20111110 111 | Measured | -
Meas | urements | |-------------------------------|------------------|--|--|---|----------------------|-----------------------------------| | Stream | Tributary to | Location | Drainage
Area
(mi ²) | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | STREAMS TRIBUTARY TO LAKE MICHI | GAN | | | | | Pokegama River | St. Louis River | Lat 46°39'43", long 92°07'07", in
NW 1/4 NW 1/4 sec.10, T.48 N., R.14 W.
Douglas County, at town road 0.2 mi
south of State Highwy 105 and 0.8 mi
west of State Highwy 35 at South Super | | 1973-76 | 08-02-88 | 0 | | Black River | Nemadji River | Lat 46°26'45", long 92°10'05", in SE 1/4 SW 1/4 sec.19, T.46 N., R.14 W. Douglas County, at State Higway 35, 4.0 mi southeast of Patzau. | 54.5 | 1964
1967
1969-76 | 08-02-88 | 0 | | Bear Creek | Lake Superior | Lat 46°38'51", long 92°00'40", in
NW 1/4 NW 1/4 sec.16, T.48 N., R.13 W.
Douglas County, at County Highway Z,
4.3 mi southeast of South Superior. | | 1973-75 | 08-02-88 | 0 | | Amnicon River | Lake Superior | Lat 46°36'20", long 91°53'20", in NE 1/4 NE 1/4 sec.32, T.48 N., R.12 W. Douglas County, at U.S. Highway 2, 4.5 mi northwest of Poplar. | 110 | 1964
1967
1969-76 | 08-03-88 | 4.4 | | Middle River | Lake Superior | Lat 46°32'27", long 91°52'44", in
SE 1/4 NW 1/4 sec.21, T.47 N., R.12 W.
Douglas County, at sewage treatment
plant, 1.4 mi east of Hines. | 28.2 | 1973-75 | 08-03-88 | 0.78 | | Middle River | Lake Superior | Lat 46°39'05", long 91°48'15", in
NE 1/4 NE 1/4 sec.13, T.48 N., R.12 W.
Douglas County, at State Highway 13,
4.6 mi north of Poplar. | 48.4 | 1964
1967
1969-76 | 08-02-88 | 2.8 | | Flag River | Lake Superior | Lat 46°46'55", long 91°22'25", in SE 1/4 NW 1/4 sec.28, T.50 N., R.8 W. Bayfield County, at State Highway 13, at Port Wing. | 32.0 | 1964
1967
1969-76 | 08-03-88 | 31 | | Sand River | Lake Superior | Lat 46°54'00", long 90°57'20", in SW 1/4 NE 1/4 sec.14, T.51 N., R.5 W. Bayfield County, at State Highway 13, 8.5 mi northwest of Red Cliff. | 27.4 | 1964
1967
1969-76 | 08-03-88 | 4.1 | | Whittlesey Creek
Tributary | Whittlesey Creek | Lat 46°35'49", long 90°58'07", in SW 1/4 NW 1/4 sec.35, T.48 N., R.5 W. Bayfield County, at town road, 4.0 mi east of Ashland. | , | 1973-77 | 08-04-88 | 0.65 | | Emmons Creek | Waupaca River | Lat 44°18'34", long 89°11'34", in NW 1/4 NE 1/4 sec.8, T.21 N., R.11 E. Waupaca County, at town road, 1.8 mi west of Rural. | 25.1 | 1968-74# | 07-12-88 | 20 | | Waupaca River | Wolf River | Lat 44°19'50", long 88°59'45", in NW 1/4 NW 1/4 sec.1, T.21 N., R.12 E. Waupaca County, at country road, 4.7 southeast of Waupaca. | | 1916-66#
1982-85#
1972-73
1977 | 07-13-88
08-15-88 | 154
173 | | Walla Walla Creek | Wolf River | Lat 44°17'20", long 88°55'53", in SE 1/4 SW 1/4 sec.16, T.21 N., R.13 E Waupaca County, at U.S. Highway 10, 2.2 mi south of Weyauwega. | 52.4 | 1963-67
1976-77 | 07-13-88 | 14 | | Rat River | Wolf River | Lat 44°12'48", long 88°45'42", in
SW 1/4 SE 1/4 sec.13, T.20 N., R.14 E
Winnebago County, at County Highway M
5.3 mi west of Winchester. | | 1966
1973 | 07-13-88 | 0.04 | | Alder Creek | Wolf River | Lat 44°11'04", long 88°50'44", in SE 1/4 SE 1/4 sec.20, T.20 N., R.14 E Winnebago County, on County Highway H 5.1 mi south of Fremont. | | 1969-70
1974-75 | 07-12-88 | 0.21 | | Humphrey Creek | Pine River | Lat 44°11'05", long 89°14'45", in
NW 1/4 NW 1/4 sec.30, T.20 N., R.11 E
Waushara County, at bridge on County
Highway A, at Wild Rose. | 20.6 | 1972-73
1975-76
1978 | 07-12-88 | 5.8 | | Pine River | Wolf River | Lat 44°10'16", long 89°06'23", in SW 1/4 SW 1/4 sec.29, T.20 N., R.12 E Waushara County, at end of private roat Saxeville. | | 1965-66 | 07-12-88 | 40 | | | DIDOMENSI | MEASUREMENTS MADE AT MISCESSIANEOUS SITE | JO DONING V | | | ···womonta | |-----------------------------|-----------------------------|--|--|--|----------|--| | Stream | Tributary to | Location | Drainage
Area
(mi ²) | Measured
Previously
(Water
Years) | Date | Surements
Discharge
(ft ³ /s) | | | | STREAMS TRIBUTARY TO LAKE MICHIGAN- | CQNTINUE | 0 | | | | Pine River | Wolf River | Lat 44°08'09", long 88°59'46", in
SE 1/4 NW 1/4 sec.7, T.19 N., R.13 E.
Waushara County, at State Highway 49,
at Poy Sippi. | 99.4 | 1966
1972-73
1975-76 | 07-13-88 | 74 | | Rattlesnake Creek | Willow Creek | Lat 44°06'45", long 89°11'32", in
SE 1/4 SE 1/4 sec.16, T.19 N., R.11 E.
Waushara County, below Lake Morris dar
at Mount Morris. | ٠, | 1972-73
1975-76 | 07-12-88 | 5.9 | | Willow Creek | Wolf River | Lat 44°03'19", long 89°08'32", in
NE 1/4 NW 1/4 sec.12, T.18 N., R.11 E
Waushara County, at County Highway S,
2.1 mi northwest of Redgranite. | 34.8 | 1962-67
1976-77 | 07-11-88 | 30 | | Willow Creek | Wolf River | Lat 44°02'58", long 89°06'11", in
SW 1/4 NW 1/4 sec.8, T.18 N., R.12 E.
Waushara County, at bridge on County
Highway E, 0.4 mi north of Redgranite | | 1972-73
1975-76 | 07-12-88 | 45 | | Daggets Creek | Fox River | Lat 44°05'36", long 88°37'56", in
NW 1/4 NE 1/4 sec.30, T.19 N., R.16 E
Winnebago County, at mouth, 1.1 mi eas
of Butte des Morts. | | | 07-13-88 | 0 | | W. Br. Fond du Lac
River | Fox River | Lat 43°45'45", long 88°29'00", in
NE 1/4 NE 1/4 sec.20, T.15 N., R.17 E
at County Highway T, 2.0 mi southwest
of downtown Fond du Lac. | | 1939-54#
1972
1974 | 07-11-88 | 0 | | Campground Creek | E. Br. Fond du
Lac River | Lat 43°41'25", long 88°28'48", in
SE 1/4 SW 1/4 sec.11, T.14 N., R.16 E
Fond du Lac County, just upstream from
sewage treatment plant, at Oakfield. | ٠, | 1973-76 | 07-11-88 | 2.8 | | Sevenmile Creek | E. Br. Fond du
Lac River | Lat 43°44'01", long 88°28'25", in
NW 1/4 NE 1/4 sec.34, T.15 N., R.16 E
Fond du Lac County, at bridge on Stat
Highway 103, at Lamartine. | | 1973-74
1976 | 07-11-88 | 0 | | E. Br. Fond du Lac
River | Fond du Lac
River | Lat 43°45'15", long 88°27'10", in
NE 1/4 SW 1/4 sec.22, T.15 N., R.17 E
Fond du Lac County, at County Highway
VV, 1.4 mi south of downtown Fond du | | 1939-54 #
1962-67
1971 | 07-11-88 | 3.7 | | Lake Winnebago
Tributary | Fox River | Lat 43°58'17", long 88°18'35", on
Indian Reservation in T.17 N., R.18 E
Calumet County, at U.S. Highway 151 a
State Highway 55, at Brothertown. | ١., | 1976-77 | 07-11-88 | 0.09 | | Plum Creek | Fox River | Lat 44°18'20", long 88°10'16", in
NW 1/4 SW 1/4 sec.11, T.21 N., R.19 E
Brown County, on County Highway D, 1.
mi south of Wrightstown. | 21.1 | 1969
1976 | 07-11-88 | 0 | | Apple Creek | Fox River | Lat 44°20'56", long 88°09'41", in NE 1/4 SW 1/4 sec.26, T.22 N., R.19 E Brown County, on town road, 1.5 mi no of Wrightstown. | | 1969 | 07-11-88 | 0 | | Ashwaubenon Creek | Fox River | Lat 44°27'17", long 88°05'43", in lan
grant 29, T.23 N., R.20 E., Brown Cou
at culvert on County Highway G, 0.5 m
west of DePere. | inty, | 1969
1976-77 | 07-12-88 | 0.17 | | Dutchman Creek | Fox River | Lat 44°28'43", long 88°04'21", in E 1 land grant 23, T.23 N., R.20 E., Brow County, on town road, 1.9 mi north of DePere. | m | 1969
1976 | 07-12-88 | 0.40 | | East River
Tributary | East River | Lat 44°19'15", long 88°07'49", in NW 1/4 SW 1/4 sec.6, T.21 N., R.20 E. Brown County, on Fair Road, 1.7 mi west of Greenleaf. | | 1969-70 | 07-11-88 | 0 | | East River
Tributary | East River | Lat 44°19'15", long 88°06'49", in NE 1/4 SE 1/4 sec.6, T.21 N., R.20 E. Brown County, on Fair Road, 1.0 mi northwest of Greenleaf. | 10.0 | 1969-70 | 07-11-88 | 0.21 | | Baird Creek | East River | Lat 44°36'04", long 87°53'35", in
NW 1/4 SW 1/4 sec.33, T.24 N., R.21 E Brown County, at bridge on County Highway CC, near east city limits of Green Bay. | 23.9 | 1969-70 | 07-12-88 | 0.36 | | | | | | Measured | Meas | surements | |---------------------------|-------------------|---|--|--------------------------------|----------|-----------------------------------| | Stream | Tributary to | Location | Drainage
Area
(mi ²) | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | ST. CROIX RIVER BASIN | | | | | | St. Croix River | Mississippi River | Lat 46°18'24", long 91°47'16", in
NW 1/4 SE 1/4 sec.7, T.44 N., R.11 W.,
Douglas County, at town road, 3.6 mi
southeast of Solon Springs. | 34.8 | 1974
1976-77 | 09-15-88 | 20 | | Hatchery Creek | Namekagon River | Lat 46°00'39", long 91°27'06", in NE 1/4 NE 1/4 sec.26, T.41 N., R.9 W., Sawyer County, at town road, 1.6 mi east of Hayward. | | 1975-77 | 09-15-88 | 1.5 | | Namekagon River | St. Croix River | Lat 46°00'07", long 91°29'24", in NE 1/4 SE 1/4 sec.28, T.41 N., R.9 W., Sawyer County, at ranger station, 0.8 mi southwest of U.S. Highway 63, at Hayward. | 206 | 1973-76 | 09-15-88 | 105 | | Chippanazie Creek | Namekagon River | Lat 45°59'50", long 91°38'05", in NW 1/4 NW 1/4 sec.33, T.41 N., R.10 W. Washburn County, at U.S. Highway 63, a Stanberry. | | 1964
1967
1969-76 | 09-15-88 | 2.2 | | Godfrey Creek | S. Fk. Bean Brook | Lat 45°52'52", long 91°33'40", in NW 1/4 NW 1/4 sec.12, T.39 N., R.10 W. Washburn County, at town road, 2.7 mi northwest of Stone Lake. | | 1975-77 | 09-15-88 | 0.98 | | Bean Brook | Namekagon River | Lat 45°54'00", long 91°39'40", in NE 1/4 NE 1/4 sec.1, T.39 N., R.11 W., Washburn County, at County Highway M, 3.5 mi southeast of Spring Brook. | 45.5 | 1964
1967
1969-76 | 09-14-88 | 31 | | Potato Creek | Namekagon River | Lat 45°53'32", long 91°49'39", in NW 1/4 SW 1/4 sec.2, T.39 N., R.12 W., Washburn County, at U.S. Highways 53 and 63, at Trego. | 30.4 | 1962-67
1969
1976 | 09-14-88 | 15 | | Stuntz Brook | Namekagon River | Lat 46°00'45", long 91°57'25", in SE 1/4 SW 1/4 sec.23, T.41 N., R.13 W. Washburn County, at County Highway F, 8.8 mi southwest of Minong. | 21.1 | 1964
1967
1969-76 | 09-15-88 | 0.21 | | Yellow River | St. Croix River | Lat 45°49'20", long 91°55'58", in NE 1/4 SE 1/4 sec.35, T.39 N., R.13 W. Washburn County, on town road, 2.0 mi west of Spooner. | 74.3 | 1972-76 | 09-14-88 | 40 | | Sawyer Creek
Tributary | Saywer Creek | Lat 45°46'17", long 91°55'44", in
SW 1/4 SW 1/4 sec.13, T.38 N., R.13 W.
Washburn County, at culvert on town
road, 2.8 mi north of Shell Lake. | | 5 1972-73 | 09-14-88 | 8.7 | | Yellow River | St. Croix River | Lat 45°53'35", long 92°21'55", in SE 1/4 NE 1/4 sec.5, T.39 N., R.16 W., Burnett County, at State Highway 35, 1.3 mi north of Webster. | 284 | 1964
1967
1969-76 | 09-14-88 | 156 | | Clam River | St. Croix River | Lat 45°38'23", long 92°15'29", in NE 1/4 NE 1/4 sec.6, T.36 N., R.15 W., at County Highway W, 10.2 mi east of Frederic. | 41.6 | 1962-67
1969
1976 | 09-13-88 | 0.76 | | Sand Creek | N. Fk. Clam River | Lat 45°36'30", long 92°07'16", in NW 1/4 NE 1/4 sec.17, T.36 N., R.14 W. Barron County, at town road, about 7.0 mi northwest of Cumberland. | 17.7 | | 07-18-88 | 5.0 | | Clam River
Tributary | Clam River | Lat 45°51'34", long 92°24'21", in
SW 1/4 SE 1/4 sec.16, T.39 N., R.16 W.
Burnett County, at culvert on Bass Lak
Road, 1.2 mi southeast of Webster. | , | 1972-76 | 09-14-88 | 0.67 | | Wood River | St. Croix River | Lat 45°45'00", long 92°28'10", in SE 1/4 NE 1/4 sec.28, T.38 N., R.17 W. Burnett County, at town road, 4.8 mi southwest of Siren. | 29.2 | 1964
1967
1969-76 | 09-13-88 | 0.10 | | Wood River | St. Croix River | Lat 45°45'29", long 92°45'29", in NE 1/4 NE 1/4 sec.28, T.38 N., R.18 W. Burnett County, at town road, 1.2 mi southwest of Alpha. | 73.0 | 1969
1974
1976 | 09-13-88 | 16 | | N. Fk. Wood River | Wood River | Lat 45°47'30", long 92°37'00", in NW 1/4 SE 1/4 sec.8, T.38 N., R.18 W., Burnett County, at town road, 3.5 mi northeast of Grantsburg. | 54.8 | 1964
1967
1969-76 | 09-13-88 | 1.5 | | | 2,20,111,011 | | | Measured | Measurements | | | | | | |----------------------------------|------------------------|--|------------|--------------------------------|--------------|-----------------------------------|--|--|--|--| | Stream | Tributary to | Location | | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | | | ST. CROIX RIVER BASINCONTINUED | | | | | | | | | | | | Wood River | St. Croix River | Lat 45°46'23", long 92°42'27", in
SE 1/4 SW 1/4 sec.15, T.38 N., R.19 W.,
Burnett County, at State Highway 70,
1.3 mi west of Grantsburg. | 153 | 1973-76 | 09-13-88 | 27 | | | | | | Trade River | St. Croix River | Lat 45°37'41", long 92°29'19", in SW 1/4 SW 1/4 sec.4, T.36 N., R.17 W., Polk County, at State Highways 35 and 48, 2.5 mi southwest of Frederic. | 6.16 | 1960-67
1969
1976 | 09-13-88 | 0.58 | | | | | | Trade River
Tributary | Trade River | Lat 45°39'00", long 92°28'05", in SW 1/4 NW 1/4 sec.34, T.37 N., R.17 W., Polk County, at State Highways 35 and 48, at Frederic. | 2.04 | 1972-76 | 09-13-88 | 0 | | | | | | Trade River
Tributary | Trade River | Lat 45°35'55", long 92°29'16", in NW 1/4 NW 1/4 sec.21, T.36 N., R.17 W., Polk County, at town road, 1.7 mi north of Luck. | 2.18 | 1972-76 | 09-06-88 | 0.18 | | | | | | Wolf Creek | St. Croix River | Lat 45°33'20", long 92°43'05", in
SE 1/4 SE 1/4 sec.33, T.36 N., R.19 W.,
Polk County, at County Highway G, 11.0
mi northwest of St. Croix Falls. | 24.9 | 1964
1967
1969-76 | 09-06-88 | 3.6 | | | | | | St. Croix River
Tributary | St. Croix River | Lat 45°20'52", long 92°40'55", in
SW 1/4 NE 1/4 sec.14, T.33 N., R.19 W.,
Polk County, at road to fish hatchery,
2.1 mi northeast of Osceola. | 2.28 | 1976 | 09-08-88 | 6.0 | | | | | | Osceola Creek | St. Croix River | Lat 45°17'52", long 92°39'11", in SE 1/4 SE 1/4 sec.36, T.33 N., R.19 W., Polk County, at culvert on town road, 3.0 mi southeast of Osceola. | 2.01 | 1974-76 | 09-12-88 | 3.3 | | | | | | Trout Brook | St. Croix River | Lat 45°19'18", long 92°41'40", in
NE 1/4 NE 1/4 sec.27, T.33 N., R.19 W.,
Polk County, at Third Street, in Osceola | 10.5
a. | 1974
1976 | 09-08-88 | 2.4 | | | | | | S. Br. Beaver
Brook Tributary | S. Br. Beaver
Brook | Lat 45°21'37", long 92°11'33", in NW 1/4 SW 1/4 sec.11, T.33 N., R.15 W., Polk County, at culvert on town road, 2.2 mi northwest of Clayton. | 2.51 | 1972-76 | 09-12-88 | 0.20 | | | | | | Apple River | St. Croix River | Lat 45°18'04", long 92°21'48", in NW 1/4 SW 1/4 sec.33, T.33 N., R.16 W., Polk County, at sewage treatment plant, at Amery. | 250 | 1972-76 | 09-08-88 | 64 | | | | | | Balsam Branch | Apple River | Lat 45°26'46", long 92°27'05", in
NE 1/4 SE 1/4 sec.10, T.34 N., R.17 W.,
Polk County, at sewage treatment plant,
at south side of town of Balsam Lake. | | 1972-76 | 09-06-88 | 1.6 | | | | | | Apple River | St. Croix River | Lat 45°11'49", long 92°31'57", in SE 1/4 SE 1/4 sec.1, T.31 N., R.18 W., St. Croix County, at County Highway HH, at Star Prarie. | 459 | 1974-76 | 09-08-88 | 145 | | | | | | Willow River | St. Croix River | Lat 45°10'23", long 92°21'51", in SW 1/4 NW 1/4 sec.16, T.31 N., R.16 W., St. Croix County, at town road, 1.5 mi southeast of Deer Park. | 80.4 | 1975-76 | 09-06-88 | 10 | | | | | | Willow River | St. Croix River | Lat 45°08'13", long 92°24'40", in SW 1/4 SE 1/4 sec.25, T.31 N., R.17 W., St. Croix County, at State Highway 64, 6.2 mi east of New Richmond. | 87.9 | 1962-67
1969
1976 | 09-07-88 | 9.7 | | | | | | Willow River | St. Croix River | Lat 45°07'24", long 92°33'02", in SW 1/4 SE 1/4 sec.35, T.31 N., R.18 W., St. Croix County, downstream of sewage treatment plant, 0.9 mi west of New Richmond. | 196 | 1972-76 | 09-07-88 | 30 | | | | | | | | CHIPPEWA RIVER BASIN | | | | | | | | | | Kinnickinnic River | St. Croix River | Lat 44°52'29", long 92°37'18", in NE 1/4 NE 1/4 sec.36, T.28 N., R.19 W., St. Croix County, at State Highway 35, 1.2 mi north of River Falls. | 115 | 1969
1972-76 | 09-07-88 | 45 | | | | | | | DISCHARGE | MEASUREMENTS MADE AT MISCELLANGOUS SITE | DORTING | WILLIAM TEMEN T. | ,,,, | | | | | | |-------------------------------|--------------------------|--|--|--|------------------|--|--|--|--|--| | Stream | Tributary to | Location | Drainage
Area
(mi ²) | Measured
Previously
(Water
Years) | Meas
Date | surements
Discharge
(ft ³ /s) | | | | | | CHIPPEWA RIVER BASINCONTINUED | | | | | | | | | | | | Torch River | W. Fk. Chippewa
River | Lat 46°06'51", long 90°53'00", in SE 1/4 SE 1/4 sec.17, T.42 N., R.4 W., Ashland County, on County Highway GG, 3.7 mi south of Clam Lake. | 43.9 | | 08-03-88 | 4.0 | | | | | | Ghost Creek | W. Fk. Chippewa
River | Lat 46°08'07", long 91°02'34", in SE 1/4 NW 1/4 sec.7, T.42 N., R.5 W., Sawyer County, on town road, 17 mi north of New Post. | 5.27 | | 08-03-88 | 0.15 | | | | | | Moose River | W. Fk. Chippewa
River | Lat 46°04'16", long 90°51'40", in SW 1/4 SW 1/4 sec.34, T.42 N., R.4 W., Ashland County, on County Highway GG, 6.1 mi southeast of Clam Lake. | 26.8 | 1969-70
1974
1976 | 08-02-88 | 1.3 | | | | | | Little Moose River |
Moose River | Lat 46°03'02", long 90°59'39", in SW 1/4 NE 1/4 sec.9, T.41 N., R.5 W., Sawyer County, on town road, 14 mi northeast of New Post. | 8.58 | | 08-03-88 | 0.80 | | | | | | Willerth Creek | E. Fk. Chippewa
River | Lat. 46°08'47", long 90°30'22", in NW 1/4 SW 1/4 sec.4, T.42 N., R.2 W., Ashland County, on town Road, 3.4 mi east of Glidden. | 4.05 | | 08-03-88 | 1.5 | | | | | | E. Fk. Chippewa
River | Chippewa River | Lat 46°07'35", long 90°33'55", in NE 1/4 NW 1/4 sec.13, T.42 N., R.2 W., Ashland County, on town road, 0.7 mi southeast of Glidden. | 96.7 | 1967
1969-70
1974
1976 | 08-03-88 | 20 | | | | | | Schraum Creek | E. Fk. Chippewa
River | Lat 46°06'58", long 90°33'05", in SE 1/4 SE 1/4 sec.13, T.42 N., R.2 W., Ashland County, on State Highway 13, 1.9 mi southeast of Glidden. | | | 08-03-88 | 2.7 | | | | | | Dryden Creek | E. Fk. Chippewa
River | Lat 46°07'05", long 90°39'09", in SW 1/4 NW 1/4 sec.17, T.42 N., R.2 W., Ashland County, on town road, 1.2 mi west of Shanagolden. | 24.1 | | 08-03-88 | 3.1 | | | | | | Hungry Run Creek | E. Fk. Chippewa
River | Lat 46°06'24", long 90°47'20", in SE 1/4 SE 1/4 sec.7, T.41 N., R.3 W., Ashland County, on town road, 10.4 mi southeast of Clam Lake. | 7.78 | | 08-02-88 | 0.74 | | | | | | Fishtrap Creek | E. Fk. Chippewa
River | Lat 45°58'27", long 90°56'26", in NW 1/4 SW 1/4 sec.1, T.40 N., R.5 W., Sawyer County, on town road, 13 mi northeast of New Post. | 13.1 | | 08-01-88 | 1.5 | | | | | | Nail Creek | Chippewa River | Lat 45°37'35", long 91°09'50", in SW 1/4 SE 1/4 sec.6, T.36 N., R.6 W., Rusk County, at bridge on town road, 4.8 mi southeast of Exeland. | 26.6 | | 08-02-88 | 1.5 | | | | | | Big Weirgor Creek | Chippewa River | Lat 45°36'59", long 91°15'25". in NE 1/4 SE 1/4 sec.8, T.36 N., R.7 W., Rusk County, at bridge on town road, 3.9 mi southwest of Exeland. | 41.7 | 1963-67 | Q 8-02-88 | 3.6 | | | | | | Devils Creek | Chippewa River | Lat 45°28'56", long 91°16'48", in SE 1/4 SE 1/4 sec.30, T.35 N., R.7 W., Rusk County, at bridge on State Highwa 40, 1.7 mi north of Bruce. | | 1967 | 08-02-88 | 3.8 | | | | | | Soft Maple Creek | Chippewa River | Lat 45°24'30", long 91°23'59", in SE 1/4 SE 1/4 sec.19, T.34 N., R.8 W., Rusk County, on County Highway F, 1.2 mi southeast of Weyerhauser. | 15.9 | 1972-74
1976 | 08-02-88 | 1.6 | | | | | | Soft Maple Creek | Chippewa River | Lat 45°25'04", long 91°21'30", in NE 1/4 NE 1/4 sec.21, T.34 N., R.8 W., Rusk County, at bridge on town road, 4.9 mi southwest of Bruce. | 32.0 | 1963-67
1976 | 08-02-88 | 6.4 | | | | | | Smith Creek | Flambeau River | Lat 45°57'06", long 90°28'07", in NE 1/4 NE 1/4 sec.15, T.40 N., R.1 W., Price County, at culvert on State Highway 13, 1.5 mi northwest of Park Falls. | | 1970-71 | 08-02-88 | 0.64 | | | | | | Butternut Creek | Flambeau River | Lat 45°55'00", long 90°35'01", in SW 1/4 NE 1/4 sec.26, T.40 N., R.2 W., Price County, on County Highway E, 7 mi west of Park Falls. | 60.9 | | 08-02-88 | 13 | | | | | | | | D | | Measured | Meas | surements | |--------------------------|--------------------------|--|----------------------------|---------------------------------|----------|-----------------------------------| | Stream | Tributary to | Location | Area
(mi ²) | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | CHIPPEWA RIVER BASINCONTINUI | ED | | | | | Pine Creek | Flambeau River | Lat 45°54'12", long 90°41'00", in SE 1/4 sec.36, T.40 N., R.3 W., Sawyer County, at bridge on County Highway EE, 3.0 mi northeast of Oxbow. | 38.9 | 1970-75# | 08-02-88 | 15 | | Log Creek | Flambeau River | Lat 45°52'24", long 90°44'10", in SE 1/4 SE 1/4 sec.10, T.39 N., R.3 W., Sawyer County, at State Highway 70, 1.5 mi northwest of Oxbow. | 14.8 | | 08-02-88 | 1.3 | | S. Fk. Flambeau
River | Flambeau River | Lat 45°52'48", long 90°24'56", in NE 1/4 SW 1/4 sec.7, T.39 N., R.1 E., Price County, at bridge on Center Street, at Fifield. | 241 | 1975-77 | 08-02-88 | 34 | | Sailor Creek | S. Fk. Flambeau
River | Lat 45°51'13", long 90°24'45", in NW 1/4 NW 1/4 sec.19, T.39 N., R.1 E., Price County, at town road, 1.9 mi south of Fifield. | 35.3 | | 08-02-88 | 3.7 | | Smith Creek | S. Fk. Flambeau
River | Lat 45°45'57", long 90°32'58", in SW 1/4 SW 1/4 sec.18, T.38 N., R.1 W., Price County, at town road, 2.3 mi west of Lugerville. | 11.4 | | 08-02-88 | 0.30 | | Elk River | S. Fk. Flambeau
River | Lat 45°44'40", long 90°13'40", in
NE 1/4 NE 1/4 sec.33, T.38 N., R.2 E.,
Price County, at bridge on County
Highway H, 8.9 mi northeast of Phillips | 34.0 | 1967
1969-71
1974
1976 | 08-03-88 | 4.4 | | Popple Creek | Elk River | Lat 45°45'05", long 90°14'46", in
SW 1/4 NW 1/4 sec.28, T.38 N., R.2 E.,
Price County, at bridge on County
Highway H, approximately 9 mi northeast
of Phillips. | 18.3 | | 08-03-88 | 0.81 | | Squaw Creek | Elk River | Lat 45°43'25", long 90°23'11", in
SW 1/4 SW 1/4 sec.32, T.38 N., R.1 E.,
Price County, at bridge on town road,
2.3 mi north of Phillips. | 23.0 | 1940 | 08-03-88 | 0.93 | | Deer Creek | Elk River | Lat 45°42'24", long 90°28'15", in
NW 1/4 NW 1/4 sec.11, T.37 N., R.1 W.,
Price County, at County Highway F, 3.5
mi west of Phillips. | 12.9 | | 08-02-88 | 2.7 | | Carpenter Creek | Ninemile Creek | Lat 45°40'54", long 90°33'19", in
NE 1/4 NE 1/4 sec.24, T.37 N., R.2 W.,
Price County, at town road, approximate
8 mi northwest of Phillips. | 12.4
ely | | 08-02-88 | 0.21 | | S. Fk. Flambeau
River | Flambeau River | Lat 45°42'15", long 90°36'55", in
NW 1/4 SW 1/4 sec.10, T.37 N., R.2 W.,
Price County, on County Highway W, 0.4
mi downstream from Elk River and 12 mi
west of Phillips. | 609 | 1929-75#
1977 | 08-02-88 | 70 | | Price Creek | S. Fk. Flambeau
River | Lat 45°43'33", long 90°40'12", in
SE 1/4 SW 1/4 sec.31, T.38 N., R.2 W.,
Price County, on County Highway W, 13
mi west of Phillips. | 16.9 | 1964-66#
1976 | 08-02-88 | 0.81 | | Skinner Creek | S. Fk. Flambeau
River | Lat 45°35'29", long 90°43'14", in
NW 1/4 sec.23, T.36 N., R.3 W., Rusk
County, at bridge on County Highway M,
5.6 mi north of Hawkins. | 29.8 | 1962-67 | 08-03-88 | 0.69 | | Deertail Creek | Chippewa River | Lat 45°30'00", long 90°54'17", in
NW 1/4 SW 1/4 sec.20, T.35 N., R.4 W.,
Rusk County, at bridge on town road,
0.7 mi northwest of Glen Flora. | | | 07-13-88 | 0.23 | | S. Fk. Jump River | Chippewa River | Lat 45°32'51", long 90°17'30", in SE 1/4 NE 1/4 sec.1, T.35 N., R.1 E., Price County, 1/4 mi downstream of State Highway 13, at Prentice. | 57.2 | 1972-74
1976 | 08-04-88 | 0.99 | | Hay Creek | S. Fk. Jump River | Lat 45°32'32", long 90°21'37", in
NW 1/4 SE 1/4 sec.4, T.35 N., R.1 E.,
Price County, at culvert on U. S.
Highway 8, 3.5 mi west of Prentice. | 22.6 | 1961-67 | 08-03-88 | 0.62 | | Holmes Creek | S. Fk. Jump River | Lat 45°26'45", long 90°18'21", in
NW 1/4 SW 1/4 sec.12, T.34 N., R.1 E.,
Price County, at bridge on State
Highway 86, 0.6 mi west of Ogema. | 10.4 | 1972-74
1976 | 08-01-88 | 0.12 | | | _ | | D | Measured | Meas | surements | |-------------------|--------------------------|--|----------------------------|--------------------------------|----------|-----------------------------------| | Stream | Tributary to | Location | Area
(mi ²) | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | CHIPPEWA RIVER BASINCONTIN | UED | | | | | Silver Creek | S. Fk. Big Jump
River | Lat 45°21'02", long 90°17'49", in
SW 1/4 SE 1/4 sec. 12, T.33 N., R.1 E.
Taylor County, just downstream from St.
Highway 13, at Westboro. | | 1967
1972-74
1976 | 08-01-88 | 1.1 | | Fisher Creek | Silver Creek | Lat 45°20'47", long 90°17'39", in SE 1/4 NE 1/4 sec.13, T.33 N., R.1 E., Taylor County, on State Highway 13, at Westboro. | 5.48 | | 08-01-88 | 0.58 | | Mondeaux River | S. Fk. Jump River | Lat 45°20'53", long 90°27'52", in NE 1/4 NW 1/4 sec.14, T.33 N., R.1 W., Taylor County, on Country Trunk D, 8.4 mi west of Westboro. | 39.2 | | 08-01-88 | 3.1 | | N. Fk. Jump River | Jump River | Lat 45°37'45", long 90°23'32", in
NW 1/4 SW 1/4 sec.5, T.36 N., R.1 E.,
Price County, at culvert on State
Highway 13, 4 mi south of Phillips. | 10.5 | 1970-71 | 08-03-88 | 0.13 | | Needle Creek | N. Fk. Jump River | Lat 45°33'15", long 90°29'32", in SE 1/4 SE 1/4 sec.33, T.36 N., R.1 W., Price County, at bridge on State Highway 111, 1 mi northeast of Catawba. | 8.90 | | 08-03-88 | 0.16 | | Levitt Creek | Jump River | Lat 45°21'22", long 90°46'48", in
NW 1/4 SW 1/4 sec.8, T.33 N., R.3 W.,
Taylor County, at bridge on County
Highway D, at Jump River. | 28.4 | | 08-03-88 | 0.19 | | S. Fk. Main Creek | Main Creek | Lat 45°30'32", long 90°42'25", in
SW 1/4 SE 1/4 sec.14, T.35 N., R.3 W.,
Rusk County, at sewage treatment plant
at Hawkins. | | 1972-74 | 08-03-88 | 0.58 | | Main Creek | Jump River | Lat 45°20'07", long 91°03'16", in SW 1/4 SE 1/4 sec.13, T.33 N., R.6 W., Rusk County, on town road, approximate 3.5 mi northwest of Sheldon | | | 08-02-88 | 5.2 | | Fisher River | Chippewa River | Lat 45°13'20", long 91°06'35", in SW 1/4 SW 1/4 sec.27, T.32 N., R.6 W., Chippewa County, at bridge on State Highway 27, in Holcombe. | 81.5 | 1944-45#
1963-64≠
1966≠ | 08-03-88 | 0.16 | | N. Fk. Bob Creek | Chippewa River | Lat 45°08'03", long 91°12'58", in SE 1/4 SE 1/4 sec.27, T.31 N., R.7 W., Chippewa County, at town road, 4.0 mi southwest of Cornell. | 42.0 | | 07-20-88 | 1.1 | | O'Neil Creek | Chippewa River | Lat 45°05'26", long 91°22'46", in SE 1/4 SW 1/4 sec.8,
T.30 N., R.8 W., Chippewa County, on town road, 2 mi north of Eagleton. | 38.6 | | 07-20-88 | 4.4 | | McCann Creek | O'Neil Creek | Lat 45°05'22", long 91°24'17", in SW 1/4 SW 1.4 sec.7, T.30 N., R.8 W., Chippewa County, on County Highway SS, 2 mi north of Eagleton. | 29.7 | | 07-20-88 | 11 | | Yellow River | Chippewa River | Lat 45°09'47", long 90°46'54", in SW 1/4 SW 1/4 sec.17, T.31 N., R.3 W., Taylor County, at State Highways 73 and 64, 1.3 mi east of Gilman. | 146 | | 06-27-88 | 4.8 | | Yellow River | Chippewa River | Lat 45°09'26", long 90°49'12", in SW 1/4 NW 1/4 sec.24, T.31 N., R.4 W., Taylor County, just upstream from sewage lagoon, 0.8 mi southwest of Gilman. | 187 | 1972-74
1976 | 07-20-88 | 1.2 | | Otter Creek | Yellow River | Lat 45°06'45", long 90°59'11", in SE 1/4 NE 1/4 sec.4, T.30 N., R.5 W., Chippewa County, at County Highway S, at Huron. | 30.1 | | 07-20-88 | 1.9 | | Lotz Creek | Yellow River | Lat 44°56'39", long 91°06'13", in NW 1/4 NW 1/4 sec.34, T.29 N., R.6 W., Chippewa County, at County Highway X, 3.2 mi west of Boyd. | 7.66 | 5 | 07-21-88 | 1.2 | | Yellow River | Chippewa River | Lat 44°56'54", long 91°09'29", in SE 1/4 SW 1/4 sec.31, T.29 N., R.6 W., Chippewa County, at Cadott. | 365 | 1972-74
1976 | 07-20-88 | 9.4 | # DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES | | | | | Measured | Meas | urements | |----------------------------|----------------------------|---|-----------------------------------|--------------------------------|----------|-----------------------------------| | Stream | Tributary to | Location | inage
rea
mi ²) | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | CHIPPEWA RIVER BASINCONTINUED | | | | | | Big Drywood Creek | Yellow River | Lat 44°58'27", long 91°13'36", in
SW 1/4 SW 1/4 sec.22, T.29 N., R.7 W.,
Chippewa County, at bridge on town road,
4.4 mi northwest of Cadott. | 33.5 | 1963-67
1976 | 07-20-88 | 3.2 | | Little Drywood
Creek | Drywood Creek | Lat 44°59'16", long 91°14'22", in SE 1/4 SW 1/4 sec.16, T.29 N., R.7 W., Chippewa County, at County Highway K, 5.1 mi northwest of Cadott. | 33.0 | | 07-20-88 | 0.12 | | Paint Creek | Chippewa River | Lat 44°54'52", long 91°15'27", in NE 1/4 NW 1/4 sec.17, T.28 N., R.7 W., Chippewa County, at bridge on County Highway K, 6.3 mi east of Chippewa Falls. | 55.5 | 1963-67
1973
1976 | 07-20-88 | 6.8 | | Duncan Creek | Chippewa River | Lat 45°11'21", long 91°30'13", in NE 1/4 NE 1/4 sec.8, T.31 N., R.9 W., Chippewa County, at bridge on County Highway AA, 3.0 mi southeast of New Auburn. | 11.5 | 1972-73
1976-77 | 07-20-88 | 0.44 | | Duncan Creek | Chippewa River | 45°06'00", long 91°29'20", in
NE 1/4 NE 1/4 sec.8, T.30 N., R.9 W.,
Chippewa County, on State Highway 40,
0.3 mi below Floomer dam at Bloomer. | 50.3 | 1943-51 #
1973 | 07-20-88 | 14 | | S. Fk. Eau Claire
River | Chippewa River | Lat 44°54'54", long 90°42'08", in SE 1/4 SE 1/4 sec.11, T.28 N., R.3 W., Clark County, at County Highway N, 6.0 mi southwest of Withee. | 28.2 | 1969 | 07-19-88 | 1.0 | | S. Fk. Eau Claire
River | Chippewa River | Lat 44°47'58", long 90°42'53", in SW 1/4 SW 1/4 sec.23, T.27 N., R.3 W., Clark County, at bridge on County Highway MM, 6.2 mi northwest of Greenwood. | 77.6
y | 1962-67
1969 | 07-19-88 | 2.9 | | S. Fk. Eau Claire
River | Chippewa River | Lat 44°46'33", long 90°50'29", in NE 1/4 SE 1/4 sec.34, T.27 N., R.4 W., Clark County, on town road, approximately 13 mi south of Thorp. | 122
y | | 07-19-88 | 4.4 | | Goggle-Eye Creek | N. Fk. Eau
Claire River | Lat 44°58'40", long 90°48'00", in
NW 1/4 SW 1/4 sec.19, T.29 N., R.3 W.,
Clark County, at culvert on State
Highway 73, 1.3 mi north of Thorp. | 6.42 | 1961≠
1976 | 7-20-88 | 0.14 | | N. Fk. Eau Claire
River | Eau Claire River | Lat 44°57'33", long 90°51'30", in SW 1/4 SW 1/4 sec.27, T.29 N., R.4 W., Clark County, at bridge on old State Highway 29, 2.8 mi west of Thorp. | 52.9 | 1973
1976 | 07-20-88 | 0.39 | | McGrogan Creek | N. Fk. Eau
Claire River | Lat 44°57'28", long 90°48'01", in NW 1/4 NW 1/4 sec.31, T.29 N., R.3 W., Clark County, at bridge on County Highway M, at Thorp. | 2.22 | 2 1972-74 | 07-20-88 | 0.01 | | Schoolhouse Creek | Black Creek | Lat 44°35'48", long 90°57'11", in NE 1/4 NW 1/4 sec.2, T.24 N., R.5 W., Jackson County, at bridge on U. S. Highways 10 and 12, at Fairchild. | 9.60 | 1972-74
1976 | 07-18-88 | 2.7 | | Wolf River | N. Fk. Eau
Claire River | Lat 44°57'06", long 90°56'05", in SE 1/4 NW 1/4 sec.36, T.29 N., R.5 W., Chippewa County, at sewage treatment plant, at Stanley. | 30.8 | 1972-74 | 07-21-88 | 0.02 | | Wolf River | N. Fk. Eau
Claire River | Lat 44°49'40", long 90°56'53", in
SW 1/4 SE 1/4 sec.11, T.27 N., R.5 W.,
Eau Claire County, at bridge on County
Highway MM, 9 mi south of Stanley. | 81.3 | | 07-19-88 | 4.4 | | N. Fk. Eau Claire
River | S. Fk. Eau
Claire River | Lat 44°44'53", long 90°58'00", in NW 1/4 SE 1/4 sec.10, T.26 N., R.5 W., Eau Claire County, on town road, 7 mi northeast of Augusta. | 205 | | 07-19-88 | 13 | | Schoolhouse Creek | Black Creek | Lat 44°35'51", long 90°57'35", in NW 1/4 NW 1/4 sec.2, T.24 N., R.5 W., Jackson County, at bridge on U. S. Highways 10 and 12, approximately 0.3 mi southwest of Fairchild. | | | 07-18-88 | 2.3 | | | | | D | Measured | Meas | urements | |--------------------------------|-------------------|--|----------------------------|--------------------------------|----------|-----------------------------------| | Stream | Tributary to | Location | Area
(mi ²) | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | CHIPPEWA RIVER BASINCONTIN | UED | | | | | Black Creek | Coon Fork Creek | Lat 44°40'07", long 90°59'26", in
NW 1/4 NE 1/4 sec.9, T.25 N., R.5 W.,
Eau Claire County, at bridge on County
Highway M, 5 mi north of Fairchild. | 43.9 | 1967 | 07-18-88 | 9.9 | | Muskrat Creek | Eau Claire River | Lat 44°47'30", long 91°03'28", in NE 1/4 SW 1/4 sec.25, T.27 N., R.6 W., Eau Claire County, at town road, approximately 10 mi north of Augusta. | 29.6 | | 07-19-88 | 0.16 | | Hay Creek | Eau Claire River | Lat 44°47'08", long 91°05'29", in
SW 1/4 SE 1/4 sec.27, T.27 N., R.6 W.,
Eau Claire County, at County Highway N
approximately 11 mi north of Augusta. | 39.9
IN, | | 07-19-88 | 3.0 | | Bridge Creek | Eau Claire River | Lat 44°40'41", long 91°06'15", in
SE 1/4 NE 1/4 sec.4, T.25 N., R.6 W.,
Eau Claire County, upstream from
confluence with Diamond Valley Creek,
0.8 mi east-southeast of Augusta. | 25.7 | | 10-05-87 | 8.4 | | Diamond Valley
Creek | Bridge Creek | Lat 44°40'41", long 91°06'24", in SE 1/4 NE 1/4 sec.4, T.25 N., R.6 W., Eau Claire County, at mouth, at Augusta. | 8.26 | 1980 | 10-05-87 | 3.8 | | Bridge Creek | Eau Claire River | Lat 44°40'45", long 91°06'37", in
NE 1/4 NW 1/4 sec.4, T.25 N., R.6 W.,
Eau Claire County, on left bank
approximately 0.25 mi downstream from
Diamond Valley Creek, in Augusta. | 34.9 | 1980 | 07-18-88 | 8.8 | | Bridge Creek | Eau Claire River | Lat 44°41'04", long 91°07'33", in
SE 1/4 SE 1/4 sec.32, T.26 N., R.6 W.
Eau Claire County, at sewage treatment
plant, at Augusta. | | 1972-74
1976 | 10-05-87 | 12 | | Thompson Valley
Creek | Bridge Creek | Lat 44°40'35", long 91°09'52", in
NE 1/4 SE 1/4 sec.1, T.25 N., R.7 W.,
Eau Claire County, at State Highway
27, 2 mi west of Augusta. | 11.1 | | 07-18-88 | 3.1 | | Thompson Valley
Greek | Bridge Creek | Lat 44°41'22", long 91°08'40", in
NW 1/4 SW 1/4 sec.32, T.26 N., R.6 W.
Eau Claire County, at Barting Road,
1.4 mi northwest of Augusta. | 12.9 | 1980 | 10-05-87 | 6.2 | | Browns Creek | Bridge Creek | Lat 44°43'56", long 91°08'39", in
NW 1/4 SW 1/4 sec.17, T.26 N., R.6 W.
Eau Claire County, approximately 500
downstream of State Highway 27, 3.8 m
north-northwest of Augusta. | ft | 1980 | 10-05-87 | 1.3 | | Bridge Creek | Eau Claire River | Lat 44°44'21", long 91°09'55", in
NE 1/4 NE 1/4 sec.13, T.26 N., R.7 W.
Eau Claire County, at mouth, 4.5 mi
northwest of Augusta. | 71.5 | 1980 | 10-05-87 | 27 | | Bears Grass Creek | Eau Claire River | Lat 44°43'51", long 91°11'57", in
SE 1/4 SW 1/4 sec.14, T.26 N., R.7 W.
Eau Claire County, at bridge on U. S.
Highway 12, 4.3 mi southeast of Fall
Creek. | 16.2 | 1962-67
1976 | 07-18-88 | 6.1 | | Bears Grass Creek
Tributary | Bears Grass Creek | Lat 44°43'28", long 91°11'29", in
NW 1/4 NE 1/4 sec.23, T.26 N., R.7 W.
Eau Claire County, at brige on U. S.
Highway 12, 4.7 mi northwest of Augus | | 4 1962 | 10-05-87 | 0.93 | | Bears Grass Creek | Eau Claire River | Lat 44°45'07", long 91°11'26", in
SW 1/4 NE 1/4 sec.11, T.26 N., R.7 W.
Eau Claire County, on country road,
0.8 mi upstream from mouth, 4.2 mi
southeast of Fall Creek. | 28.0 | | 10-05-87 | 11 | | Rush Creek | Eau Claire River | Lat 44°46'34", long 91°14'42", in
NW 1/4 SW 1/4 sec.33, T.27 N., R.7 W.
Eau Claire County, on County Highway 2.0 mi northeast of Fall Creek. | | 9 | 10-05-87 | 0.21 | | Fall Creek | Eau Claire River | Lat 44°45'48", long 91°16'57", in
NW 1/4 SW 1/4 sec.6, T.26 N., R.7 W.,
Eau Claire County, at bridge on U. S.
Highway 12, at Fall Creek. | 14.8 | | 07-19-88 | 2.2 | | | 2120111102 | | | | Monaumementa | | | |------------------|------------------|--
--------------------------------------|---|----------------------|---|--| | Stream | Tributary to | Location | ainage
Area
(mi ²) | Measured
Previously
(Water
Years) | Meas
Date | urements
Discharge
(ft ³ /s) | | | | | CHIPPEWA RIVER BASINCONTINUE | D | | | | | | Fall Creek | Eau Claire River | Lat 44°46'05", long 91°16'21", in
NW 1/4 NE 1/4 sec.6, T.26 N., R.7 W.,
Eau Claire County, at sewage treatment
plant, 0.3 mi north of U. S. Highway
12, at Fall Creek. | 15.9 | 1972-74
1976
1980 | 10-05-87
07-19-88 | 3.9 | | | Beaver Creek | Eau Claire River | Lat 44°46'34", long 91°14'42", in
SW 1/4 SE 1/4 sec.17, T.27 N., R.7 W.,
Eau Claire County, at South 140th Ave.,
6.0 mi west of Ludington. | 16.8 | | 10-05-87 | 7.2 | | | Eau Claire River | Chippewa River | Lat 44°48'35", long 91°16'50", in SE 1/4 NW 1/4 sec.19, T.27 N., R.7 W., Eau Claire County, 500 ft east of County Highway K, 3.2 mi north of Fall Creek. | 760
7 | 1943-55#
1963-64≠
1966≠
1971
1974
1980 | 10-05-87
07-19-88 | 165
126 | | | Sevenmile Creek | Eau Claire River | Lat 44°50'15", long 91°22'19", in SE 1/4 NE 1/4 sec.8, T.27 N., R.8 W., Eau Claire County, at bridge on County Highway Q, 6.9 mi northwest of Fall Creek. | 5.23 | 1977 | 07-18-88 | 0.84 | | | Sevenmile Creek | Eau Claire River | Lat 44°50'08", long 91°22'25", in NW 1/4 SE 1/4 sec.8, T.27 N., R.8 W., Eau Claire County, 0.15 mi downstream of County Highway Q, 6.8 mi northwest of Fall Creek. | 5.32 | 1977 | 07-18-88 | 2.6 | | | Otter Creek | Eau Claire River | Lat 44°42'05", long 91°20'35", in
NW 1/4 SW 1/4 sec.27, T.26 N., R.8 W.,
Eau Claire County, at culvert on County
Highway D, at Brackett. | 23.7 | 1967
1972 | 07-21-88 | 8.3 | | | Beaver Creek | Otter Creek | Lat 44°41'52", long 91°21'10", in
NW 1/4 NE 1/4 sec.33, T.26 N., R.8 W.,
Eau Claire County, at County Highway D,
at Brackett. | 12.4 | | 07-21-88 | 1.0 | | | Willow Creek | Lowes Creek | Lat 44°44'11", long 91°26'48", in
SW 1/4 NW 1/4 sec.14, T.26 N., R.9 W.,
Eau Claire County, at State Highway 93,
4 mi south of Eau Claire. | 3.83 | 3 | 07-18-88 | 0.70 | | | Lowes Creek | Chippewa River | Lat 44°44'31", long 91°27'40", in
NE 1/4 NW 1/4 sec.15, T.26 N., R.9 W.,
Eau Claire County, at bridge on County
Highway II, 4.0 mi south of Eau Claire. | 53.8 | 1962-67
1973 | 07-18-88 | 14 | | | Lowes Creek | Chippewa River | Lat 44°43'38", long 91°30'02", in
SE 1/4 SW 1/4 sec.32, T.27 N., R.9 W.,
Eau Claire County, at bridge on County
Highway F, 3.0 mi south of Eau Claire. | 62.4 | 1930-31 | 07-18-88 | 18 | | | West Creek | Chippewa River | Lat 44°44'37", long 91°37'28", in NE 1/4 NW 1/4 sec.8, T.26 N., R.10 W., Eau Claire County, at State Highway 85, approximately 4.5 mi southwest of Eau Claire. | 18.4 | | 07-18-88
07-19-88 | 2.8
4.2 | | | Elk Creek | Chippewa River | Lat 44°54'00", long 91°37'55", in
SE 1/4 SE 1/4 sec.18, T.28 N., R.10 W.,
Chippewa County, at State Highway 29,
3.5 mi northeast of Elk Mound. | 49.5 | 1973 | 07-20-88 | 21 | | | Elk Creek | Chippewa River | Lat 44°54'31", long 91°39'35", in NW 1/4 NE 1/4 sec.12, T.27 N., R.11 W., Dunn County, at bridge on County Highwa EE, 2.8 mi southeast of Elk Mound. | 64.0
iy | 1967
1973 | 07-18-88 | 21 | | | Rock Creek | Chippewa River | Lat 44°42'15", long 91°41'20", in NW 1/4 SW 1/4 sec.26, T.26 N., R.11 W., Dunn County, at bridge on County Highwa H, 1.1 mi south of Rock Falls. | 30.5
ly | 1967
1973 | 07-19-88 | 4.0 | | | Muddy Creek | Chippewa River | Lat 44°48'00", long 91°46'02", in
SW 1/4 SW 1/4 sec.19, T.27 N., R.11 W.,
Dunn County, at bridge on County Highwa
J, 9.3 mi southeast of Menomonie. | | 1962-67
1973
1976-77 | 07-19-88 | 0.52 | | | Cranberry Creek | Chippewa River | Lat 44°44'06", long 91°47'31", in SW 1/4 NW 1/4 sec.13, T.26 N., R.12 W., Dunn County, at County Highway 0, at Meridean. | 16.9 | 1973 | 07-19-88 | 4.7 | | | | | | D! | Measured | Meas | urements | | |--------------------|------------------|--|----------------------------|------------------------------------|----------|-----------------------------------|--| | Stream | Tributary to | Location | Area
(mi ²) | Previously
(Water
Years) | Date | Discharge
(ft ³ /s) | | | | | CHIPPEWA RIVER BASINCONTIN | UED | | | | | | Fall Creek | Chippewa River | Lat 44°41'02", long 91°50'57", in
NW 1/4 NE 1/4 sec.4, T.25 N., R.12 W.,
Pepin County, at State Highway 85,
4.4 mi southwest of Meridean. | 8.21 | | 07-19-88 | 4.0 | | | Hemlock Creek | Red Cedar River | Lat 45°34'27", long 91°30'46", in
SE 1/4 NW 1/4 sec.29, T.36 N., R.9 W.,
Rusk County, at Murphy Dam, 4.5 mi eas
of Mikana. | | | 07-21-88 | 4.8 | | | Meadow Creek | Red Cedar River | Lat 45°27'24", long 91°44'07", in
NW 1/4 SE 1/4 sec.4, T.34 N., R.11 W.,
Barron County, on County Highway SS,
2.6 mi south of Rice Lake. | 36.37 | 1973
1977 | 07-21-88 | 8.3 | | | Pokegama Creek | Red Cedar River | Lat 45°24'29", long 91°39'36", in SW 1/4 SW 1/4 sec.19, T.34 N., R.10 W Barron County, at bridge on U. S. High 8, 3.6 mi east of Cameron. | | 1963-64
1966-67
1973
1977 | 07-20-88 | 7.1 | | | Moose Ear Creek | Chetek River | Lat 45°19'15", long 91°35'17", in SW 1/4 SE 1/4 sec.22, T.33 N., R.10 W Barron County, on County Highway D, 3.1 mi east of Chetek. | 38.2 | 1973
1977 | 07-21-88 | 7.0 | | | Eighteenmile Creek | Red Cedar River | Lat 45°00'06", long 91°41'29", in SW 1/4 SW 1/4 sec.11, T.29 N., R.11 W Dunn County, on town road, 1.5 mi eas of Colfax. | | | 07-20-88 | 6.6 | | | Lightning Creek | Hay River | Lat 45°25'17", long 92°01'57", in
NW 1/4 sec.19, T.34 N., R.13 W., Barr
County, at bridge on County Highway P
in Almena. | | 1962
1965
1973-74
1976 | 07-18-88 | 1.3 | | | Dority Creek | Hay River | Lat 45°17'32", long 91°57'45", in NW 1/4 NE 1/4, sec.3, T.32 N., R.13 W Barron County, on town road, 4.3 mi southeast of Arland. | 7.62 | 2 | 07-18-88 | 2.8 | | | Hay River | Red Cedar River | Lat 45°15'45", long 91°58'49", in SW 1/4 NE 1/4 sec.16, T.32 N., R.13 W Barron County, on County Highway F, 1.8 mi north of Prairie Farm. | 92.1 | 1973-74
1976 | 07-18-88 | 26 | | | Turtle Creek | Hay River | Lat 45°24'27", long 92°05'15", in NE 1/4 NW 1/4 sec.27, T.34 N., R.14 W Barron County, at culvert on U. S. Hi 8, 2.7 mi northeast of Turtle Lake. | l., | 6 1972-74
1976-77 | 07-18-88 | 0.92 | | | Turtle Creek | Hay River | Lat 45°15'20", long 92°00'13", in
SE 1/4 NW 1/4 sec.20, T.32 N., R.13 W
Barron County, at County Highway A,
5.7 mi south of Arland. | 60.8
V., | | 07-18-88 | 13 | | | Big Beaver Creek | Hay River | Lat 45°06'09", long 91°56'44", in NE 1/4 NW 1/4 sec.10, T.30 N., R.13 W Dunn County, on County Highway F, 4.4 northwest of Wheeler. | | | 07-19-88 | 1.1 | | | S. Fk. Hay River | Hay River | Lat 45°04'17", long 92°02'08", in NE 1/4 NE 1/4 sec.23, T.30 N., R.14 W Dunn County, at bridge on State Highw 79, 1.9 mi north of Boyceville. | | 1962-67
1973 | 07-19-88 | 26 | | | Tiffany Creek | S. Fk. Hay River | Lat 45°02'47", long 92°09'24", in
NE 1/4 NE 1/4 sec.35, T.30 N., R.15 W
St. Croix County, at bridge on countr
road, 1.0 mi southeast of Glenwood Ci | сy | 1972-74
1976 | 07-19-88 | 0.80 | | | Tiffany Creek | S. Fk. Hay River | Lat 45°02'48", long 92°02'08", in SE 1/4 SE 1/4 sec.26, T.30 N., R.14 White Dunn County, at bridge on State Highway, at Boyceville. | 69.9
N.,
way | 1972-74
1976-77 | 07-19-88 | 17 | | | Otter Creek | Hay River | Lat 45°03'36", long 91°52'43", in SE 1/4 SE 1/4 sec.19, T.30 N., R.12 V Dunn County, at bridge on County High N, 1.7 mi northeast of Wheeler. | | 1962-67
1973
1976 | 07-19-88 | 2.3 | | | Wilson Creek | Red Cedar River | Lat 44°55'05", long 91°57'55", in SE 1/4 SW 1/4 sec.9, T.28 N., R.13 W Dunn County, at town road, 3.4 mi nowest of Menomonie. | | | 07-19-88 | 24 | | | Measured Drainage Previously Stream Tributary to Location Area (Water Date (mi²) Years) | Measurements
te Discharge
(ft ³ /s) | |--|--| | | | | CHIPPEWA RIVER BASINCONTINUED | | | | 19-88 15 | | Irving Creek Red Cedar River Lat 44°50'35", long 91°59'00", in 8.54 07-1 NW 1/4 NE 1/4 sec.8, T.27 N., R.13 W., Dunn County, at end of county road, 1.4 mi northwest of Irvington. | 19-88 3.3 | | Little Elk Creek Red Cedar River Lat 44°48'08", long 91°54'35", in 15.4 1973 07-SW 1/4 SE 1/4 sec.23, T.22 N., R.13 W., Dunn County, at State Highway 25, 2 mi north of Downsville. | 19-88 5.1 | | Bear Creek Chippewa River Lat 44°37'04", long 91°53'25", in 37.9 1967 07-
NW 1/4 SW 1/4 sec.30, T.25 N., R.12 W.,
Pepin County, at bridge on U. S. Highway
10, 3.6 mi east of Durand. | 19-88 11 | | Bear Creek Chippewa River Lat 44°38'42", long 91°56'09", in 48.1 1964 07-
SE 1/4 SE 1/4 sec.15, T.25 N., R.13 W., 1966-70
Pepin County, at bridge on State Highway 1973
85, 1.6 mi northeast of Durand. | 19-88 13 | | Cady Creek Eau Galle River Lat 44°47'26", long 92°06'25", in 22.4 07-
NW 1/4 SE 1/4 sec.25, T.27 N., R.15 W.,
Pierce County, on County Highway P,
at Elmwood. | 18-88 34 | | Knights Creek Eau Galle River Lat 44°47'34", long 92°01'46", in 19.1 07-
NW 1/4 SW 1/4 sec.25, T.27 N., R.14 W.,
Dunn County, on County Highway D, 2.5 mi
southeast of Weston. | 19-88 5.1 | | Missouri Creek Eau Galle River Lat 44°41'55", long 92°01'57", in 28.2 07-
SW 1/4 SW 1/4 sec.25, T.26 N., R.14
W.,
Dunn County, at town road, 1.0 mi
northwest of Eau Galle. | 18-88 5.9 | | Arkansaw Creek Arkansaw Creek Lat 44°38'31", long 92°03'09", in 2.61 07- SW 1/4 SW 1/4 sec.14, T.25 N., R.14 W., Pepin County, at box culvert on U. S. Highway 10, 1.2 mi northwest of Arkansaw. | 19-88 0.14 | | Arkansaw Creek Eau Galle River Lat 44°38'27", long 92°01'53", in 22.0 1972-74 07-
SW 1/4 NW 1/4 sec.24, T.25 N., R.14 W., 1976
Pepin County, at bridge on County Highways
D and O, at Arkansaw. | 19-88 5.4 | | Spring Creek Buffalo Slough Lat 44°34'13", long 91°57'48", in 6.45 1962-69 07- SW 1/4 SE 1/4 sec.9, T.24 N., R.13 W., Buffalo County, at bridge on town road, 4 mi south of Chippewa River bridge in Durand. | 19-88 2.9 | | Plum Creek Chippewa River Lat 44°38'13", long 92°11'10", in 31.6 1964 07-
SE 1/4 NW 1/4 sec.22, T.25 N., R.15 W., 1966-70
Pierce County, at bridge on U.S. Highway
10, in Plum City. | 18-88 8.6 | | Porcupine Creek Plum Creek Lat 44°35'03", long 92°05'42", in 7.24 07-
SE 1/4 SE 1/4 sec.5, T.24 N., R.14 W.,
Pepin County, at County Highway SS, at
Porcupine. | 19-88 1.6 | Operated as a low-flow partial-record station. Operated as a continuous-record gaging station. Water-quality partial-record stations are particular sites where chemical-quality, biological, physical, and/or sediment data are collected systematically over a period of years for use in hydrologic analyses. | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | DUCT-
ANCE
(US/CM) (
(00095) (| TEMPER-
ATURE
WATER
DEG C)
(00010) | DATE
LRY TO LAKE SUPERIOR | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------------------|----------|---|---|--|------------------------------|---------|---|--|---| | | 04024430 | NEM | | | TH SUPERIOR, WI (LAT | | 00 LONG | 0 9 2 05 3 8 |) | | OCT 1987 | | | | | APR 1988 | | | | | | 06
DEC | 1245 | 9 2 | 195 | 9.5 | 13
JUN | 1030 | 1180 | 125 | 7.0 | | 09
JAN 1988 | 0835 | 88 | 190 | 0.0 | 28 | 1125 | 58 | 205 | 21.0 | | 22 | 1035 | 71 | 200 | 0.0 | AUG
11 | 1210 | 59 | 180 | 23.0 | | MAR
02 | 1130 | 65 | 337 | 0.0 | SEP
21 | 1200 | 1080 | 130 | 12.0 | | | 040255 | 500 | BOIS BRULE | RIVER AT | BRULE, WI (LAT 46 | 32 16 | LONG 091 | 35 43) | | | OCT 1987 | | | | | MAY 1988 | | | | | | 06
DEC | 1425 | 144 | 116 | 9.5 | 17
JUN | 1530 | 174 | 115 | 15.0 | | . 08
JAN 1988 | 1330 | 156 | 143 | 4.0 | 28
AUG | 1335 | 140 | 120 | 17.0 | | 22
MAR | 0920 | 129 | 90 | 0.5 | 11
SEP | 1400 | 116 | 128 | 18.5 | | 02
APR | 1000 | 131 | 124 | 0.5 | 21 | 1350 | 243 | 80 | 12.5 | | 13 | 0810 | 332 | 105 | 6.5 | | | | | | | | 040275 | 500 | WHITE RIVE | ER NEAR AS | HLAND, WI (LAT 46 2 | 9 50N I | LONG 090 5 | 4 15W) | | | OCT_1987 | 11/0 | 17/ | 102 | ٥. ٢ | MAY 1988 | 0025 | 167 | 171 | 15.0 | | O7
DEC | 1140 | 174 | 183 | 9.5 | 19
JUN | 0935 | 167 | 194 | 23.5 | | 08
JAN 1988 | 1150 | 305 | 213 | 1.0 | 28
AUG | 1630 | 148 | | | | 21
MAR | 1600 | 141 | 103 | 0.5 | SEP | 1555 | 159 | 175 | 22.5 | | 01
APR | 1700 | 182 | 194 | 1.0 | 21 | 1640 | 295 | 142 | 14.5 | | 12 | 1530 | 380 | 125 | 8.0 | | | | | | | | | | STREAM | IS TRIBUTA | RY TO LAKE MICHIGAN | | | | | | 04066 | 003 | MENOMINE | E RIVER BEI | OW PEMENE | CRK NR PEMBINE, WI | (LAT | 45 34 46 | LONG 087 | 47 13) | | OCT 1987
22 | 1235 | 1910 | 270 | 6.5 | JUN 1988
17 | 1030 | 1050 | 250 | 26.0 | | DEC
04 | 0940 | 2530 | 268 | 0.0 | SEP
06 | 1200 | 1940 | 240 | 16.0 | | APR 1988
28 | 1550 | 2750 | 245 | 10.0 | | | | | | | | 040710 | | | | ILLETT, WI (LAT 44 . | 51 53 | LONG 088 | 18 00) | | | OCT 1987 | | | | | JUN 1988 | | | | | | 21
DEC | 1105 | 336 | 270 | 6.5 | 16
JUL | 1600 | 170 | 300 | 25.0 | | 01
MAR 1988 | 1640 | 603 | 250 | 1.5 | 28
SEP | 1510 | 231 | 275 | 28.0 | | 01
APR | 1440 | 274 | 290 | 0.0 | 07 | 1530 | 196 | 280 | 19.0 | | 27 | 1520 | 554 | 240 | 7.0 | | | | | | | | 04071858 | PE | NSAUKEE RIV | ER NEAR F | ENSAUKEE, WI (LAT 4 | 4 49 08 | B LONG 08 | 7 57 12) | | | DEC 1987
02 | 1420 | 477 | 560 | 0.5 | APR 1988
26 | 1750 | 55 | 480 | 11.0 | | JAN 1988
13 | 1110 | 3.4 | | 0.0 | JUL
27 | 1415 | 3.3 | 330 | 24.0 | | MAR
02 | 1500 | 13 | | 0.0 | SEP
07 | 1300 | 4.3 | 415 | 17.0 | | | | | | | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | ANCE
(US/CM) U
(00095) (| PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-ATURE WATER (DEG C) (00010) | CALCIUM DIS- SOLVED (MG/L AS CA) (00915) MICHIGAN- | MAGNE-
, SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
LAB
(MG/L
AS
CACO3)
(90410) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | |----------------|------|---|--------------------------------|---|------------------------------------|--|---|---|--|--|--| | 0407203 | 05 | DUCK CRI | EEK 0.3 MI | DS FREEI | OOM STP NR | FREEDOM | WT (T.A | ጥ 44 23 ' | 50 LONG | 088 16 | 55) | | JUL 1988 | 05 | DOCK CIG | MAR 0.5 MI | DO TRUM | DOM BIT ME | ridinoon, | , 41 (1113 | 1 44 25 . | JO LONG | 000 10 | 33, | | 26 | 1145 | E0.25 | 2450 | 6.90 | 22.5 | 81 | 45 | 330 | 10 | 256 | 120 | | 0407203 | 6 | DUCK CRI | EK AT HILI | SIDE PAR | RK NEAR ON | EIDA, WI | (LAT | 44 25 55 | LONG 0 | 88 14 45) | | | JUL 1988 | 1425 | PO 10 | 1260 | 7 00 | 24. 5 | 75 | 40 | 110 | 8.0 | 268 | 63 | | 26 | 1435 | E0.10 | 1260 | 7.00 | 24.5 | /5 | 40 | 110 | 8.0 | 200 | 03 | | 0407204 | 32 | DUCK CRI | EK AT FISH | I CREEK I | ROAD NEAR | ONEIDA, W | VI (LAT | 44 27 32 | 2 LONG | 088 13 1 | .8) | | JUL 1988
27 | 0815 | E0.06 | 615 | 7.80 | 20.5 | 56 | 32 | 17 | 4.2 | 231 | 40 | | | | | | | | | | | | | | | 0407205 | 0 | DUCK CRI | EK AT CO T | R HWY J | NEAR ONEI | DA, WI | (LAT 44 | 27 57 LC | ONG 088 | 13 08) | | | JUL 1988
27 | 1055 | E0.07 | 580 | 7.90 | 22.5 | 49 | 32 | 15 | 4.5 | 223 | 30 | | 0407205 | 3 | DUCK CRE | EK 0.5 MI | IIS HWY PII | SA BRIDGE | NR ONETDA | . WT (| T.AT 44 20 | 9 35 T.O | NG 088 11 | 15) | | JUL 1988 | • | DOOK OIG | 0.5 III | 05 11#1 | J4 DKIDGE | INC ONDIDE | ., "1" (| | , 55 16 | 110 000 11 | . 13) | | 28 | 0955 | E0.0 | 7 65 | 8.10 | 22.0 | 75 | 38 | 32 | 8.7 | 301 | 19 | | 0407205 | 55 | DUCK CRE | EK TRIBUTA | RY AT O | NEIDA, WI | (LAT 44 | 29 55 | LONG 088 | 3 11 14) | | | | JUL 1988 | 1220 | E0 10 | 1490 | 0 10 | 25 5 | 100 | 45 | 130 | 3.5 | 379 | 47 | | 28 | 1230 | E0.10 | 1480 | 8.10 | 25.5 | 100 | 43 | 130 | 3.3 | 3/9 | 47 | | 0407205 | 8 | DUCK CRI | EEK 0.25 MI | DS HW 5 | 4 BRIDGE | NR ONEIDA | 4, WI (| LAT 44 30 | 06 LO | NG 088 1 | .0 54) | | JUL 1988
28 | 1130 | E0.0 | 865 | 7.90 | 22.0 | 80 | 40 | 40 | 8.3 | 312 | 33 | | | | | | | | | | | | | | | 0407206 | 0 | DUCK CRE | EK AT OVER | RLAND ROA | AD NEAR ON | EIDA, WI | (LAT 4 | 4 30 42 | LONG 08 | 8 10 12) | | | JUL 1988
28 | 0730 | E0.10 | 680 | 7.60 | 20.5 | 46 | 43 | 28 | 7.0 | 258 | 15 | | 0407215 | 5 | TROUT CE | REEK AT SUN | וסת שידוו | IVE NEAR O | METDA WI | · (IAT . | 04 EE 44 | TONG 0 | 88 10 44) | | | JUL 1988 | , | IKOOI CF | MEK AI BUN | ILLIE DK | IVE NEAR O | NGIDA, WI | L | 44 33 49 | LONG 0 | 00 10 44) | | | 28 | 1700 | 0.11 | 745 | 8.00 | 22.0 | 91 | 36 | 7.8 | 1.2 | 302 | 45 | | 0407216 | 5 | TROUT CF | EEK AT MEI | ANIE DRI | IVE NEAR O | NEIDA, WI | (LAT | 44 32 40 | LONG | 088 09 12 | .) | | JUL 1988 | | | | | | | | | 7.0 | 201 | 40 | | 28 | 1545 | 0.45 | 710 | 8.40 | 23.0 | 88 | 37 | 8.5 | 7.0 | 301 | 49 | | 0407217 | 0 | TROUT CE | EEK AT CTH | J NEAR | ONEIDA, W | I (LAT | 44 31 3 | 1 LONG | 088 09 0 | 4) | | | JUL 1988
28 | 1755 | 0.28 | 703 | 8.30 | 25.0 | 84 | 37 | 9.3 | 3.2 | 296 | 46 | | 04072186 | 5 | TROUT CE | EEK AT MOU | TH NEAR | ONEIDA, W | I (LAT | 44 32 0 | 5 LONG | 088 07 4 | 1) | | | JUL 1988
28 | 1430 | 0.25 | 650 | 8.20 | 26.0 | 73 | 36 | 9.5 | 4.8 | 272 | 42 | | | | | | | | - | | - | | | | | DATE | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(MG/L
AS N)
(00613) | NITROGEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) | NITRO-
GEN,
AMMONIA
TOTAL
(MG/L
AS N)
(00610) | DIS-
SOLVED
(MG/L
AS N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(MG/L
AS N)
(00625) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | |----------------|--|---|--|--
---|---|---|--|--|---|---| | 040720 | 1305 | טוורע רים | 777 A 3 M | T NO POPP | וו פידים אווו | R FREEDOM, | עד / דגיי | 23 1 | 50 LONG | 088 16 ! | 55) | | JUL 1988 | 3303 | DUCK CK | EEK U.S M | I DO LKEE | DOM SIF N | K FREEDOM, | , W.L. (1161 | . 44 23 . | o Long | 088 10 . | ,, | | 26 | 490 | 0.10 | 10 | 0.110 | 20.0 | 0.110 | 0.140 | 1.6 | 4.60 | 2.20 | 2.00 | | 040720 | 36 | DUCK CR | EEK AT HI | LLSIDE PA | RK NEAR O | NEIDA, WI | (LAT 4 | 4'25 55 | LONG 08 | 88 14 45) | | | JUL 1988
26 | 200 | 0.60 | 9.1 | 0.020 | 0.290 | 0.090 | 0.130 | 1.6 | 0.480 | 0.420 | 0.350 | | 040720 |)432 | DUCK CR | EEK AT FI | SH CREEK | ROAD NEAR | ONEIDA, W | II (LAT | 44 27 32 | 2 LONG | 088 13 18 | 3) | | JUL 1988
27 | 34 | 0.10 | 6.7 | 0.020 | 0.200 | 0.070 | 0.100 | 0.50 | 0.140 | 0.110 | 0.110 | | 040720 | 150 | DUCK CR | EEK AT CO | TR HWY J | NEAR ONE | IDA, WI | (LAT 44 2 | 7 5 7 LO | ONG 088 1 | .3 08) | | | JUL 1988
27 | 29 | 0.20 | 13 | <0.010 | <0.100 | <0.010 | 0.020 | 0.90 | 0.400 | 0.380 | 0.350 | | 040720 |)53 | DUCK CR | EEK 0.5 M | US HWY | 54 BRIDGE | NR ONEIDA | , WI (L | AT 44 29 | 35 LON | G 088 11 | 15) | | JUL 1988
28 | 68 | 0.20 | 9.9 | <0.010 | <0.100 | 0.120 | 0.160 | 1.1 | 1.00 | 0.870 | 0.750 | | 040720 | 555 | DUCK CR | EEK TRIBU | TARY AT O | NEIDA, WI | (LAT 44 | 29 55 | LONG 088 | 3 11 14) | | | | JUL 1988
28 | 230 | 0.10 | 21 | <0.010 | <0.100 | 0.050 | 0.090 | 0.30 | 0.170 | 0.160 | 0.150 | | 040720 | 158 | DUCK CRI | EEK 0.25 1 | MI DS HW ! | 54 BRIDGE | NR ONEIDA | , WI (L | AT 44 30 | 06 LON | G 088 10 | 54) | | JUL 1988
28 | 80 | 0.20 | 2.6 | <0.010 | <0.100 | 0.060 | 0.090 | 1.2 | 0.880 | 0.640 | 0.540 | | 040720 | 160 | DUCK CRI | EEK AT OVI | CRLAND RO | AD NEAR ON | NEIDA, WI | (LAT 44 | 30 42 | LONG 088 | 10 12) | | | JUL 1988
28 | 63 | 0.20 | 16 | <0.010 | <0.100 | 0.040 | 0.090 | 1.9 | 0.730 | 0.670 | 0.540 | | 040721 | .55 | TROUT C | REEK AT SU | INLITE DR | IVE NEAR O | ONEIDA, WI | (LAT 4 | 4 33 49 | LONG 08 | 8 10 44) | | | JUL 1988
28 | 26 | 0.20 | 17 | 0.030 | 4.70 | 0.040 | 0.050 | <0.20 | 0.050 | 0.040 | 0.030 | | 040721 | 65 | TROUT CH | REEK AT ME | CLANIE DR | IVE NEAR O | ONEIDA, WI | (LAT | 44 32 40 | LONG 0 | 88 09 12) | | | JUL 1988
28 | 24 | 0.10 | 16 | 0.010 | 3.10 | 0.020 | 0.040 | U.40 | 0.170 | 0.160 | 0.130 | | 040721 | 70 | TROUT CE | REEK AT CT | H J NEAR | ONEIDA, W | II (LAT | 44 31 31 | LONG | 088 09 04 |) | | | JUL 1988
28 | 25 | 0.10 | 14 | 0.020 | 1.60 | 0.070 | 0.090 | 0.70 | 0.250 | 0.220 | 0.200 | | 040721 | 86 | TROUT CE | REEK AT MO | OUTH NEAR | ONEIDA, W | VI (LAT | 44 32 05 | LONG | 088 07 41 |) | | | JUL 1988
28 | 27 | 0.10 | 14 | 0.020 | 1.10 | 0.020 | 0.040 | 0.60 | 0.340 | 0.310 | 0.260 | | DATE | TIME | DIS-
CHARGE,
INST:
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------------------|----------|---|--|---|--------------------|---------|---|--|---| | | | ; | STREAMS TRI | BUTARY TO L | AKE MICHIGANCON | TINUED | | | | | | 040 | 73500 | FOX R | VER AT BERL | IN, WI (LAT 43 57 | 14 LON | NG 088 57 | (80 | | | OCT 1987
23 | 1155 | 774 | 380 | 6.0 | MAY 1988
20 | 1415 | 776 | 320 | 20.5 | | DEC
09 | 1345 | 1490 | 440 | 2.0 | JUN
23 | 1420 | 278 | 380 | 27.5 | | JAN 1988
12
FEB | 1335 | 685 | 510 | 0.0 | JUL
13
AUG | 1340 | 315 | 330 | 26.5 | | 17
APR | 1045 | 797 | 410 | 0.0 | 25 | 1425 | 512 | 310 | 23.0 | | 07 | 1355 | 2470 | 290 | 11.5 | | | | | | | | 04074 | 950 | WOLF RIV | ER AT LANGL | ADE, WI (LAT 44 1 | 1 25 LC | ONG 088 44 | 00) | | | NOV 1987
17 | 1535 | 477 | 200 | 6.0 | MAY 1988
03 | 1440 | 415 | 180 | 15.5 | | JAN 1988
21 | 1600 | 253 | 260 | 0.0 | 31
JUN | 1655 | 232 | 220 | 26.5 | | FEB 22 | 1445 | 257 | 280 | 0.0 | 15
AUG | 1140 | 149 | | 22.0 | | MAR
15 | 1345 | 333 | | 0.0 | 16
SEP | 1400 | 206 | 215 | 28.0 | | | | | | | 15 | 1410 | 182 | 220 | 16.0 | | | 04077 | 400 | WOLF RIV | ER NEAR SHAV | NANO, WI (LAT 44 ! | 50 09 I | ONG 088 3 | 7 30) | | | DEC 1987
01 | 1350 | 804 | 245 | 1.0 | JUN 1988
16 | 1215 | 322 | 290 | 24.5 | | MAR 1988
01
APR | 0935 | 433 | 295 | 0.0 | JUL
28
SEP | 1800 | 412 | 230 | 24.5 | | 27 | 1220 | 851 | 227 | 7.0 | 07 | 1755 | 385 | 275 | 16.0 | | | 040790 | 000 | WOLF RIVE | R AT NEW LO | NDON, WI (LAT 44 | 23 32 I | ONG 088 4 | 4 25) | | | JAN 1988
11 | 1500 | 681 | 368 | 0.0 | JUL 1988
13 | 0900 | 49 9 | 480 | 25.0 | | FEB 29 | 1400 | 843 | 370 | 0.0 | SEP
08 | 1355 | 576 | 370 | 18.0 | | JUN
17 | 1200 | 436 | 375 | 23.5 | | | | | | | | 04085200 |) 1 | KEWAUNEE RI | VER NEAR KEV | VAUNEE, WI (LAT 4 | 4 27 30 | LONG 087 | 33 23) | | | OCT 1987
06 | 0910 | 13 | 690 | 11.0 | MAY 1988
05 | 1125 | 51 | 650 | 14.5 | | NOV
11 | 0910 | 19 | 710 | 1.0 | JUN
15 | 2115 | 9.8 | 53 0 | 20.0 | | JAN 1988
08 | 1015 | 10 | 160 | 0.0 | AUG
10 | 1050 | 9.1 | 510 | 23.5 | | FEB
16 | 1015 • | 23 | 600 | 0.0 | SEP
13 | 1110 | 8.8 | 515 | 19.0 | | | 0408528 | 1 | EAST TWIN | RIVER AT MIS | SHICOT, WI (LAT 44 | 4 14 16 | LONG 087 | 38 11) | | | OCT 1987
06 | 1120 | 15 | 680 | 11.5 | MAY 1988
05 | 0920 | 51 | 510 | 14.0 | | NOV 11 | 1135 | 22 | 680 | 2.0 | JUN
15 | 1745 | 7.2 | 570 | 26.0 | | JAN 1988
08 | 1230 | 8.3 | 380 | 0.0 | AUG
10 | 0905 | 5.0 | 570 | 23.0 | | FEB
16 | 1420 | 21 | 480 | 0.0 | SEP
13 | 0905 | 9.0 | 540 | 18.5 | | | 04086000 | | SHEBOYGAN R | IVER AT SHEE | BOYGAN, WI (LAT 43 | 3 44 25 | LONG 087 | 45 35) | | | OCT 1987
05 | 1055 | 108 | 710 | 12.0 | JUN 1988
14 | 1700 | 49 | 650 | 27.0 | | NOV
10 | 1110 | 170 | 740 | 3.0 | AUG
09 | 1300 | 42 | 530 | 26.0 | | FEB 1988
15 | 1305 | 155 | 730 | 0.0 | SEP
12 | 1315 | 46 | 535 | 22.5 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | (00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------------------|--------------|---|---------------------|---|------------------------|--------------|---|--|---| | | | | STREAMS TR | IBUTAKY 1 | TO LAKE MICHIGANCONT | INOED | | | | | | 04086600 | М | ILWAUKEE R | IVER NEAR | R CEDARBURG, WI (LAT 4 | 3 16 46 | LONG 08 | 7 56 34) | | | OCT 1987
01 | 1210 | 284 | 740 | 16.0 | MAY 1988
13 | 1300 | 247 | 640 | 20.5 | | NOV
09 | 1230 | 283 | 760 | 6.0 | JUN
23 | 1235 | 91 | 720 | 27.0 | | DEC
17
FEB 1988 | 1225 | 380 | 720 | 0.0 | AUG
04
SEP | 1225 | 50 | 710 | 31.0 | | 18 | 1150 | 232 | 760 | 0.0 | 15 | 1250 | 65 | 690 | 21.0 | | 0 | 4087030 | MEN | OMONEE RIV | ER AT MEN | NOMONEE FALLS, WI (LAT | 44 10 | 20 LONG | 088 06 14 |) | | OCT 1987
01 | 1605 | 15 | 1030 | 15.5 | JUN 1988
22 | 1135 | 5.6 | 67 0 | 25.0 | | NOV 09 | 1605 | 15 | 1060 | 5.0 | AUG
04 | 1435 | 0.70 | 730 | 30.5 | | DEC 17 | 0930 | 26 | 920 | 0.0 | SEP
15 | 1435 | 1.1 | 625 | 19.0 | | MAY 1988
13 | 1515 | 14 | 780 | 19.0 | | | | | | | | 04087088 | , | UNDERWOOD | CREEK AT | WAUWATOSA, WI (LAT 43 | 03 17 | LONG 088 | 02 46) | | | OCT 1987 | 1007 | . , | 1000 | 0.5 | MAY 1988 | 1005 | 5.3 | 1090 | 22.0 | | 29
DEC | 1027
1100 | 5.4
28 | 1060
1100 | 9.5
6.0 | 24
JUL
06 | 1225
1745 | 4.2 | 770 | 31.0 | | 10
JAN 1988
20 | 1405 | 151 | 1570 | 1.0 | AUG
15 | 1013 | 70 | 270 | 26.0 | | MAR
02 | 1039 | 10 | 1550 | 4.0 | 15
15
SEP | 1653 | 5.4 | 850 | 32.0 | | APR 11 | 1141 | 15 | 1450 | 10.0 | 26 | 1120 | 7.0 | 1190 | 19.0 | | | 04087120 | 1 | | | WAUWATOSA, WI (LAT 43 | 02 44 | LONG 087 | 59 59) | | | OCT 1987 | | | | | MAY 1988 | | | | | | 06
29 | 1248
1340 | 398
36 | 770
9 8 0 | 11.5
7.0 | 24
JUL | 1810 | 21 | 1070 | 16.5 | | DEC 10 | 1235 | 336 | 800 | 5.0 | 06
AUG_ | 1538 | 10 | 900 | 27.5 | | JAN 1988
19 | 1450 | 118 | 1330 | 0.5 | 15
SEP | 1225 | 8 5 | 360 | 26.0 | | MAR
02 | 1415 | 86 | 1200 | 2.0 | 26 | 1338 | 36 | 990 | 18.0 | | AP R
11 | 1428 | 127 | 960 | 11.0 | | | | | | | 04087 | 159 | KINNIC | KINNIC R A | T S. 11TH | ST AT MILWAUKEE, WI | (LAT 42 | 59 51 LO | ONG 087 55 | 35) | | OCT 1987
29 | 1532 | 6.9 | 730 | 12.0 | APR 1988
11 | 1623 | 14 | 1370 | 13.0 | | DEC 10 | 1530 | 19 | 980 | 7.5 | MAY 25 | 0720 | 8.4 | 840 | 10.0 | | JAN 1988
20 | 1200 | 113 | 3060 | 2.0 | AUG
15 | 1519 | 24 | 380 | 29.5 | | MAR
02 | 1625 | 11 | 2150 | 4.5 | SEP
26 | 1510 | 9.0 | 1510 | 22.5 | | |
04087204 | (| OAK CREEK | AT SOUTH | MILWAUKEE, WI (LAT 42 | 55 30 | LONG 087 | 52 12) | | | OCT 1987 | 1220 | 3.2 | 990 | 16 ^ | MAY 1988 | 1220 | 2 0 | 1380 | 15.0 | | 30
DEC
11 | 1330
1405 | 3.2
47 | 990
965 | 16.0
5.0 | 25
JUL
07 | 1230
0740 | 3.9
1.1 | 1380 | 22.0 | | JAN 1988
19 | 1222 | 46 | 1650 | 0.5 | AUG
16 | 1150 | 4.6 | 750 | 27.0 | | MAR
03 | 0815 | 15 | 1610 | 0.0 | SEP
26 | 1700 | 4.8 | 1040 | 19.0 | | APR 12 | 0900 | 21 | 1070 | 7.5 | 20 | | | 20.0 | -2.4 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) |) lake mi | DATE
CHIGANCOI | TIME
NTINUED | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------------|--------------|---|--|---|-----------|---------------------------------|-----------------|---|--|---| | | 04087 | 220 | ROOT RIV | ER NEAR FR | ANKLIN. | WI (LAT 42 | 52 25 1 | LONG 087 5 | 9 45) | | | OCT_1987 | , | | | | • | MAY 1988 | | | | | | 30
DEC | 1130 | 9.4 | 960 | 7.5 | | 26
JUL | 1157 | 9.0 | | 15.0 | | 11
MAR 1988 | 1205 | 74 | 905 | 4.5 | | 07
AUG | 1145 | 2.3 | 930 | 25.5 | | 03
APR | 1220
1210 | 41 | 1120
1000 | 0.0 | : | 16
SEP | 0918 | 12
12 | 1020
990 | 25.0
16.0 | | 12 | 1210 | 43 | 1000 | 11.0 | | 27 | 1118 | 12 | 990 | 16.0 | | | 04087233 | RC | OOT RIVER | CANAL NEAR | FRANKLI | N, WI (LAT | 42 48 55 | LONG 08 | 7 59 40) | | | OCT 1987
30 | 0925 | 8.3 | 1010 | 7.0 | | MAY 1988
26 | 1340 | 8.2 | 1000 | 16.5 | | DEC 11 | 0900 | 160 | 730 | 5.0 | | JUL
07 | 1500 | 2.7 | 1150 | 28.0 | | JAN 1988
19 | 0930 | 130 | 670 | 0.5 | | AUG
16 | 0737 | 1.7 | 1120 | 26.5 | | MAR
03 | 1425 | 56 | 690 | 0.5 | : | SEP
27 | 0836 | 5.8 | 1050 | 17.0 | | APR
12 | 1420 | 71 | 730 | 9.5 | | | | | | | | | 0408 | 37240 | ROOT R | IVER AT RA | CINE, WI | (LAT 42 45 | 5 05 LON | iG 087 49 | 25) | | | OCT_1987 | 1115 | 20 | 010 | | 1 | MAY 1988 | 0000 | 77 | 999 | 15.5 | | 07
JAN 1988 | 1115 | 32
52 | 910 | 11.5 | | 11
JUN | 0800 | 77
2.2 | 880
1070 | 29.5 | | 13
FEB
19 | 1005
0720 | 62 | 1080
445 | 0.5
0.5 | | 23
JUL
25 | 1710
0952 | 7.6 | 980 | 26.0 | | APR 01 | 0820 | 345 | 890 | 7.0 | : | 25
SEP
15 | 1620 | 4.6 | 585 | 21.0 | | 01 | 0820 | 343 | 330 | 7.0 | | 13 | 1020 | 4.0 | 303 | 21.0 | | | 04087 | 7257 | PIKE RI | VER NEAR R | | I (LAT 42 3 | 30 49 LC | ONG 087 51 | 30) | | | OCT 1987
07 | 0805 | 11 | 655 | 11.5 | | MAY 1988
10 | 1625 | 23 | 630 | 15.5 | | NOV 19 | 0830 | 8.6 | 610 | 6.0 | | JUN
23 | 1415 | 7.0 | 390 | 24.5 | | JAN 1988
13 | 1240 | 16 | 795 | 0.5 | | JUL
25 | 1215 | 6.5 | 360 | 24.5 | | FEB
18 | 1545 | 19 | 915 | 1.5 | : | SEP
15 | 1410 | 5.6 | 390 | 19.0 | | MAR
31 | 1700 | 63 | 720 | 7.0 | | | | | | | | | | | | ST. CROI | X RIVER | BASIN | | | | | | | 05333500 |) s | T. CROIX | RIVER NEAR | DANBURY | , WI (LAT | 6 04 28 | LONG 092 | 14 50) | | | DEC 1987
09 | 1035 | 1120 | 166 | 1.5 | 1 | 1AY 1988
20 | 1305 | 1140 | 135 | 18.5 | | JAN 1988
22 | 1330 | 956 | 78 | 1.0 | | JUL
01 | 1430 | 583 | 133 | 23.5 | | MAR
02 | ,1240 | 1040 | 185 | 0.0 | 1 | AUG
09 | 1255 | 755 | 110 | 21.0 | | APR 13 | 1600 | 1930 | 116 | 11.5 | | 03 | 1233 | , 33 | 110 | 22.0 | | | | | | | ODOTY DA | | .m. 15.01 | as tona | 000 20 10 | | | OCT 1987 | 5340500 | ST. | CKOIX KIV | LK AT ST. | | LLS, WI (L <i>l</i>
JUN 1988 | 11 45 24 | 23 LUNG | UJZ 30 49. | , | | 15
DEC | 1005 | 1780 | 208 | 8.5 | | 16
SEP | 1235 | 1450 | 195 | 23.0 | | 16
APR 1988 | 1130 | 3890 | 235 | 1.0 | • | 02
05 | 1000
1200 | 1450
1500 | 193
213 | 19.0
18.5 | | 07
MAY | 1220 | 11000 | 108 | 7.0 | | | | | | | | 11 | 1200 | 7250 | 175 | 17.0 | | | | | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------------------|--------------|---|--|---|---|---|--|---|--|---| | | | | | CHIPPE | WA RIVER | BASIN | | | | | | 05356000 | | CHIPPEWA | RIVER AT | BISHOPS B | RIDGE NE | AR WINTER, | WI (LAT | 45 50 57 | LONG 091 | 04 44) | | OCT 1987
06 | 1120 | 144 | 105 | 10.5 | | MAY 1988
19 | 1350 | 230 | 83 | 17.0 | | DEC
07 | 1030 | 1190 | 97 | 2.5 | | JUN
29 | 1410 | 230 | 126 | 24.0 | | JAN 1988
21 | 1005 | 530 | 95 | 2.0 | | AUG
10 | 1350 | 230 | 67 | 23.5 | | APR
11
14 | 0840
1225 | 1220 | 70 | 5.5 | | SEP
23 | 0950 | 271 | 60 | 12.0 | | 14 | 1223 | 1900 | 57 | 8.0 | | | | | | | | 45465709130 | 0600 | BIG SIS | SABAGAMA | TRIBUTARY | NEAR STO | ONE LAKE, | WI (LAT 4 | 5 46 57 1 | LONG 091 3 | 06) | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | | | | | A | PR 1988 | 1215 | ZO 50 | 7.90 | 10.0 | 10 | 0.060 | | | | | J | UN
16 | 1315
1440 | <0.50
0.0 | 8.00 | 23.0 | 8.2 | 0.042 | | | | | J | UL.
25 | 1315 | 0.0 | 9.20 | 29.5 | 7.2 | 0.080 | | | | | A | UG
18 | 1225 | 0.0 | 8.60 | 26.0 | 7.4 | 0.080 | | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | 05356 | 500 | CHIPPEWA | RIVER NE | AR BRUCE, | WI (LAT | 45 27 08 | LONG 091 | 15 39) | | | OCT 1987
01
DEC | 0930 | 325 | 134 | 13.5 | | MAY 1988
04
27 | 1155
0930 | 627
550 | 108
115 | 17.5
21.0 | | 15
JAN 1988 | 1025 | 1200 | 112 | 0.5 | | JUN 29 | 1150 | 515 | 103 | 21.0 | | 21
MAR | 1040 | 771 | 120 | 0.0 | | JUL 07 | 1210 | 279 | 125 | 29.0 | | 02 | 1135 | 415 | 134 | 0.0 | | AUG 24 | 1130 | 555 | 135 | 20.0 | | | 05360 | 500 | FLAMBEAU | RIVER NEA | AR BRUCE, | WI (LAT | 45 22 21 | LONG 091 | 12 34) | | | OCT 1987
01
DEC | 1415 | 583 | 147 | 16.0 | | MAY 1988
05
27 | 1110
1145 | 893
604 | 110
125 | 17.0
21.0 | | 15
JAN 1988 | 0930 | 1400 | 163 | 0.5 | | JUN 22 | 1500 | 582 | 125 | 27.0 | | 21
MAR | 1440 | 798 | 146 | 0.0 | | 29
JUL | 1220 | 395 | 130 | 23.5 | | 02
MAY | 1430 | 721 | 150 | 0.0 | | 07
AUG | 1140 | 474 | 135 | 24.0 | | 04 | 1220 | 1190 | 105 | 16.5 | | 25 | 1510 | 829 | 140 | 21.0 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------------------|--------------|---|--|---|-----------------------|--------------|---|--|---| | | | | CHI | IPPEWA KI | VER BASINCONTINUE | ע | | | | | | 0536 | 2000 | JUMP R | RIVER AT S | SHELDON, WI (LAT 45 | 18 29 L | ONG 090 57 | 23) | | | OCT 1987
01
DEC | 1105 | 71 | 178 | 13.0 | MAY 1988
31
JUN | 1200 | 84 | 155 | 25.5 | | 16
JAN 1988 | 1340 | 330 | 172 | 0.0 | 22
JUL | 1130 | 42 | 185 | 27.0 | | 15
MAR | 1140 | 73 | 216 | 0.0 | 07
AUG | 1030 | 31 | 190 | 27.5 | | 01
APR | 1235 | 78 | 227 | 0.0 | 25 | 1200 | 42 | 190 | 26.0 | | 29 | 1100 | 527 | 115 | 11.0 | | | | | | | 0536 | 55707 | NORTH | FORK EAU | CLAIRE R | IVER NEAR THORP, WI | (LAT 44 | 58 25 LON | G 090 50 | 57) | | OCT 1987
15 | 1115 | 3.7 | 210 | 10.0 | MAY 1988
31 | 1445 | 4.1 | 213 | 28.0 | | DEC
14 | 1330 | 3.7 | 165 | 0.5 | JUN
22 | 0915 | 0.58 | 235 | 24.5 | | JAN 1988
28 | 1350 | 4.5 | 278 | 0.0 | JUL
05 | 1420 | 0.38 | 240 | 28.0 | | MAR
14 | 1345 | 86 | 170 | 0.5 | 28
AUG | 1150 | 0.23 | 207 | 29.5 | | 17
APR | 1200 | 39 | 158 | 0.0 | 31 | 1300 | 0.41 | 645 | 20.5 | | 27 | 1715 | 80 | 182 | 8.0 | | | | | | | | 0536 | 8000 | HAY RI | VER AT WI | HEELER, WI (LAT 45 | 02 52 LO | NG 091 54 | 39) | | | OCT 1987 | 10/5
| 000 | 0.65 | 0.5 | MAY 1988 | 1220 | 010 | 206 | 10.0 | | DEC DEC | 1245 | 203 | 365 | 9.5 | 06
JUN | 1330 | 212 | 386 | 18.0 | | 03
JAN 1988 | 1440 | 267 | 328 | 2.5 | 03
23 | 1300
1455 | 198
153 | 340
338 | 18.0
20.0 | | 27
MAR | 1450 | 203 | 422 | 0.0 | AUG
24 | 0845 | 153 | 366 | 16.0 | | 16
31 | 1215
1415 | 338
341 | 348
318 | 4.0
8.0 | SEP
20 | 1430 | 525 | 320 | 13.5 | | APR
26 | 1020 | 233 | 355 | 8.0 | | | | | | | | 05369000 | F | RED CEDAR | RIVER AT | MENOMONIE, WI (LAT | 44 53 02 | LONG 091 | 55 57) | | | OCT 1987 | | | | | APR 1988 | | | | | | DEC 14 | 1200 | 987 | 243 | 11.0 | 26
JUN | 1245 | 1400 | 212 | 10.0 | | 03
JAN 1988 | 1310 | 1370 | 212 | 2.0 | 03
23 | 1030
1330 | 1350
579 | 232
210 | 22.0
24.0 | | 26
MAR | 1315 | 777 | 280 | 0.5 | JUL
19 | 1250 | 560 | 220 | 26.5 | | 16 | 1045 | 2560 | 205 | 1.0 | AUG
12 | 0945 | 571 | | 24.0 | | | | | | TREMPEAL | EAU RIVER BASIN | | | | | | | 0537950 | 0 | TREMPEALE | AU RIVER | AT DODGE, WI (LAT | 44 07 55 | LONG 091 3 | 33 14) | | | OCT 1987
07 | 1500 | 349 | 285 | 10.0 | APR 1988
25 | 1805 | 485 | 255 | 12.5 | | NOV 25 | 1015 | 449 | 265 | 4.0 | JUN
07 | 1945 | 292 | 270 | 27.5 | | JAN 1988
26 | 1550 | 319 | 327 | 0.0 | JUL
26 | 1925 | 235 | 275 | 26.5 | | MAR
15 | 1730 | 552 | 280 | 2.0 | SEP 13 | 1210 | 222 | 270 | 18.0 | | | 1,50 | | 200 | 2.0 | 13 | 2210 | | 2,0 | | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |-----------------------|----------|---|-------------|---|--------------------|----------|---|--|---| | | | | | BLACK R | IVER BASIN | | | | | | | 0538100 | 0 | BLACK RIV | ER AT NEILL | SVILLE, WI (LAT 4 | 4 33 35 | LONG 090 | 36 54) | | | OCT 1987
14 | 1210 | 83 | 195 | 11.5 | APR 1988
27 | 1410 | 737 | 144 | 7.5 | | DEC
02 | 1330 | 866 | 157 | 1.0 | MAY
31 | 1730 | 94 | 164 | 28.5 | | JAN 1988
28
MAR | 1050 | 93 | 262 | 0.0 | JUL
05
AUG | 1215 | 33 | 205 | 27.5 | | 17 | 1015 | 779 | 132 | 0.0 | 25 | 0830 | 38 | 185 | 20.0 | | | | | | WISCONSIN | RIVER BASIN | | | | | | 0539100 | 00 | WISCONSI | N R AT RAIM | IBOW LK NEA | R LAKE TOMAHAWK, N | TAI) IW | 45 49 58 | LONG 089 | 32 51) | | NOV 1987
03 | 1415 | 260 | 80 | 7.5 | JUL 1988
06 | 1230 | 219 | 90 | 24.0 | | MAR 1988
22 | 1510 | 5 9 0 | 105 | 2.5 | SEP
08 | 1335 | 252 | 85 | 16.5 | | MAY
19 | 1305 | 322 | 85 | 17.5 | | | | | | | | 05393500 | | SPIRIT RIVE | ER AT SPIRI | T FALLS, WI (LAT | 45 26 58 | LONG 089 | 58 47) | | | DEC 1987
04 | 1055 | 71 | 80 | 0.0 | JUN 1988
24 | 1130 | 4.9 | 160 | 22.5 | | JAN 1988
21 | 1450 | 19 | 135 | 0.0 | JUL
27 | 1100 | 3.2 | 170 | 21.5 | | MAR
18 | 1500 | 41 | 130 | 0.0 | SEP
14 | 1150 | 4.5 | 150 | 15.5 | | MAY
18 | 1450 | 34 | 102 | 17.5 | | | | | | | | 0539450 | 0 | PRAIRIE RI | VER NEAR M | ERRILL, WI (LAT 45 | 5 14 09 | LONG 089 | 38 59) | | | JAN 1988 | | | | | JUN 1988 | | | , | | | 21
MAR | 1140 | 87 | 185 | 0.5 | 15
JUL_ | 1440 | 63 | | 22.5 | | 18
MAY | 1200 | 110 | 155 | 0.5 | 27
SEP | 1000 | 87 | 155 | 18.5 | | 18 | 1200 | 110 | 130 | 16.5 | 13 | 1450 | 73 | 190 | 18.0 | | | 0539500 | 0 | WISCONSIN | RIVER AT M | ERRILL, WI (LAT 45 | 5 10 41 | LONG 089 | 40 52) | | | MAY 1988
27 | 1400 | 1090 | 128 | 20.5 | SEP 1988
15 | 1145 | 655 | 165 | 17.0 | | | 0539750 | 00 | EAU CLAIF | E RIVER AT | KELLY, WI (LAT 4 | 55 06 | LONG 089 | 33 00) | | | OCT 1987
29 | 1610 | 137 | 168 | 4.0 | JUN 1988
23 | 1350 | 55 | 300 | 23.5 | | JAN 1988
22 | 1310 | 88 | 295 | 0.0 | JUL
25 | 1630 | 71 | 205 | 24.5 | | MAR
17 | 1220 | 238 | 200 | 0.0 | SEP
15 | 1500 | 47 | 275 | 16.5 | | MAY
10 | 1500 | 274 | 230 | 6.5 | | | | | | | | 05398000 | , | WISCONSIN R | TVER AT RO | THSCHILD, WI (LAT | 44 53 09 | I.ONG 08 | 9 38 05) | | | JUN 1988 | | 93 9 | | | SEP 1988 | | | | 16.5 | | 06 | 1130 | 737 | 282 | 26.0 | 23 | 1645 | 2250 | 250 | 16.5 | | | 399500 | BIG | EAU PLEINE | RIVER NEAD | R STRATFORD, WI (I | AT 44 49 | 9 19 LONG | 090 04 46 | 5) | | DEC 1987
11 | 1405 | 212 | 180 | 1.5 | JUN 1988
24 | 1500 | 2.7 | 260 | 28.5 | | FEB 1988
18 | 1440 | 13 | 340 | 0.0 | JUL
27 | 1530 | 2.7 | 225 | 27.5 | | MAY
13 | 1205 | 76 | 190 | 15.0 | SEP
14 | 1530 | 1.4 | 310 | 21.5 | ### WATER-QUALITY PARTIAL-RECORD STATIONS | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
VER BASINCONTIN | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |----------------|--------------|---|--|---|-------------------------|--------------|---|--|---| | | 05402 | 000 | | | BABCOCK, WI (LAT | | I.ONG 090 0 | 7 15) | | | OCT 1987 | | | | | MAY 1988 | | 201.0 170 1 | . 10, | | | 23
DEC | 1120 | 15 | 128 | 5.0 | 11
JUN | 0950 | 275 | 130 | 15.0 | | 03
JAN 1988 | 1200 | 164 | 317 | 1.0 | 02
20 | 1340
1630 | 13
6.5 | 134
184 | 19.5
25.5 | | 13
FEB | 1115 | 13 | 114 | 0.0 | JUL
20 | 1220 | 5.0 | 138 | 22.5 | | 25
APR | 1145 | 15 | 187 | 0.0 | AUG
31 | 0910 | 3.9 | 125 | 16.0 | | 21 | 102 0 | 42 | 136 | 8.0 | | | | | | | | 404000 | WISC | ONSIN RIVE | R NEAR WI | SCONSIN DELLS, WI | (LAT 43 3 | 6 22 LONG | 089 45 2 | 5) | | OCT 1987
15 | 1315 | 3210 | 250 | 10.0 | JUN 1988
02 | 1300 | 3660 | 185 | 24.0 | | NOV
18 | 1515 | 5720 | 240 | 6.5 | JUL
14 | 1130 | 3200 | 150 | 26.0 | | APR 1988
12 | 1430 | 8930 | 215 | 11.5 | AUG
19 | 0900 | 1670 | 210 | 26.5 | | | 05405000 |) : | B ARABOO RI | VER NEAR | BARABOO, WI (LAT | 43 28 51 | LONG 089 3 | 8 09) | | | OCT_1987 | 1515 | | | 40 - | APR 1988 | | 262 | 262 | | | 05
NOV | 1515 | 224 | 390 | 12.5 | 11
MAY | 1440 | 360 | 360 | 11.5 | | 19
JAN 1988 | 1300 | 616 | 340 | 6.5 | 31
JUL | 1325 | 179 | 420 | 22.0 | | 08
FEB | 1400 | 189 | 440 | 0.0 | 14
AUG | 0945 | 183 | 400 | 25.5 | | 23 | 1200 | 322 | 440 | 0.0 | 18 | 1430 | 172 | 380 | 26.0 | | | 05406500 | BL | ACK EARTH | CREEK AT | BLACK EARTH, WI (| LAT 43 08 | 03 LONG 0 | 89 43 56) | | | OCT 1987
06 | 1120 | 30 | 615 | 10.5 | MAY 1988
31 | 1545 | 28 | 560 | 20.5 | | 29
NOV_ | 1150 | 34 | 580 | 8.0 | JUL
07 | 1000 | 30 | 75 0 | 18.5 | | 17
JAN 1988 | 1210 | 76 | 540 | 10.0 | 27
AUG | 1255 | 29 | 650 | 19.5 | | 12
FEB | 1155 | 34 | 620 | 3.5 | 16
SEP | 1510 | 26 | 580 | 25.0 | | 23
APR | 1515 | 38 | 550 | 4.0 | 21 | 1340 | 27 | 585 | 15.0 | | 11 | 0955 | 42 | 600 | 8.5 | | | | | | | | 054080 | 00 | KICKAPOO | RIVER AT | LAFARGE, WI (LAT | 43 34 27 | LONG 090 | 38 35) | | | OCT 1987
08 | 1030 | 191 | 425 | 7.0 | APR 1988
13 | 1345 | 156 | 460 | 11.0 | | NOV
25 | 1515 | 201 | 455 | 4.0 | JUN
03 | 1130 | 103 | 480 | 20.5 | | JAN 1988
14 | 1300 | 191 | 490 | 0.0 | JUL
13 | 1135 | 94 | 480 | 22.5 | | FEB 24 | .1250 | 187 | 450 | 0.0 | AUG
19 | 1315 | 133 | 420 | 21.5 | | | 054104 | 90 | KICKAPOO | RIVER AT | STEUBEN, WI (LAT | 43 10 58 | LONG 090 ! | 51 30) | | | OCT 1987 | 1000 | 266 | 405 | 10.5 | MAY 1988 | 1000 | | 450 | 1, 5 | | 06
NOV | 1000 | 366 | 495 | 10.5 | 10
JUN | 1030 | 561 | 450 | 14.5 | | 16
JAN 1988 | 0900 | 384 | 490 | 7.5 | 22
AUG | 1130 | 314 | 490 | 25.0 | | 04
MAR | 1040 | 399 | 540 | 0.0 | 05
SEP | 0756 | 259 | 456 | 24.5 | | 31 | 1000 | 700 | 430 | 7.5 | 12 | 0830 | 251 | 470 | 17.5 | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE
VER BASIN | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |--|--|---|---|---|---|--|---|---|--| | | 0541400 | 00 | PLATTE RIV | ÆR NEAR ROCK | VILLE, WI (LAT 4 | 2 43 52 | LONG 090 | 38 25) | | | OCT_1987 | 1600 | 6.1 | 640 | 11.0 | MAY 1988 | 1000 | 0.0 | 605 |
14.0 | | 06
NOV | 1638 | 64 | 640 | 11.0 | 09
JUN | 1020
1630 | 98
56 | 605
580 | 14.0
28.5 | | 16
JAN 1988
05 | 1400
0950 | 69
61 | 615
750 | 9.5
0.0 | 22
AUG
05 | 1248 | 140 | 540 | 25.5 | | FEB 15 | 1418 | 101 | 640 | 0.0 | SEP
12 | 1450 | 42 | 565 | 22.0 | | MAR
30 | 0826 | 157 | 600 | 5.5 | 12 | 1430 | 42 | 303 | 22.0 | | 30 | 0020 | 137 | 000 | 3.3 | | | | | | | | | | | GALENA RI | VER BASIN | | | | | | | 054150 | 000 | GALENA RI | VER AT BUNCO | MBE, WI (LAT 42 | 30 49 I | LONG 090 2 | 2 40) | | | OCT 1987
07 | 1306 | 55 | 930 | 10.5 | MAR 1988
30 | 1126 | 135 | 77Ó | 8.0 | | NOV 17 | 1020 | 122 | 860 | 9.0 | MAY
09 | 1510 | 89 | 770 | 15.0 | | 18
JAN 1988 | 1405 | 77 | 830 | 7.0 | JUN
23 | 1650 | 40 | 760 | 28.0 | | 05
FEB | 1356 | 50 | 1000 | 0.0 | AUG
05 | 1820 | 36 | 880 | 29.0 | | 16 | 1310 | 110 | 840 | 0.5 | SEP
12 | 1727 | 29 | 865 | 25.0 | | | | | | | | | | | | | | | | | POCE PIN | ED BACTN | | | | | | | | | | ROCK RIV | ER BASIN | | | | | | | 05425912 | ВІ | EAVERDAM RI | | ER BASIN
R DAM, WI (LAT 4 | 3 26 57 | LONG 088 | 50 21) | | | NOV 1987
03 | 05425912
1025 | BI
1.6 | EAVERDAM RI
580 | | R DAM, WI (LAT 4
APR 1988
06 | 3 26 57
1050 | LONG 088 | 50 21) | 10.0 | | 03
DEC
08 | | | | VER AT BEAVE | R DAM, WI (LAT 4
APR 1988
06
MAY
23 | | | | 10.0
23 0 | | 03
DEC
08
JAN 1988
14 | 1025 | 1.6 | 580 | VER AT BEAVE | APR 1988
06
MAY
23
AUG
10 | 1050 | 49 | 550 | | | 03
DEC
08
JAN 1988 | 1025
1312 | 1.6
106 | 580
500 | 16.5
2.5 | APR 1988
06
MAY
23
AUG | 1050
1430 | 49
10 | 550
480 | 23 0 | | 03
DEC
08
JAN 1988
14
MAR | 1025
1312
0920
1512 | 1.6
106
14 | 580
500
720
890 | 16.5
2.5
1.5
3.0 | APR 1988
06
MAY
23
AUG
10
SEP | 1050
1430
1525
1555 | 49
10
2.4
3.6 | 550
480
490
600 | 23 0
30.5 | | 03 DEC 08 JAN 1988 14 MAR 01 | 1025
1312
0920
1512 | 1.6
106
14
90 | 580
500
720
890
BARK RI | 16.5
2.5
1.5
3.0
EVER NEAR ROM | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57 | 1050
1430
1525
1555 | 49
10
2.4
3.6 | 550
480
490
600 | 23 0
30.5
18.0 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV | 1025
1312
0920
1512
0542 | 1.6
106
14
90
26250 | 580
500
720
890
BARK RI
580 | 16.5
2.5
1.5
3.0
EVER NEAR ROM | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN | 1050
1430
1525
1555
39 LON | 49
10
2.4
3.6
IG 088 40 | 550
480
490
600 | 23 0
30.5
18.0 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 | 1025
1312
0920
1512
0542
1000
1025 | 1.6
106
14
90
26250
183
71 | 580
500
720
890
BARK RI
580
645 | 16.5
2.5
1.5
3.0
EVER NEAR ROM
12.0
2.0 | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN
24
AUG | 1050
1430
1525
1555
39 LON
1220
1040 | 49
10
2.4
3.6
IG 088 40 | 550
480
490
600
09) | 23 0
30.5
18.0
17.0
24.5 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB | 1025
1312
0920
1512
0542
1000
1025
1335 | 1.6
106
14
90
26250
183
71
72 | 580
500
720
890
BARK RI
580
645
810 | 16.5
2.5
1.5
3.0
EVER NEAR ROM
12.0
2.0
0.5 | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN
24
AUG
11
SEP | 1050
1430
1525
1555
39 LON
1220
1040
1405 | 49
10
2.4
3.6
IG 088 40
55
7.6
6.2 | 550
480
490
600
099)
595
650
675 | 23 0
30.5
18.0
17.0
24.5
22.5 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB 19 APR | 1025
1312
0920
1512
0542
1000
1025
1335
1220 | 1.6
106
14
90
26250
183
71
72
88 | 580
500
720
890
BARK RI
580
645
810
700 | 16.5
2.5
1.5
3.0
EVER NEAR ROM
12.0
2.0
0.5 | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN
24
AUG
11 | 1050
1430
1525
1555
39 LON
1220
1040 | 49
10
2.4
3.6
IG 088 40 | 550
480
490
600
09) | 23 0
30.5
18.0
17.0
24.5 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB 19 | 1025
1312
0920
1512
0542
1000
1025
1335 | 1.6
106
14
90
26250
183
71
72 | 580
500
720
890
BARK RI
580
645
810 | 16.5
2.5
1.5
3.0
EVER NEAR ROM
12.0
2.0
0.5 | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN
24
AUG
11
SEP | 1050
1430
1525
1555
39 LON
1220
1040
1405 | 49
10
2.4
3.6
IG 088 40
55
7.6
6.2 | 550
480
490
600
099)
595
650
675 | 23 0
30.5
18.0
17.0
24.5
22.5 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB 19 APR 01 | 1025
1312
0920
1512
0542
1000
1025
1335
1220 | 1.6
106
14
90
26250
183
71
72
88
173 | 580
500
720
890
BARK RI
580
645
810
700
545 | 16.5
2.5
1.5
3.0
EVER NEAR ROM
12.0
2.0
0.5
0.5 | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN
24
AUG
11
SEP
16 | 1050
1430
1525
1555
39 LON
1220
1040
1405
1125 | 49 10 2.4 3.6 6 6 7.6 6.2 6.3 | 550
480
490
600
09)
595
650
675
700 | 23 0
30.5
18.0
17.0
24.5
22.5 | | O3 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB 19 APR 01 OCT 1987 09 | 1025
1312
0920
1512
0542
1000
1025
1335
1220
1255 | 1.6
106
14
90
26250
183
71
72
88
173 | 580
500
720
890
BARK RI
580
645
810
700
545 | 16.5
2.5
1.5
3.0
EVER NEAR ROM
12.0
2.0
0.5
0.5 | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN
24
AUG
111
SEP
16 | 1050
1430
1525
1555
39 LON
1220
1040
1405
1125 | 49 10 2.4 3.6 6 6 7.6 6.2 6.3 | 550
480
490
600
09)
595
650
675
700 | 23 0
30.5
18.0
17.0
24.5
22.5 | | O3 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB 19 APR 01 OCT 1987 099 NOV 13 | 1025
1312
0920
1512
0542
1000
1025
1335
1220
1255 | 1.6
106
14
90
26250
183
71
72
88
173 | 580
500
720
890
BARK RI
580
645
810
700
545
ROCK RIVE | 16.5 2.5 1.5 3.0 EVER NEAR ROM 12.0 2.0 0.5 0.5 10.0 | APR 1988
06
MAY
23
AUG
10
SEP
23
E, WI (LAT 42 57
MAY 1988
11
JUN
24
AUG
11
SEP
16 | 1050
1430
1525
1555
39 LON
1220
1040
1405
1125 | 49 10 2.4 3.6 IG 088 40 55 7.6 6.2 6.3 | 550
480
490
600
09)
595
650
675
700 | 23 0
30.5
18.0
17.0
24.5
22.5
18.0 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB 19 APR 01 OCT 1987 09 NOV 13 FEB 1988 23 | 1025
1312
0920
1512
0542
1000
1025
1335
1220
1255
054275 | 1.6
106
14
90
26250
183
71
72
88
173 | 580
500
720
890
BARK RI
580
645
810
700
545
ROCK RIVE | 16.5 2.5 1.5 3.0 EVER NEAR ROM 12.0 2.0 0.5 0.5 10.0 ER AT INDIANF | APR 1988 06 MAY 23 AUG 10 SEP 23 E, WI (LAT 42 57 MAY 1988 11 JUN 24 AUG 11 SEP 16 DRD, WI (LAT 42 JUN 1988 22 JUL 08 AUG 03 | 1050 1430 1525 1555 39 LON 1220 1040 1405 1125 48 15 I 1335 1125 0915 | 49 10 2.4 3.6 IG 088 40 55 7.6 6.2 6.3 CONG 089 09 | 550
480
490
600
099)
595
650
675
700
535
515
505 | 23 0
30.5
18.0
17.0
24.5
22.5
18.0 | | 03 DEC 08 JAN 1988 14 MAR 01 OCT 1987 28 NOV 20 JAN 1988 07 FEB 19 APR 01 OCT 1987 09 NOV 13 FEB 1988 | 1025
1312
0920
1512
0542
1000
1025
1335
1220
1255
054275
1235
1505 | 1.6
106
14
90
26250
183
71
72
88
173 | 580
500
720
890
BARK RI
580
645
810
700
545
ROCK RIVE | 16.5 2.5 1.5 3.0 EVER NEAR ROM 12.0 2.0 0.5 0.5 10.0 ER AT INDIANF | APR 1988 06 MAY 23 AUG 10 SEP 23 E, WI (LAT 42 57 MAY 1988 11 JUN 24 AUG 11 SEP 16 DRD, WI (LAT 42 JUN 1988 22 JUL 08 AUG | 1050 1430 1525 1555 39 LON 1220 1040 1405 1125 48 15 II 1335 1125 | 49 10 2.4 3.6 IG 088 40 55 7.6 6.2 6.3 CONG 089 08 | 550
480
490
600
099)
595
650
675
700
5 25)
535
515 | 23 0
30.5
18.0
17.0
24.5
22.5
18.0 | | | HISCELL | | HIEK-GONFI | II DAIA, V | WATER TEAR OCTOBER | 1907 10 1 | | 1900 | | |----------------------|--------------|---|--------------|---|-----------------------|--------------|---|--|---| | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | | R | OCK RIVER | BASINCONTINUED
 | | | | | | 05429500 | ı | YAHARA RIV | ER NEAR MO | C FARLAND, WI (LAT | 43 00 32 | LONG 089 | 18 18) | | | OCT 1987
05
29 | 1350
1055 | 152
187 | 405
420 | 16.5
9.5 | APR 1988
19
MAY | 1140 | 14 | 490 | 10.0 | | NOV
20 | 1300 | 154 | 450 | 5.0 | 09
26 | 1245
1310 | 68
30 | 470
450 | 16.5
24.0 | | DEC 11 | 0845 | 279 | 475 | 2.5 | JUN
20 | 1045 | 23 | 380 | 27.5 | | JAN 1988
04
29 | 0905
1300 | 246
292 | 360
520 | 1.0
2.5 | JUL
14
AUG | 0950 | 11 | 415 | 28.5 | | FEB 16 | 0850 | 283 | 520 | 2.0 | 03
23 | 1130
1010 | 27
19 | 415
420 | 30.0
24.5 | | MAR
09
28 | 0820
0800 | 190
156 | 495
460 | 4.5
5.0 | SEP
13 | 1140 | 18 | 395 | 23.0 | | 20 | | | | | | | | | | | 0543009 | 5 | BADFISH | CREEK AT C | NTY HIGHWA | AY A NR STOUGHTON, | WI (LAT 4 | 2 53 37 | LONG 089 | 17 55) | | OCT 1987
08
29 | 0925
0850 | 65
63 | 1450
1430 | 13.0
12.5 | APR 1988
09
MAY | 0930 | 62 | 1290 | 10.0 | | NOV 16 | 0800 | 56 | 1330 | 13.5 | 09
31 | 0840
0750 | 72
63 | 1210
1300 | 14.5
18.5 | | DEC 11 | 1240 | 86 | 1190 | 11.0 | JUN
24 | 1335 | 53 | 1410 | 22.5 | | JAN 1988
08 | 0930 | 57 | 1360 | 4.0 | JUL
19
AUG | 0655 | 70 | 1240 | 21.0 | | 29
FEB
16 | 1050
1140 | 59
61 | 1400
1290 | 8.0
7.5 | 01
23 | 0800
0813 | 63
82 | 1330
1400 | 22.5
20.5 | | MAR
09 | 1055 | 64 | 1300 | 9.0 | SEP
12 | 1213 | 51 | 1350 | 23.0 | | 29 | 1325 | 87 | 1140 | 10.5 | | | | | | | | 05430150 | | BADFISH CR | EEK NEAR C | COOKSVILLE, WI (LA | T 42 50 00 | LONG 08 | 9 11 48) | | | OCT 1987
08 | 1125 | 93 | 1300 | 11.0 | MAY 1988
09 | 1050 | 120 | 1070 | 15.5 | | DEC
11 | 1150 | 135 | 1080 | 8.5 | 31
JUN
27 | 1015 | 88
80 | 1280 | 21.0 | | JAN 1988
11
29 | 1200
0940 | 95
105 | 565
1190 | $\frac{1.0}{4.0}$ | JUL
19 | 1150
0855 | 92 | 1290
1190 | 22.0 | | FEB 17 | 0955 | 109 | 1210 | 5.0 | AUG
01 | 1024 | 79 | 1300 | 25.0 | | MAR
30 | 0905 | 128 | 1040 | 7.0 | SEP
12 | 1110 | 83 | 1300 | 22.0 | | | 054301 | 75 | YAHARA R | IVER NEAR | FULTON, WI (LAT 4 | 2 49 50 I | ONG 089 1 | 0 09) | | | OCT 1987
08 | 1320 | 364 | 875 | 11.0 | MAY 1988
12 | 1235 | 408 | 995 | 20.0 | | NOV 23 | 0930 | 319 | 880 | 8.5 | JU N
27 | 1005 | 117 | 1220 | 21.0 | | FEB 1988
23 | 1320 | 471 | 970 | 3.5 | AUG
01 | 1227 | 111 | 1000 | 28.5 | | MAR
30 | 1040 | 433 | 940 | 6.5 | SEP
12 | 0910 | 107 | 1330 | 21.0 | | | 054 | 30500 | ROCK 1 | RIVER AT A | AFTON, WI (LAT 42 | 36 33 LON | rG 089 04 | 14) | | | NOV 1987
13 | 1118 | 1470 | 645 | 6.0 | JUN 1988
22 | 1025 | 349 | 710 | 24.0 | | JAN 1988
11 | 0935 | 1830 | 795 | 0.5 | AUG
02 | 1100 | 353 | 685 | 27.5 | | MAR
30 | 1150 | 3240 | 490 | 7.5 | 25
SEP | 0900 | 412 | 680 | 20.5 | | JUN
01 | 0820 | 717 | 710 | 22.5 | 14 | 1145 | 373 | 730 | 20.5 | | MISCELLANEOUS | WATER-OUALTTY | DATA | WATER | VEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | |---------------|---------------|------|-------|------|---------|------|----|-----------|------| | | | | | | | | | | | | | MISCELL | ANEOUS V | WATER-QUAL | ITY DATA, W | ATER YEAR OCTOBER | 1987 TO | SEPTEMBER | 1988 | | |-----------------|--------------|---|---|---|-------------------|--------------|---|------------|---| | DATE | TIME | DIS-
CHARGE
INST.
CUBIC
FEET
PER
SECONI | CIFIC
CON-
DUCT-
ANCE
D (US/CM) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | | | I | ROCK RIVER | BASINCONTINUED | | | | | | 0543148 | 36 | TURTLE (| CREEK AT CA | ARVERS ROCK | ROAD NR CLINTON, | WI (LAT | 42 35 50 | LONG 088 | 49 45) | | OCT 1987
06 | 0900 | 79 | 740 | 12.0 | MAY 1988
10 | 0910 | 118 | 675 | 13.5 | | NOV
17 | 0945 | 134 | 700 | 11.5 | JUN
23 | 0845 | 51 | 720 | 22.0 | | JAN 1988
07 | 1030 | 114 | 390 | 0.5 | AUG
02 | 0855 | 46 | 710 | 26.0 | | FEB
18 | 0910 | 134 | 710 | 0.5 | SEP
14 | 0900 | 44 | 710 | 15.5 | | MAR
31 | 0850 | 286 | 600 | 6.5 | | | | | | | | 05432500 | 1 | PECATONICA | RIVER AT DA | ARLINGTON, WI (LA | r 42 40 4 | 0 LONG 0 | 90 07 07) | | | OCT_1987 | 1/06 | 100 | 710 | 10 5 | MAY 1988 | 0745 | 162 | 665 | 15.0 | | 07
NOV | 1426 | 108 | 710 | 10.5 | 11
JUN
23 | 0745
1440 | 89 | 680 | 26.0 | | 17
JAN 1988 | 0730 | 150 | 670 | 9.5 | AUG | | | 620 | 24.5 | | 07
FEB | 1455 | 98 | 870 | 0.0 | 06
SEP | 1215 | 89 | 645 | 21.0 | | 15
APR | 1718 | 180 | 690 | 0.5 | 13 | 1400 | 58 | 643 | 21.0 | | 01 | 0756 | 264 | 660 | 8.0 | | | | | | | | 05434500 |] | PECATONICA | RIVER AT MA | ARTINTOWN, WI (LA | r 42 30 3 | 4 LONG 0 | 89 47 58) | | | OCT 1987 | 1310 | 498 | 660 | 9.5 | MAY 1988 | 0812 | 684 | 625 | 17.0 | | NOV
18 | 1230 | 746 | 605 | 8.0 | JUN
20 | 1737 | 406 | 635 | 25.5 | | JAN 1988
06 | 1106 | 514 | 760 | 0.0 | AUG
06 | 0953 | 350 | 585 | 24.5 | | FEB 17 | 0912 | 771 | 630 | 0.0 | SE P
13 | 1128 | 300 | 600 | 19.5 | | MAR
25 | 1230 | 802 | 630 | 10.0 | | | | | | | | 054365 | 500 | SUGAR R | IVER NEAR BE | RODHEAD, WI (LAT | 42 36 42 | LONG 089 | 23 53) | | | OCT_1987 | 2225 | 077 | 505 | 0.0 | MAY 1988 | 1010 | 266 | £75 | 10.0 | | 07
NOV | 0825 | 277 | 585 | 9.0 | 12
JUN | 1010
0840 | 366
220 | 575
600 | 19.0
23.5 | | 18
JAN 1988 | 0835 | 416
281 | 560
640 | 6.5 | 20
AUG | 0730 | | 510 | 24.0 | | 12
MAR
25 | 1058
0835 | 423 | 560 | 0.0
9.5 | 06
SEP
13 | 0805 | 159 | 565 | 20.0 | | 23 | 0833 | 423 | 300 | 3.3 | 13 | 0805 | 13, | 503 | 20.0 | | | | | | ILLINOIS | S RIVER BASIN | | | | | | | 0554 | 3830 | FOX R | IVER AT WAU | KESHA, WI (LAT 43 | 00 17 I | ONG 088 1 | 4 37) | | | OCT 1987 | 0842 | 71 | 1020 | 5.0 | MAY 1988
24 | 1048 | 37 | 1180 | 17.0 | | DEC
10 | 0845 | 266 | 800 | 4.5 | JUL
06 | 1206 | 15 | 1310 | 26.5 | | JAN 1988
20 | 1617 | 538 | 650 | 0.5 | AUG
_15 | 0747 | 55 | 560 | 25.0 | | MAR
02 | 0846 | 139 | 880 | 2.0 | SEP
26 | 0830 | 34 | 990 | 16.5 | | APR
11 | 0855 | 223 | 790 | 9.0 | | | | | | | | 05544200 |) | MUKWONAGO | RIVER AT MU | JKWONAGO, WI (LAT | 42 51 24 | LONG 08 | 8 19 40) | | | OCT 1987
07 | 1355 | 25 | 520 | 11.5 | MAY 1988
11 | 1038 | 46 | 500 | 17.5 | | NOV
19 | 1345 | 72 | 550 | 6.0 | JUN
24 | 0900 | 12 | 480 | 25.5 | | JAN 1988
07 | 1235 | 56 | 620 | 2.0 | AUG
05 | 1423 | 14 | 490 | 29.5 | | FEB
19 | 0950 | 53 | 580 | 1.5 | SEP
16 | 0845 | 37 | 520 | 19.5 | | APR
01 | 1055 | 115 | 470 | 8.5 | | | | | | | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | DATE | TIME | DIS-
CHARGE,
IN
CUBIC
FEET
PER
SECOND
(00060) | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | PHOS-
PHOROUS
TOTAL
(MG/L
AS P)
(00665) | |-----------------------|--------------|--|---|--|----------------------|--------------|---|---|--| | | | | ILI | LINOIS RIVER E | BASINCONTINUED | | | | | | 0 | 5544382 | MUSKE | GO CREEK | AT MUSKEGO, W | /I (LAT 42 53 44 | LONG | 088 07 44 |) | | | OCT 1987
29
NOV | 1645 | | 8.8 | 0.028 | MAY 1988
02
11 | 1030
1500 | | 9.8
5.1 | 0.015
0.009 | | 16 | 1456 | | 5.6 | 0.054 | 24 | 1350 | | 2.4 | 0.015 | | DEC
17 | 0920 | | 19 | 0.040 | JUN
07 | 1445 | | 0.29 | 0.070 | | JAN 1988
28 | 1615 | | 18 | 0.030 | JUL
18 | 1430 | | E0.05 | 0.090 | | FEB
16 | 1800 | | 15 | 0.040 | AUG
23 | 1315 | | 0.65 | 0.100 | | MAR
10 | 0910 | | 18 | 0.040 | SEP
07 | 1600 | | 0.33 | 0.040 | | APR
08 | 1515 | | 37 | 0.070 | 20 | 1325 | | 1.9 | 0.050 | | 00 | 1515 | | 37 | 0.070 | | | | | | | 05544388 | UN | NAMED TRIE | TO MUSKI | EGO CANAL NEAR | R WIND LAKE, WI | (LAT 42 | 51 01 I | ONG 088 | 08 21) | | NOV 1987 | | | | | APR 1988 | | | | | | 16
JAN 1988 | 1427 | | E0.6 | 0.055 | 08
10 | 1353
1146 | | | 0.100
0.070 | | 14 | 1640 | | 0.0 | 0.090
0.100 | 11 | 1806
1345 | | | 0.060
0.060 | | 28
FEB | 1600 | | 0.0 | 0.100 | $12\dots 21\dots$ | 1245 | | 2.0 | 0.060 | | 08
MAR | 0845 | | | 0.080 | MAY
02 | 1130 | | 3.0 | 0.058 | | 03 | 1215 | | 3.4 | 0.100 | 11 | 1345 | | E1.6 | 0.098 | | 10
16 | 1045
0845 | | $\frac{4.1}{3.1}$ | 0.090
0.160 | 24 | 1245 | | 0.0 | 0.202 | | 10 | 0043 | | 3.1 | 0.100 | | | | | | | 0554 | 4410 | WIND LAKE | DRAINAGE | CANAL AT WINI | LAKE, WI (LAT | 2 48 | 46 LONG | 088 08 3 | 1) | | JAN 1988 | | | | | JUN 1988 | | | | | | 28
APR | 1400 | 61 | | 0.026 | 22
JUL | 1105 | | 0.0 | 0.027 | | 08
MAY | 0856 | 137 | | 0.046 | 06 | 1625 | | 0.0 | 0.026 | | 11 | 1235 | 0.90 | | 0.022 | | | | | | | DATE | TIME | | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | | DATE | TIME | DIS-
CHARGE,
INST.
CUBIC
FEET
PER
SECOND
(00061) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | | | 0.5 | 546500 | FOX 1 | RIVER AT WILMO | OT, WI (LAT 42 30 4 | 40 LON | G 088 10 4 | 5) | | | OCT 1987 | , | | | |
MAR 1988 | | | | | | 06 | 1505 | 382 | 775 | 13.0 | 31 | 1355 | 1120 | 665 | 8.5 | | NOV
17 | 1415 | 433 | 795 | 9.5 | | | | | | E Estimated. **GROUND-WATER RECORDS** Figure 6. Locaton of observation wells and ground-water-quality sites in Wisconsin. GROUND-WATER LEVELS 371 #### ADAMS COUNTY 435759089490001. Local number, AD-17/06E/08-0076. LOCATION.--Lat 43°57'59", long 89°49'00", Hydrologic Unit 07070003. Owner: Wis. Dept. of Natural Resources. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Driven observation water table well, diameter 1 1/4 in, depth 21 ft, cased to 19 ft, well point 19-21 ft. DATUM.--Altitude of land-surface is 955 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.50 ft above land-surface datum. PERIOD OF RECORD. -- September 1969 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.61 ft below land-surface datum. May 29, 1973; lowest water level measured, 18.14 ft below land-surface datum, Mar. 7, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|----------------|-------|----------------| | OCT 1 | 15.57 | DEC 1 | 15.68 | FEB 1 | 16.07 | APR 4 | 14.86 | JUN 8 | 16.43 | AUG 2 | 17.04 | | 6 | 15.60 | 7 | 15.63 | 8 | 16.05 | 12 | 14.76 | 13 | 16.45 | 8 | 16.68 | | 12 | 15.70 | 14 | 15.57 | 15 | 16.07 | 20 | 14.76 | 21 | 16.70 | 15 | 16.55 | | 19 | 15.80 | 21 | 15.52 | 22 | 16.08 | 26 | 14.78 | 28 | 16.60 | 26 | 16.30 | | 26 | 15.81 | 28 | 15.54 | 29 | 16.28 | MAY 3 | 14.75 | JUL 6 | 16.82 | 29 | 16.31 | | NOV 2 | 15.82 | JAN 4 | 15.55 | MAR 7 | 16.22 | 10 | 14.85 | 11 | 16.72 | SEP 5 | 16.55 | | . 9 | 15.94 | 11 | 15.65 | 14 | 15.68 | 16 | 15.00 | 18 | 16.35 | 12 | 16.67 | | 18 | 15.70 | 19 | 15.81 | 21 | 15.60 | 24 | 15.60 | 25 | 16.32 | 26 | 15.46 | | 23 | 15.69 | 25 | 15.94 | 28 | 15.32 | 31 | 15.80 | | | | | #### ASHLAND COUNTY 460936090531701. Local number, AS-43/04W/32-0006. LOCATION.--Lat 46°09'36", long 90°53'17", Hydrologic Unit 07050001. Owner: U.S. Forest Service. AQUIFER . - - Sand and gravel. WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 5 in, depth 89 ft. DATUM.--Altitude of land-surface datum is 1,470 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of hole in pump base, at land-surface datum. PERIOD OF RECORD .-- August 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 24.4 ft below land-surface datum, Mar. 24, 1985; lowest water level measured, 32.4 ft below land-surface datum, Apr. 1, 1964. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |------------------|----------------|-----------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 23
NOV 23 | 29.80
29.80 | JAN 7
FEB 12 | 30.40
30.50 | MAR 31
APR 29 | 30.80
31.10 | MAY 20
JUN 15 | 31.00
30.70 | JUL 12
AUG 15 | 30.90
31.10 | SEP 20 | 31.10 | ### BARRON COUNTY 451514091582101. Local number, BR-33/13W/21-0046. LOCATION.--Lat 45°15'14", long 91°58'21", Hydrologic Unit 07050007. Owner: Edward Thuftin. AQUIFER. -- Sandstone. WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 4 in, depth 65 ft. DATUM.--Altitude of land-surface is 1,115 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.00 ft above land-surface datum. PERIOD OF RECORD. -- October 1956 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 24.47 ft below land-surface datum, Nov. 5, 1986; lowest water level measured, 35.45 ft below land-surface datum, May 13, 1959. | | WATER | |--------|-------|--------|-------|--------|-------|--------|-------|--------|-------|--------|-------| | DATE | LEVEL | | OCT 12 | 26.05 | DEC 29 | 26.40 | MAR 11 | 26.44 | MAY 12 | 26.19 | JUN 28 | 26.60 | AUG 18 | 26.74 | | 20 | 26.14 | JAN 8 | 26.28 | 16 | 26.55 | 17 | 26.59 | JUL 6 | 26.66 | 27 | 26.78 | | 29 | 26.21 | 15 | 26.19 | 23 | 26.52 | 24 | 26.60 | 15 | 26.60 | SEP 1 | 26.83 | | NOV 3 | 25.97 | 22 | 26.27 | 31 | 26.58 | JUN 2 | 26.58 | 22 | 26.69 | 10 | 26.86 | | 9 | 26.30 | 26 | 26.45 | APR 7 | 26.51 | 10 | 26.58 | 26 | 26.75 | 17 | 26.82 | | 16 | 26.06 | FEB 16 | 26.32 | 20 | 26.44 | 16 | 26.66 | AUG 5 | 26.69 | 22 | 26.86 | | DEC 7 | 26.22 | 25 | 26.55 | 25 | 26.47 | 22 | 26.60 | 11 | 26.72 | 29 | 26.91 | | 16 | 26.39 | MAR 3 | 26.55 | MAY 6 | 26.55 | | | | | | | ### BARRON COUNTY ### BROWN COUNTY 443228088003101. Local number, BN-24/20E/24-0076. LOCATION.--Lat 44°32'28", long 88°00'31", Hydrologic Unit 04030204. Owner: Wisconsin Public Service Corp. AQUIFER.--Sandstone. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 5 in, depth 500 ft, cased to 150 ft, open end. DATUM.--Altitude of land-surface is 590 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of 3 in pipe, 4.00 ft above land-surface datum. PERIOD OF RECORD. -- April 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured. 41.24 ft below land-surface datum, May 3, 1961; lowest water level measured, 248.97 ft below land-surface datum, Aug. 30, 1955. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--|---|---|---|--|--|---|---|--|--|---|--| | OCT 6
13
20
27
NOV 3
17
24 | 101.55
100.13
98.30
96.75
95.35
93.60
93.30 | DEC 2
8
15
22
JAN 5
13
21 | 91.78
90.93
89.55
89.58
88.90
88.15
87.52 | JAN 28
FEB 2
11
23
MAR 1
17 | 87.45
87.28
86.84
86.00
85.73
85.91 | MAR 29
APR 15
19
26
MAY 5
JUL 11 | 85.58
85.70
85.37
85.27
85.37
125.52 | JUL 19
26
AUG 2
9
16
23 | 127.00
124.40
124.60
128.10
126.20
123.73 | AUG 25
30
SEP 6
13
20
27 | 121.87
121.70
120.41
116.72
115.10
113.10 | #### BURNETT COUNTY 455224092215601. Local number, BT-39/16W/17-0002. LOCATION.--Lat 45°52'24", long 92°21'56", Hydrologic Unit 07030001. Owner: Wis. Dept. of Natural Resources. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 8 in, depth 46 ft, cased to 46 ft, perforated 44 1/2-46 ft. DATUM.--Altitude of land-surface is 981 ft above National Geodetic Vertical Datum of 1929. Measuring point: pointer on float gage, 4.87 ft above land-surface datum. PERIOD OF RECORD .-- May 1937 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 30.33 ft below land-surface datum, June 28, 1968; lowest water level measured, 37.32 ft below land-surface datum, Mar. 3, 1938. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 1 | 32.02 | DEC 11 | 32.14 | FEB 19 | 32.24 | APR 22 | 32.55 | JUN 17 | 32.88 | AUG 12 | 33.10 | | 9 | 32.13 | 18 | 32.24 | 26 | 32.39 | 29 | 32.68 | 28 | 32.88 | 19 | 33.14 | | 16 | 32.14 | 25 | 32.33 | MAR 4 | 32.44 | MAY 6 | 32.71 | JUL 1 | 32.94 | 26 | 33.15 | | 23 | 32.16 | JAN 8 | 32.35 | 11 | 32.48 | 13 | 32.69 | 8 | 32.98 | SEP 2 | 33.18 | | 30 | 32.19 | 15 | 32.33 | 18 | 32.54 | 20 | 32.75 | 15 | 32.96 | 9 | 33.17 | | NOV 13 | 32.13 | 22 | 32.40 | 25 | 32.38 | 27 | 32.73 | 22 | 33.03 | 16 | 33.22 | | 20 | 32.24 | 29 | 32.36 | APR 1 | 32.64 | JUN 3 | 32.83 | 29 | 33.05 | 23 | 33.25 | | 27 | 32.28 | FEB 5 | 32.37 | 8 | 32.56 | 10 | 32.87 | AUG 5 | 33.07 | 30 | 33.27 | | DEC 4 | 32.25 | 12 | 32.47 | 15 | 32.62 | | | | | | | #### CHIPPEWA COUNTY 445544091155701. Local number, CH-28/07W/17-0142. LOCATION.--Lat 44°55'44", long 91°15'57", Hydrologic Unit 07050005. Owner Wis. Dept. of Transportation. AQUIFER. -- Sandstone. WELL CHARACTERISTICS. -- Drilled domestic artesian well, diameter 6 in, depth 60 ft, cased to 39 ft, open end. DATUM.--Altitude of land-surface is 965 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole in pump base, 2.20 ft above land-surface datum. PERIOD OF RECORD. -- January 1968 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.97 ft below land-surface datum, Oct. 28, 1986; lowest water level measured, 33.46 ft below land-surface datum, Jan. 10, 1978. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 5 | 27.38 | DEC 7 | 27.99 | FEB 8 | 28.27 | APR 12 | 28.59 | JUN 14 | 28.69 | AUG 10 | 28.94 | | 11 | 28.11 | 15 | 27.63 | 15 | 28.05 | 18 | 28.24 | 18 | 28.60 | 16 | 28.87 | | 20 | 27.90 | 21 | 27.79 | 22 | 27.79 | 25 | 28.36 | 27 | 28.59 | 22 | 28.80 | | 26 | 27.52 | 29 | 28.40 | 29 | 28.50 | MAY 2 | 28.60 | JUL 5 | 28.63 | 29 | 29.16 | | NOV 3 | 27.81 | JAN 5 | 28.45 | MAR 7 | 28.12 | 9 | 27.77 | 11 | 28.62 | SEP 5 | 29.05 | | 9 | 28.31 | 11 | 27.77 | 14 | 28.49 |
16 | 28.51 | 18 | 28.73 | 12 | 29.09 | | 12 | 27.71 | 18 | 28.15 | 20 | 28.55 | 23 | 28.39 | 24 | 28.67 | 19 | 28.55 | | 23 | 27.88 | 25 | 28.19 | 28 | 28.27 | 30 | 28.50 | AUG 1 | 28.67 | 26 | 29.11 | | 30 | 27.72 | FEB 1 | 28.57 | APR 4 | 28.05 | JUN 6 | 28.49 | | | | | ### CLARK COUNTY $444525090443201. \quad Local \ number, \ CK-26/03W/04-0001.$ LOCATION.--Lat 44°45'25", long 90°44'32", Hydrologic Unit 07050006. Owner: Wis. Dept. of Natural Resources. AQUIFER.--Sandstone. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in, depth 150 ft cased to 53 ft, open end. DATUM.--Altitude of land-surface is 1,210 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in pump base, at land-surface datum. PERIOD OF RECORD. -- May 1953 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 51.93 ft below land-surface datum Dec. 18, 1986; lowest water level measured, 70.64 ft below land-surface datum, Sept. 17, 1965. | DATE | WATER
LEVEL | |------------------|----------------|-----------------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 21
FEB 22 | 53.83
54.30 | MAR 23
MAY 5 | 54.78
54.55 | JUN 10 | 54.79
54.98 | JUL 12 | 55.19 | JUL 20 | 55.30 | AUG 25 | 55.60 | #### GROUND-WATER LEVELS #### DANE COUNTY 430429089230301. Local number, DN-07/09E/23-0005. LOCATION.--Lat 43°04'29", long 89°23'03", Hydrologic Unit 07090001. Owner: State of Wisconsin. AQUIFER. -- Sandstone. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 8 in, depth 346 ft, cased to 265 ft, open end. DATUM.--Altitude of land-surface is 930 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in pump base, 3.50 ft below land-surface datum. REMARKS. -- Water level affected by pumping of nearby wells. PERIOD OF RECORD .-- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 83.37 ft below land-surface datum, Jan. 2, 1961; lowest water level measured, 120.50 ft below land-surface datum, Nov. 6, 1985. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 5 | 114.62 | NOV 30 | 105.45 | FEB 1 | 85.70 | MAR 21 | 85.42 | MAY 16 | 87.84 | JUL 25 | 95.38 | | 12 | 111.24 | DEC 7 | 104.70 | 2 | 85.88 | 28 | 86.01 | 23 | 91.69 | AUG 1 | 97.45 | | 19 | 109.37 | 14 | 104.68 | 8 | 85.75 | APR 4 | 85.25 | JUN 6 | 93.40 | 8 | 99.85 | | 26 | 111.44 | 23 | 106.15 | 15 | 85.60 | 11 | 86.15 | 13 | 97.10 | 15 | 99.62 | | NOV 2 | 106.07 | JAN 1 | 105.79 | 22 | 85.45 | 18 | 86.32 | 20 | 96.79 | 22 | 98.73 | | 9 | 107.38 | 11 | 101.95 | 29 | 86.25 | 25 | 88.51 | JUL 5 | 96.55 | SEP 6 | 95.11 | | 16 | 104.31 | 19 | 107.19 | MAR 7 | 86.82 | MAY 2 | 87.10 | 11 | 97.49 | 19 | 99.27 | | 23 | 108.00 | 26 | 85.60 | 14 | 85.23 | 9 | 87.12 | 18 | 97.97 | 26 | 97.24 | 430456089190601. Local number, DN-07/10E/09-0105. LOCATION.--Lat 43°04'56", long 89°19'06", Hydrologic Unit 07070005. Owner: City of Madison. AOUIFER. -- Sandstone. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 10 in, depth 380 ft, cased to 85 ft, open end. DATUM.--Altitude of land-surface is 870 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land- surface datum. PERIOD OF RECORD. -- September 1974 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 19.63 ft below land-surface datum, Mar. 23, 1986; lowest water level measured, 32.76 ft below land-surface datum, June 30, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT | NOA | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 5 | 24.17 | 24.95 | 24.44 | 23.79 | 23.46 | 23.71 | 23.32 | 23.76 | 27.67 | 27.76 | 27.23 | 26.27 | | 10 | 25.45 | 24.83 | 24.13 | 23.96 | 23.37 | 23.69 | 23.09 | 23.31 | 28.22 | 27.49 | 27.79 | 26.80 | | 15 | 24.63 | 24.69 | 23.98 | 23.90 | 23.45 | 23.73 | 23.91 | 23.39 | 28.73 | 27.89 | 27.93 | 27.06 | | 20 | 24.64 | 24.92 | 23.92 | 23.92 | 23.57 | 23.67 | 23.74 | 25.37 | 28.75 | 26.50 | 26.95 | 26.71 | | 25 | 24.36 | 24.88 | 23.50 | 23.65 | 23.71 | 23.90 | 23.20 | 26.26 | 28.15 | 26.37 | 26.70 | 26.12 | | EOM | 24.71 | 24.37 | 23.51 | 23.31 | 23.47 | 23.88 | 23.36 | 27.67 | 26.00 | 27.42 | 27.10 | 26.43 | WTR YEAR 1988 MAX 28.93 JUN 17 MIN 22.01 FEB 25, APR 30 #### DODGE COUNTY 432407088552701. Local number, DG-11/13E/23-0081. LOCATION.--Lat 43°24'15", long 88°55'26", Hydrologic Unit 07090002. Owner: Wis. Dept. of Transportation. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in, depth 125 ft, cased to 57 ft, open end. DATUM.--Altitude of land-surface is 880 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole in side of casing, 1.30 ft above land-surface datum. PERIOD OF RECORD. -- November 1964 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.94 ft below land-surface datum, Sept. 30, 1986; lowest water level measured, 26.67 ft below land-surface datum, Feb. 3, 1965. | DATE | WATER
LEVEL | |---------------------------|-------------------------|----------------------|-------------------------|-----------------|----------------|-------------|----------------|----------------|----------------|--------------|----------------| | OCT 28
NOV 10
DEC 3 | 19.89
19.68
18.44 | DEC 9
30
FEB 3 | 18.49
18.61
17.71 | FEB 29
APR 4 | 18.11
17.41 | MAY 9
31 | 16.84
18.80 | JUL 8
AUG 5 | 18.80
22.50 | SEP 15
27 | 26.18
24.68 | #### DOOR COUNTY 455757087151701. Local number, DR-29/27E/30-0007. LOCATION.--Lat 45°57'57", long 87°15'17", Hydrologic Unit 04030102. Owner: Fred Peterson. AQUIFER. -- Silurian dolomite. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 4 in, depth 84 ft. DATUM.--Altitude of land-surface is 725 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in pump base, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.00 ft below land-surface datum, Mar. 22, 1979; lowest water level measured, 56.12 ft below land-surface datum, Feb. 21, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE | WATER
LEVEL | DATE . | WATER
LEVEL | DATE | WATER
LEVEL | |-----------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------|--------|----------------| | OCT 8
NOV 10 | 46.29
32.69 | JAN 12
FEB 16 | 46.38
46.63 | APR 13
MAY 24 | 31.92
45.74 | JUN 15
JUL 12 | 46.30
46.26 | AUG 24 | 46.34 | SEP 27 | 46.38 | 445055087213801. Local number, DR-27/26E/05-0265 LOCATION.--Lat 44°50'55", long 87°21'38", Hydrologic Unit 04030102. Owner: U.S. Geol. Survey. AQUIFER. -- Silurian dolomite. WELL CHARACTERISTICS .-- Drilled observation, diameter 6 in, depth 442 ft, cased to 170 ft, open end. DATUM.--Altitude of land-surface is 616 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.57 ft above land-surface datum. REMARKS. -- Water level affected by pumping of nearby wells. PERIOD OF RECORD. -- September 1971 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 1.57 ft above land-surface datum, June 18, 1974; lowest water level, 35.33 ft below land-surface datum, Feb. 1, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|------|-------|-------|-------|------|-------|-------|-------|-------|-------| | 5 | 21.67 | 19.97 | 9.40 | 11.74 | 14.96 | 19.94 | 3.09 | 6.87 | 17.99 | 24.98 | 25.14 | 28.89 | | 10 | 23.55 | 19.33 | 9.18 | 12.70 | 16.23 | 11.00 | 2.97 | 8.81 | 18.50 | 25.20 | 27.32 | 30.89 | | 15 | 24.83 | 18.87 | 7.24 | 13.54 | 16.78 | 9.91 | 5.15 | 9.26 | 20.31 | 25.26 | 27.31 | 31.42 | | 20 | 23.72 | 14.39 | 8.76 | 14.40 | 17.56 | 10.43 | 7.22 | 10.36 | 22.01 | 23.34 | 27.66 | 29.51 | | 25 | 19.76 | 13.84 | 9.01 | 15.71 | 18.64 | 8.59 | 7.26 | 12.54 | 22.01 | 24.42 | 27.34 | 29.61 | | EOM | 19.51 | 10.66 | 8.70 | 16.30 | 18.52 | 5.68 | 5.23 | 16.16 | 21.86 | 25.46 | 28.06 | 30.63 | WTR YEAR 1988 MAX 31.42 SEP 15 MIN 0.25 APR 10 #### DOUGLAS COUNTY 463217091342801. Local number, DS-47/10W/23-0001. LOCATION.--Lat 46°32'17", long 91°34'28", Hydrologic Unit 04010301. Owner: Wis. Dept. of Natural Resources. AQUIFER.--Sand and gravel. WELL CHARACTERISTICS.--Drilled observation artesian well, diameter 8 in, depth 40 ft, cased to 40 ft, perforated 37-40 ft. DATUM.--Altitude of land-surface is 980 ft above National Geodetic Vertical Datum of 1929. Measuring point: pointer on float gage, 4.33 ft above land-surface datum. PERIOD OF RECORD .-- June 1937 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.81 ft above land-surface datum, Apr. 28, 1978; lowest water level measured, 29.59 ft below land-surface datum, July 29, 1939. | DATE | WATER
LEVEL | |---|---|---------------------------------------|---|---
--|---|--|--|--|--|--| | OCT 5
12
19
26
NOV 2
9
16
23
30 | 11.83
12.07
12.21
12.30
12.51
12.58
12.78
12.94
13.05 | DEC 7 14 21 22 3 JAN 4 11 19 25 FEB 2 | 13.23
0.53
2.10
2.29
2.43
2.65
3.09
3.46
3.83 | FEB 8
16
22
29
MAR 7
14
21
28
APR 4 | 4.25
4.63
4.95
5.25
5.57
5.91
6.25
1.26
0.03 | APR 12
19
25
MAY 2
9
16
23
31
JUN 6 | 0.22
0.61
0.91
1.01
0.69
1.24
1.91
2.53
3.45 | JUN 13
21
27
JUL 5
11
18
25
AUG 1 | 3.27
3.78
4.13
4.61
4.95
5.38
5.80
6.16 | AUG 8
15
22
31
SEP 6
12
19
26 | 6.54
6.88
7.29
7.63
5.27
8.21
8.52
7.33 | #### FOND DU LAC COUNTY 434358088301001. Local number. FL-15/17E/30-0374. LOCATION.--Lat 43°43'58", long 88°30'46", Hydrologic Unit 04030203. Owner: Wis. Dept. of Transportation. AQUIFER. -- Galena-Platteville. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in, depth 120 ft, cased to 63 ft, open end. DATUM.--Altitude of land-surface is 835 ft above National Geodetic Vertical Datum of 1928. Measuring point: hole in pump base, 1.50 ft above land-surface datum. PERIOD OF RECORD. -- October 16, 1967, to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 11.05 ft below land-surface datum, Apr. 11, 1986; lowest water level measured, 34.99 ft below land-surface datum, Mar. 21, 1977. #### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|-------------|------------------------|-----------------|----------------|-------------|----------------|----------------|----------------| | OCT 1 | 21.99
21.72 | DEC 3 | 21.81
18.16 | FEB 1
23 | 19.64
19. 08 | APR 27
MAY 5 | 17.97
17.93 | JUN 1
17 | 20.25
21.99 | AUG 1
SEP 1 | 25.43
25.94 | | NOV 19 | 22.43 | JAN 14 | 19.14 | MAR 29 | 20.39 | 26 | 18.74 | 30 | 23.30 | 22 | 26.64 | #### FOREST COUNTY 460156088474901. Local number, FR-41/14E/18-0002. LOCATION.--Lat 46°01'56", long 88°47'49", Hydrologic Unit 04030106. Owner: Wis. Dept. of Transportation. AQUIFER . -- Sand and grave1. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1 1/4 in, depth 18 ft, cased to 15 ft, well point 15-18 ft. DATUM.--Land-surface datum is 1,552 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.70 ft above land-surface datum. PERIOD OF RECORD .-- October 1948 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 7.96 ft below land-surface datum, Apr. 29, 1954; lowest water level measured, 11.89 ft below land-surface datum, Aug. 13, 1968. ### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 30 | 11.50 | DEC 30 | 11.30 | FEB 28 | 10.57 | APR 30 | 10.97 | JUN 30 | 11.56 | AUG 31 | 11.69 | | NOV 30 | 11.30 | JAN 30 | 10.45 | MAR 30 | 10.81 | MAY 30 | 11.51 | JUL 30 | 11.77 | SEP 29 | 11.57 | #### GRANT COUNTY 425551090391301. Local number, GR-05/02W/06-0005. LOCATION.--Lat 42°55'51", long 90°39'13", Hydrologic Unit 07060003. Owner: Homer Yelinek. AQUIFER. -- Sandstone WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 5 in, depth 35 ft, cased to 5 ft, open end. DATUM.--Altitude of land-surface is 980 ft above National Geodetic Vertical Datum of 1929. Measuring point: edge of pump base, 0.50 ft above land-surface datum. PERIOD OF RECORD. -- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.60 ft below land-surface datum, May 22, 1973; lowest water level measured, 19.03 ft below land-surface datum, Aug. 17, 1965. | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 9 | 13.69 | DEC 30 | 13.25 | FEB 4 | 12.33 | APR 26 | 12.25 | JUN 16 | 13.41 | AUG 19 | 14.61 | | NOV 2 | 13.78 | JAN 15 | 13.30 | MAR 10 | 12.06 | MAY 11 | 12.42 | JUL 21 | 14.07 | SEP 30 | 14.85 | ### GRANT COUNTY ### GREEN COUNTY 423815089404201. Local number, GN-02/07E/21-0001. LOCATION.--Lat 42°38'15", long 89°40'12", Hydrologic Unit 07090003. Owner: Eric Welty. AQUIFER.--Galena-Platteville. WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 6 in, depth 75 ft. DATUM.--Altitude of land-surface is 995 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 4.50 ft above land-surface datum. PERIOD OF RECORD. -- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 47.96 ft below land-surface datum, Apr. 13, 1966; lowest water level measured, 69.72 ft below land-surface datum, Feb. 17, 1964. | DATE | WATER
LEVEL | |--------------------------------|----------------------------------|----------------------------|----------------------------------|-----------------------------|----------------------------------|-----------------------|-------------------------|-----------------------|-------------------------|-----------------------|-------------------------| | OCT 20
NOV 5
DEC 8
26 | 57.92
58.60
59.41
59.29 | JAN 6
12
30
FEB 4 | 58.12
59.50
56.70
51.51 | MAR 7
14
23
APR 12 | 55.40
54.90
56.40
54.56 | MAY 3
18
JUN 13 | 54.83
58.20
61.60 | JUN 22
JUL 7
21 | 58.70
59.98
60.30 | AUG 2
29
SEP 13 | 61.09
61.60
62.26 | #### GROUND-WATER LEVELS #### IOWA COUNTY 425644090101901. Local number, IW-06/03E/32-0032. LOCATION.--Lat 42°56'44", long 90°10'19", Hydrologic Unit 07090003. Owner: Archie Lee. AQUIFER. -- Galena-Platteville. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 6 in, depth 92 ft. DATUM.--Altitude of land-surface is 1,200 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole pump base, at land-surface datum. PERIOD OF RECORD. -- August 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.40 ft below land-surface datum, May 17, 1960; lowest water level measured, 68.81 ft below land-surface datum, Aug. 18, 1965. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 6 | 57.46 | NOV 19 | 59.74 | FEB 17 | 55.87 | APR 25 | 54.54 | JUN 22 | 56.33 | AUG 5 | 57.41 | | 13 | 58.82 | DEC 31 | 60.02 | MAR 3 | 54.22 | MAY 11 | 55.46 | JUL 11 | 56.93 | SEP 12 | 58.54 | | NOV 16 | 59.43 | JAN 13 | 59.92 | 30 | 55.02 | JUN 14 | 56.46 | 26 | 57.39 | | | #### JACKSON COUNTY 441051090470901. Local number, JA-20/03W/30-0005. LOCATION.--Lat 44°10'51", long 90°47'09", Hydrologic Unit 07040007. Owner: Robert Foulker. AQUIFER. -- Sandstone. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 10 in, depth 190 ft, cased to 54 ft, open end. DATUM.--Altitude of land-surface is 845 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in pump base, at land-surface datum. PERIOD OF RECORD. -- June 1953 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.53 ft below land-surface datum, May 22, 1973; lowest water level measured, 22.60 ft below land-surface datum, Dec. 19, 1958. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------------|----------------|------------------|----------------|--------------|----------------|------------------|----------------|-----------------|----------------|--------|----------------| | OCT 19
21 | 19.58
19.69 | NOV 20
DEC 18 | 20.49
20.68 | APR 21
22 | 19.78
19.98 | MAY 17
JUL 14 | 19.97
20.74 | JUL 20
AUG 6 | 21.00
20.93 | SEP 10 | 20.97 | #### JUNEAU COUNTY 435515090152901. Local number, JU-17/02E/28-0098. LOCATION.--Lat 43°55'15", long 90°15'29", Hydrologic Unit 07070003. Owner: Wis. Dept. of Transportation. AQUIFER. -- Sandstone. WELL CHARACTERISTICS. -- Drilled domestic water-table well, diameter 6 in, depth 71 ft, cased to 42 ft, open end. DATUM.--Altitude of land-surface is 930 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole in pump base, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- July 1969 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 9.86 ft below land-surface datum, May 24, 1973; lowest water level measured, 13.90 ft below land-surface datum, Jan. 10, 1979. | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|---------|----------------|--------|----------------|-------|----------------| | OCT 15 | 12.16
12.09 | NOV 19 | 11.83 | APR 21 | 11.81
12.56 | 'JUN 23 | 12.81 | JUL 14 | 12.92 | SEP 8 | 13.41 | 379 #### KENOSHA COUNTY 423907087521701. Local number, KE-02/22E/11-0006. LOCATION.--Lat 42°39'07", long 87°52'17", Hydrologic Unit 04040002. Owner: Kenosha County. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in; depth 1,751 ft, cased to 492 ft, open end. DATUM.--Altitude of
land-surface is 639 ft above National Geodetic Vertical Datum of 1929. Measuring point: end of 3/4-in. plastic pipe, 4.25 ft above land-surface datum. REMARKS.--Water level affected by regional pumping of wells. PERIOD OF RECORD .-- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 21.10 ft below land-surface datum, Dec. 3, 1947; lowest water level measured, 207.71 ft below land-surface datum, May 29, 1987. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|-------|----------------| | OCT 7 | 202.93 | NOV 17 | 200.46 | FEB 18 | 200.89 | MAR 31 | 202.00 | JUN 23 | 202.77 | AUG 4 | 204.48 | #### LAFAYETTE COUNTY 423114090161101. Local number, LF-01/02E/33-0057. LOCATION.--Lat 42°31'13", long 90°16'11", Hydrologic Unit 07060005. Owner: Coulthard Estate. AQUIFER. -- Galena-Platteville. WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 10 in, depth 265 ft, cased to 16 ft, open end. DATUM.--Altitude of land-surface is 1,000 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 3.00 ft above land-surface datum. PERIOD OF RECORD. -- April 1952 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 22.74 ft below land-surface datum, Nov. 8, 1986; lowest water level, 130.99 ft below land-surface datum, Nov. 6, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | 5 | 36.26 | 37.71 | 38.43 | 39.28 | 37.60 | 36.66 | 36.32 | 36.56 | 36.96 | 37.53 | 37.95 | 38.62 | | 10 | 37.16 | 38.06 | 38.29 | 38.94 | 36.94 | 36.28 | 36.80 | 36.66 | 37.25 | 37.35 | 38.16 | 38.87 | | 15 | 36.90 | 37.76 | 38.39 | 38.62 | 36.18 | 36.69 | 36.63 | 36.33 | 37.11 | 37.48 | 38.20 | 39.12 | | 20 | 37.02 | 38.12 | 38.63 | 38.50 | 36.34 | 36.60 | 36.22 | 36.55 | 37.02 | 37.75 | 38.21 | 39.09 | | 25 | 37.54 | 38.32 | 39.02 | 38.62 | 36.60 | 36.32 | 36.36 | 36.96 | 37.14 | 37.82 | 38.27 | 39.21 | | EOM | 37.62 | 37.83 | 39.00 | 38.44 | 36.47 | 36.94 | 36.57 | 36.88 | 37.30 | 37.90 | 38.62 | 39.27 | WTR YEAR 1988 MAX 39.28 JAN 5 MIN 35.56 FEB 22 424620089590001. Local number, LF-04/04E/35-0078. LOCATION.--Lat 42°46'20", long 89°58'57", Hydrologic Unit 07090003. Owner: Wis. Dept. of Natural Resources. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 3/4 in, depth 29 ft, cased to 16 ft, open end. DATUM.--Altitude of land-surface is 850 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 0.20 ft above land-surface datum. PERIOD OF RECORD. -- May 1953 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.89 ft below land-surface datum, May 23, 1974; lowest water level measured, 19.81 ft below land-surface datum, Mar. 3, 1959. | DATE | WATER
LEVEL | |-----------------|----------------|-----------------|----------------|------------------|----------------|------------------|----------------|-----------------|----------------|--------|----------------| | OCT 7
NOV 17 | 16.07
16.12 | JAN 7
FEB 16 | 15.79
15.07 | MAR 30
APR 25 | 15.28
13.56 | MAY 11
JUN 23 | 14.68
16.11 | JUL 11
AUG 6 | 16.39
16.60 | SEP 13 | 16.86 | #### LANGLADE COUNTY 450942089085301. Local number, LA-31/11E/20-0118. LOCATION.--Lat 45°09'42", long 89°08'53", Hydrologic Unit 07070002. Owner: Wis. Public Service Corp. AQUIFER, -- Sand and gravel. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1 1/2 in, depth 21 ft, cased to 19 ft, well point 19-21 ft. DATUM.--Land-surface datum is 1,510 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.50 ft above land-surface datum. PERIOD OF RECORD. -- August 1942 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.09 ft below land-surface datum, May 18, 1973; lowest water level measured, 13.84 ft below land-surface datum, Feb. 28, 1949. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 23
NOV 30 | 12.51
11.38 | DEC 28
JAN 29 | 11.48
11.71 | FEB 29
MAR 28 | 11.93
11.08 | APR 28 | 10.34 | MAY 27 | 10.40 | JUN 20 | 10.81 | #### LINCOLN COUNTY 452318089402501. Local number, LN-34/06E/36-0060. LOCATION.--Lat 45°23'18", long 89°40'25", Hydrologic Unit 07070002. Owner: U.S. Geol. Survey. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1 1/4 in, depth 22 ft, cased to 20 ft, well point 20-22 ft. DATUM.--Altitude of land-surface is 1,435 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of pipe, 3.00 ft above land-surface datum. PERIOD OF RECORD. -- July 1955 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.79 ft below land-surface datum, Oct. 9, 1985; lowest water level measured, 10.38 ft below land-surface datum, Jan. 17, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |---------------------------------------|--|-----------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|-----------------------------------|--------------------------------------|----------------------------------|--------------------------------------| | DEC 5
12
19
25
JAN 2
9 | 8.57
8.66
8.66
8.58
8.30
8.80 | JAN 16
23
30
FEB 6
13 | 8.60
8.80
8.80
9.00
9.10 | FEB 22
27
MAY 18
28
JUN 1 | 9.10
9.00
8.36
8.50
8.50 | JUN 9
14
20
27
JUL 11 | 8.90
9.19
9.19
9.29
9.39 | JUL 19
30
AUG 3
12
17 | 9.49
9.80
9.89
9.70
9.80 | AUG 27
SEP 1
7
16
24 | 9.60
9.70
9.59
9.80
9.40 | ### MANITOWOC COUNTY 440430087420401. Local number, MN-19/23E/35-0028. LOCATION.--Lat 44°04'30", long 87°42'04", Hydrologic Unit 04030101. Owner: Wis. Dept. of Transportation. AQUIFER. -- Silurian dolomite. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in, depth 147 ft, cased to 133 ft, open end. DATUM.--Altitude of land-surface is 670 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole in pump base, 1.00 ft above land-surface datum. PERIOD OF RECORD.--June 1968 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.66 ft below land-surface datum, June 11, 1979; lowest water level measured, 32.20 ft below land-surface datum, Aug. 2, 1988. | DATE | WATER
LEVEL | |-------------|----------------|-------------|----------------|-------------|----------------|-------------|------------------------|---------------|----------------|----------------|-------------------------| | OCT 1 | 30.71 | FEB 15 | 30.25 | APR 12 | 29.68 | JUN 7 | 31.69 | JUL 19 | 31.45 | AUG 23 | 31.68 | | NOV 3 | 30.70
30.78 | MAR 1
8 | 30.42
30.21 | 26
MAY 3 | 29.82
30.00 | 14
22 | 31.88
31.98 | AUG 2 | 31.72
32.20 | 30
SEP 6 | 31.79
31.87
31.88 | | DEC 1 | 30.96
30.98 | 15
22 | 29.96
30.08 | 10
17 | 29.90
30.22 | 30
JUL 5 | 31.94
32.16 | 9
11
16 | 31.71
31.07 | 12
21
27 | 31.88
31.79
31.77 | | FEB 8
11 | 30.35
30.34 | 29
APR 5 | 29.95
29.84 | 23
JUN 1 | 30.63
31.39 | 12 | 3 1. 7 5 | 16 | 31.87 | 21 | 31.77 | #### MANITOWOC COUNTY #### MARATHON COUNTY 444709089265301. Local number, MR-27/09E/31-0028. LOCATION.--Lat 44°47'09", long 89°26'53", Hydrologic Unit 07070002. Owner: U.S. Geol. Survey. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1 1/4 in, depth 27 ft, cased to 25 ft, well point 25-27 ft. DATUM.--Altitude of land-surface is 1,229 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of pipe, 0.80 ft above land- surface datum. PERIOD OF RECORD. -- November 1944 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.77 ft below land-surface datum, July 21, 1973; lowest water level measured, 26.09 ft below land-surface datum, Mar. 30, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|--------|----------------|--------|----------------|-------|----------------| | OCT 4 | 16.68 | DEC 6 | 17.54 | FEB 7 | 18.15 | APR 10 | 18.30 | JUN 12 | 18.87 | AUG 7 | 19.35 | | 11 | 16.78 | 13 | 17.59 | 14 | 18.37 | 17 | 18.34 | 19 | 18.94 | 14 | 19.44 | | 18 | 16.87 | 20 | 17.60 | 21 | 18.42 | 24 | 18.43 | 26 | 19.18 | 21 | 19.44 | | 25 | 16.90 | 27 | 17.78 | 28 | 18.54 | MAY 1 | 18.48 | JUL 3 | 19.34 | 28 | 19.53 | | NOV 1 | 17.06 | JAN 3 | 17.82 | MAR 6 | 18.62 | 7 | 18.54 | 10 | 18.89 | SEP 4 | 19.60 | | 8 | 17.15 | 10 | 17.93 | 13 | 18.20 | 15 | 18.63 | 16 | 19.12 | 11 | 19.62 | | 15 | 17.22 | 17 | 17.97 | 20 | 18.38 | 22 | 18.67 | 24 | 19.26 | 18 | 19.62 | | 22 | 17.32 | 24 | 18.11 | 27 | 18.22 | 29 | 18.79 | 31 | 19.27 | 25 | 19.76 | | 29 | 17.39 | 31 | 18.18 | APR 3 | 18.27 | JUN 5 | 18.81 | | | | | #### MARINETTE COUNTY 453816087590101. Local number, MT-37/20E/34-0007. LOCATION.--Lat 45°38'16", long 87°59'01", Hydrologic
Unit 04030108. Owner: Wis. Dept. of Natural Resources. AQUIFER.--Sand and gravel. WELL CHARACTERISTICS. -- Drilled unused water-table well, diameter 8 in, depth 33 ft, cased to 33 ft, open end. DATUM.--Altitude of land-surface is 980 ft above National Geodetic Vertical Datum of 1929. Measuring point: pointer on float gage, 4.00 ft above land-surface datum. PERIOD OF RECORD. -- March 1939 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 18.01 ft below land-surface datum, May 17, 1960; lowest water level measured, 23.26 ft below land-surface datum, Nov. 2, 1948. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### MARQUETTE COUNTY 435244089293401. Local number, MQ-16/08E/12-0009. LOCATION.--Lat 43°52'44", long 89°29'34", Hydrologic Unit 04030201. Owner: Village of Westfield. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 6 in, depth 274 ft. DATUM.--Altitude of land-surface is 880 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, at land-surface datum. PERIOD OF RECORD. -- October 1949 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.89 ft below land-surface datum, Oct. 24, 1986; lowest water level measured, 18.21 ft below land-surface datum, Feb. 18, 1965. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |---------------------------|-------------------------|-----------------|----------------|------------------|----------------|-------------|----------------|------------------|----------------|------------------|----------------| | OCT 22
NOV 12
DEC 3 | 14.87
14.95
14.96 | JAN 1
FEB 10 | 15.09
15.24 | APR 27
MAY 12 | 14.89
14.95 | JUN 1
15 | 15.19
15.41 | JUL 19
AUG 19 | 15.46
15.38 | AUG 26
SEP 26 | 15.37
15.26 | ### MARQUETTE COUNTY 433956089275601. Local number, MQ-14/09E/30-0026. LOCATION.--Lat 43°39'56", long 89°27'56", Hydrologic Unit 04030201. Owner: Leslie Mountford. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 6 in, depth 170 ft, cased to 145 ft, open end. DATUM.--Altitude of land-surface is 800 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4 in. hole in cap of casing, 0.75 ft above land-surface datum. PERIOD OF RECORD. -- May 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 12.80 ft below land-surface datum, Apr. 2, 1973; lowest water level measured, 19.22 ft below land-surface datum, Feb. 22, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------| | OCT 22 | 17.54 | DEC 3 | 16.73 | APR 27 | 15.39 | JUN 3 | 16.43 | JUL 19 | 17.96 | AUG 26 | 15.54 | | NOV 12 | 17.31 | FEB 10 | 16.77 | MAY 12 | 15.63 | 15 | 16.96 | AUG 19 | 18.52 | SEP 26 | 18.11 | #### MILWAUKEE COUNTY 425819087551201. Local number, ML-06/22E/20-0085. LOCATION.--Lat 42°58'19", long 87°55'12", Hydrologic Unit 04040003. Owner: City of Milwaukee. AQUIFER . -- Sandstone . WELL CHARACTERISTICS. -- Drilled unused artesian well, diameter 16 in, depth 1,834 ft, cased to 705 ft, open end. DATUM.--Altitude of land-surface is 705 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in cover on casing, 6.00 ft below land-surface datum. PERIOD OF RECORD. -- Water years 1938, 1944, 1946, 1950, 1952, 1961, 1973 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 110.00 ft below land-surface datum, 1938; lowest water level, 310.78 ft below land-surface datum, Sept. 29, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|--------|--------|--------|--------|--------|--------|------------------|--------|--------|--------|------------------|--------| | 5
10 | | | | | | | 296.53
296.84 | | | 300.53 | | | | 15 | 295.76 | 296.32 | 295.58 | 295.94 | 296.13 | 296.86 | 296.73 | 296.82 | | | 305.92
306.55 | | | 20
25 | | | | | | | 296.50
296.74 | | | | 306.55 | 310.43 | | EOM | 296.05 | 296.11 | 295.60 | 296.24 | 296.58 | 297.17 | 296.88 | 297.76 | 300.02 | 304.04 | 307.99 | | WTR YEAR 1988 MAX 310.78 SEP 29 MIN 294.90 OCT 1, 2 430412087545801. Local number, ML-07/22E/17-0120. LOCATION.--Lat 43°04'12", long 87°54'58", Hydrologic Unit 04040003. Owner: Nunn-Bush Shoe Co. AQUIFER. -- Silurian dolomite. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in, depth 400 ft, cased to 215 ft, open end. DATUM.--Altitude of land-surface is 685 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of concrete, 8.75 ft below land-surface datum. REMARKS. -- Water level affected by pumping of nearby wells. WTR YEAR 1988 MAX 105.88 SEP 30 PERIOD OF RECORD. -- April 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 54.67 ft below land-surface datum, Mar. 19, 1986; lowest water level, 107.95 ft below land-surface datum, Feb. 28, 1964. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | LOWEST | VALITE | |--------|--------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|----------------------------------|--|-------------------------|----------------------------------|-------------------------|--|--------------------------------------|-----|--------------------------------------|--| | 5
10
15
20
25
EOM | 61.05
61.43
61.18
61.04
61.39
61.29 | 61.27
62.49
63.60
65.57
67.44
67.83 | 69.13
69.46
70.38
71.52 | 74.62
75.12
75.64
75.86
77.13
79.36 | 81.04
84.43
84.73 | 85.83
85.72
87.96
90.14 | 96.29
96.89
97.61 | 97.98
98.11
98.19
98.59
99.15
99.49 | 100.20
100.22
100.30
100.56 | | 102.29
102.90
102.98
102.99 | 103.53
104.04
104.62
104.87
105.20
105.88 | MIN 60.72 OCT 6 #### MILWAUKEE COUNTY 425613088014301. Local number, ML-06/21E/32-0148. LOCATION.--Lat 42°56'13", long 88°01'43", Hydrologic Unit 04040002. Owner: Milwaukee County. AQUIFER. -- Silurian dolomite WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 5 in, depth 180 ft, cased to 43 ft, open end. DATUM.--Altitude of land-surface is 774 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of 1/4-inch pipe, at land-surface datum. PERIOD OF RECORD. -- September 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 25.44 ft below land-surface datum, May 3, 1951; lowest water level measured, 40.03 ft below land-surface datum, Aug. 13, 1971. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 # MONROE COUNTY 434342090495601. Local number, MO-15/04W/34-0002. LOCATION.--Lat 43°43'42", long 90°49'56", Hydrologic Unit 07060001. Owner: Joseph Anderson. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 5 in, depth 44 ft. DATUM.--Altitude of land-surface is 1,100 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 0.50 ft above land-surface datum. REMARKS.--No measurements made in 1981-82 water year. PERIOD OF RECORD. -- July 1934 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.66 ft below land-surface datum, Mar. 19, 1986; lowest water level measured, 18.23 ft below land-surface datum, Mar. 27, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | LOWEST VALUE | | | | | | | | | | | | | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 5
10
15
20
25
EOM | 7.10
7.19
7.19
7.21
7.25
7.30 | 7.31
7.34
7.33
7.29
7.32
7.02 | 7.20
7.23
7.29
7.31
7.38
7.31 | 7.45
7.23
7.12
7.15
7.19
7.12 | 7.20
7.25
7.23
7.27
7.30
7.31 | 7.20
6.39
6.85
7.01
6.79
6.75 | 6.85
6.94
6.97
7.00
7.03
7.03 | 7.03
6.70
6.87
7.00
7.11
7.16 | 7.20
7.28
7.30
7.34
7.39
7.39 | 7.44
7.45
7.46
7.48
7.45
7.50 | 7.55
7.51
7.55
7.53
7.48
7.56 | 7.56
7.63
7.64
7.31
7.05
7.27 | | WTR | YEAR 19 | 88 MAX | 7.64 | SEP 18 | MIN | 6.27 | MAR 12 | | | | | | #### MONROE COUNTY 440026090390101. Local number, MO-18/02W/29-0017. LOCATION.--Lat 44°00'26", long 90°39'01", Hydrologic Unit 07040006. Owner: U.S. Army. 8.25 SEP 20 AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 9 in, depth 192 ft, cased to 109 ft, open end. DATUM.--Altitude of land-surface is 909 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above
land-surface datum. PERIOD OF RECORD. -- November 1949 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 0.43 ft below land-surface datum, May 8, 1973; lowest water level, 8.25 ft below land-surface datum, Sept. 20, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|------------------------------|--|--|------|--------------|-----|------------------------------|--|--|--|--|--| | 5
10
15
20
25
EOM | 7.69
7.73
7.77
7.84 | 7.88
7.90
7.92
7.93
7.94
7.91 | 7.71
7.58
7.51
7.47
7.45
7.46 | 7.61 | 7.85
7.83 | | 6.75
6.80
6.66
6.75 | 6.82
6.78
6.73
6.71
6.75
6.88 | 7.00
7.14
7.25
7.34
7.43
7.49 | 7.56
7.61
7.62
7.68
7.75
7.84 | 7.90
7.96
8.02
8.04
8.06
8.10 | 8.13
8.16
8.20
8.25
7.51
7.23 | 6.66 APR 25 #### OCONTO COUNTY 445054088025201. Local number, OC-27/20E/03-0020. LOCATION.--Lat 44°50'54", long 88°02'52", Hydrologic Unit 04030104. Owner: Wis. Dept. of Transportation. MIN AQUIFER. -- Prairie du Chien. WTR YEAR 1988 MAX WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 6 in, depth 100 ft, cased to 88 ft, open end. DATUM.--Altitude of land-surface is 640 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole in pump base, 2.00 ft above land-surface datum. PERIOD OF RECORD. -- February 1968 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.07 ft below land-surface datum, June 20, 1969; lowest water level measured, 13.52 ft below land-surface datum, Aug. 27, 1981. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-----------------------|-------------------------|------------------|----------------|--------------|----------------|--------------|----------------|------------------|----------------|------------------|----------------| | OCT 8
13
NOV 11 | 10.73
10.64
10.40 | DEC 22
JAN 13 | 10.15
10.26 | APR 14
30 | 9.79
9.88 | MAY 24
25 | 10.19
10.22 | JUN 16
JUL 13 | 10.59
10.61 | AUG 26
SEP 27 | 10.64
10.77 | ### ONEIDA COUNTY 455213089323501. Local number, ON-39/08E/18-0022. LOCATION.--Lat 45°52'13", long 89°32'35", Hydrologic Unit 07070001. Owner: Wisconsin Valley Improvement Co. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Jetted unused water-table well, diameter 6 in, depth 27 ft, cased to 27 ft, open end. DATUM.--Altitude of land-surface is 1,607 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 6.00 ft above land-surface datum. PERIOD OF RECORD. -- October 1944 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 12.29 ft below land-surface datum, May 28, 1973; lowest water level, 19.29 ft below land-surface datum, Apr. 9, 1949. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ## LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|---|--|--|--|--|--|--|--|---|---| | 5
10
15
20
25
EOM | 17.37
17.41
17.43
17.40
17.42
17.45 | 17.45
17.48
17.49
17.48
17.49
17.45 | 17.45
17.44
17.46
17.45
17.49 | 17.54
17.55
17.57
17.60
17.65
17.69 | 17.71
17.75
17.78
17.81
17.85
17.88 | 17.92
17.96
18.00
18.05
18.07
18.13 | 18.12
18.08
18.01
17.94
17.85
17.75 | 17.70
17.64
17.58
17.56
17.51
17.48 | 17.47
17.49
17.50
17.54
17.58
17.63 | 17.69
17.72
17.72
17.75
17.79
17.84 | 17.84
17.86
17.89
17.90
17.91 | 17.95
17.95
17.98
17.95
17.95 | WTR YEAR 1988 MAX 17.98 SEP 16 MIN 17.35 OCT 2 ### ONEIDA COUNTY 454026089425301. Local number, ON-37/06E/27-0023. LOCATION.--Lat 45°40'26", long 89°42'53", Hydrologic Unit 07070001. Owner: U.S. Geol. Survey. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Driven observation water-table well, diameter 1 1/4 in, depth 37 ft, cased to 35 ft, well point 35-37 ft. DATUM.--Altitude of land-surface is 1,529 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD .-- November 1944 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 26.35 ft below land-surface datum, July 22, 1973; lowest water level measured, 33.67 ft below land-surface datum, Apr. 15, 1965. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|--------|----------------|--------|----------------|------------|----------------| | OCT 7 | 29.51 | DEC 8 | 29.96 | FEB 8 | 30.30 | APR 10 | 30.42 | JUN 15 | 30.86 | AUG 8 | 31.20 | | 12 | 29.58 | 13 | 29.73 | 14 | 30.42 | 18 | 30.76 | 20 | 30.63 | 15 | 31.19 | | 21 | 29.63 | 20 | 29.94 | 21 | 30.40 | 25 | 30.66 | 27 | 30.78 | 22 | 31.05 | | 26 | 29.58 | 29 | 29.94 | 29 | 30.38 | MAY 2 | 30.79 | JUL '5 | 30.97 | 29 | 31.31 | | NOV 2 | 29.81 | JAN 2 | 30.10 | MAR 7 | 30.53 | 7 | 30.94 | 10 | 31.12 | SEP 6 | 31.34 | | 9 | 29.75 | 11 | 30.14 | 14 | 30.43 | 16 | 30.55 | 18 | 31.08 | 12 | 31.35 | | 14 | 29.78 | 19 | 30.17 | 21 | 30.38 | 23 | 30.62 | 26 | 31.14 | 19 | 31.20 | | 23 | 29.83 | 24 | 30.32 | 28 | 30.54 | 31 | 30.84 | AUG 1 | 31.11 | 2 6 | 31.15 | | 30 | 29.92 | 31 | 30.26 | APR 5 | 30.64 | JUN 6 | 30.90 | | | | | ### OUTAGAMIE COUNTY 441840088115001. Local number, OU-21/19E/04-0326. LOCATION.--Lat 44°18'40", long 88°11'50", Hydrologic Unit 04030204. Owner: Outagamie County, Rapid Croche. AQUIFER. -- Sandstone. WELL CHARACTERISTICS .-- Drilled domestic artesian well, diameter 6 in, depth 280 ft, cased to 82 ft. DATUM.--Altitude of land-surface is 660 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in. hole in pump base, 1.50 ft above land-surface datum. PERIOD OF RECORD. -- October 1969 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 46.10 ft below land-surface datum, Apr. 20, 1970; lowest water level measured, 83.59 ft below land-surface datum, Aug. 25, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-----------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------| | OCT 7
NOV 11 | 73.75
72.99 | DEC 21
JAN 13 | 69.98
69.08 | FEB 11
APR 15 | 69.02
68.46 | MAY 24
JUN 16 | 68.86
75.01 | JUL 12
AUG 25 | 80.56
83.59 | SEP 27 | 82.73 | ## POLK COUNTY 453013092314601. Local number, PK-35/17W/08-0040. LOCATION.--Lat 45°30'13", long 92°31'46", Hydrologic Unit 07030005. Owner: Village of Milltown. AQUIFER . -- Sand and gravel. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 5 in, depth 52 ft. DATUM.--Altitude of land-surface is 1,250 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in pump base, at land-surface datum. PERIOD OF RECORD. -- September 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.55 ft below land-surface datum, Jul 23, 1986; lowest water level measured, 41.38 ft below land-surface datum, July 22, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 15 | 34.70 | DEC 16 | 35.36 | FEB 25 | 36.16 | APR 7 | 36.41 | JUN 16 | 37.09 | AUG 11 | 37.31 | | NOV 11 | 34.98 | JAN 15 | 35.80 | MAR 15 | 36.17 | MAY 11 | 36.62 | JUL 22 | 37.34 | SEP 5 | 37.38 | ## POLK COUNTY 452352092332001. Local number, PK-34/18W/26-0093. LOCATION.--Lat 45°23'52", long 92°33'20", Hydrologic Unit 07030005. Owner: Wis. Dept. of Transportation. AQUIFER.--Sand and gravel. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in, depth 64 ft, cased to 60 ft, open end. DATUM.--Altitude of land-surface is 1,140 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in pump base, 2.00 ft above land-surface datum. PERIOD OF RECORD. -- March 10, 1966 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 23.72 ft below land-surface datum, June 20, 1973; lowest water level measured, 35.21 ft below land-surface datum, Sept. 28, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DAT | TF | WATER
LEVEL | DATE | WATER
LEVEL | |------------|---------------------|----------------------------------|-------------------------
----------------------------------|-------------------|----------------------------------|---------------------------------------|----------------------------------|-------------------|----------------------------------|---------------|-------------------------------| | OCT | 7
14 | 33.02
33.03 | DEC 10
16 | 33.80
33.90 | FEB 10
17 | 34.40
34.40 | APR 13
20 | 34.20
34.20 | JUN 15
22 | 34.50
34.60 | AUG 1 | 0 34.90
7 34.90 | | NOV | 20
28
4
12 | 33.40
33.40
33.05
33.60 | 21
30
JAN 5
15 | 33.90
34.00
34.10
34.10 | MAR 2
9
16 | 34.50
34.50
34.50
34.40 | 27
MAY 4
11
18 | 34.20
34.30
34.40
34.40 | JUL 7
11
20 | 34.60
34.70
34.70
34.80 | 2
3
SEP | 1 35.10
7 35.10
4 35.20 | | | 17
23
1 | 33.60
33.70
33.80 | 22
27
FEB 3 | 34.20
34.30
34.30 | 23
30
APR 6 | 34.40
34.30
34.20 | 25
JUN 1
8 | 34.40
34.40
34.50 | AUG 3 | 34.90
34.90 | 2 | 35.20
8 35.21 | | ACE | 20 | | | T | | T | | I | | | | | | SURFACE | 22 | - | | | | | | | | | | - | | AND | 24 | - | | | | | Λ | | | | | _ | | BELOW LAND | 26 | - | | | | | / | | | | | \dashv | | | 28 | - | | | | | // 1 | \wedge | $\sqrt{}$ | 1 | | \dashv | | FEET | 30 | - | | | \ | | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | \ | \\ | 7 | | - | | Z | 32 | _ | | | / | $\sqrt{}$ | ^' _^ | V/ | V | | | _ | | WATER, | 34 | - | | | \ | _/\ | V | | | // | | _ | | 10 | 36 | - | | | | | | | | \ | | \dashv | | DEPTH | 38 | _ | | | | | | | | | | 4 | | DE | 40
19 | 950 | 1955 | 1960 | 1965 | 1970 | 1975 | 198 | 0 19 | 85, | 1990 | 1995 | | | | PK-34/ | 18W/26-0 | 0093 | | | | YEA | RLY MAX- | -MIN W | ATER LEV | /EL | ### PORTAGE COUNTY 443127089174101. Local number, PT-24/10E/28-0015. LOCATION.--Lat 44°31'27", long 89°17'41", Hydrologic Unit 04030202. Owner: Lawrence Krogwold. AQUIFER . -- Sand and gravel. WELL CHARACTERISTICS.--Driven unused water-table well, diameter 2 in, depth 52 ft, cased to 50 ft, screened 50-52 ft. DATUM. --Altitude of land-surface is 1,133 ft above National Geodetic Vertical Datum of 1929. Measuring point: rim of casing, 1.50 ft above land-surface datum. PERIOD OF RECORD. -- August 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.50 ft below land-surface datum, Aug. 4, 1973; lowest water level measured, 38.81 ft below land-surface datum, Nov. 12, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------------------------------------|---|---------------------------------------|---|---------------------------------|----------------------------------|--------------------------------|----------------------------------|-----------------------------|----------------------------------|------------------------------|----------------------------------| | OCT 10
24
NOV 7
21
DEC 5 | 30.31
30.44
30.58
30.66
30.76 | DEC 19
JAN 2
16
30
FEB 13 | 30.84
30.93
31.02
31.13
31.20 | FEB 27
MAR 12
26
APR 9 | 31.32
31.42
31.48
31.53 | APR 23
MAY 7
21
JUN 4 | 31.58
31.62
31.67
31.72 | JUN 18
JUL 2
16
30 | 31.77
31.81
31.87
31.93 | AUG 13
27
SEP 10
24 | 31.99
32.06
32.10
32.17 | 442623089302701. Local number, PT-23/08E/25-0376. LOCATION.--Lat 44°26'23", long 89°30'27", Hydrologic Unit 07070003. Owner: U. S. Geol. Survey. AOUIFER. -- Sand and gravel. WATER PT-23/08E/25-0376 WELL CHARACTERISTICS.--Driven observation water table well, diameter 1 1/4 in, depth 36 ft, cased to 34 ft, well point 34-36 ft. DATUM. --Altitude of land-surface is 1,099 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 4.20 ft above land-surface datum. PERIOD OF RECORD. -- December 1, 1959, to current year. WATER EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.77 ft below land-surface datum, June 5, 1973; lowest water level measured, 15.12 ft below sand-surface datum. Sept. 2, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 DATE WATER DAME WATER TRVET WATER LEVEL. YEARLY MAX-MIN WATER LEVEL DATE WATER LEVEL DATE | DA' | ΓE | LEVEL | DATE | LEVEL | DATE | LEVEL | DATE | LEVEL | DATE | TEAET | DAI | | 112.4111 | |-------------|---------|----------------|------------------|----------------|--|----------------|----------|----------|--------------|-----------------------|------|-------|----------| | OCT | 9
22 | 13.22
13.34 | NOV 12
DEC 18 | 13.52
13.37 | JAN 19
MAY 13 | 13.65
13.02 | JUN 14 | 13.74 | JUN 24 | 14.06 | SEP | 2 | 15.12 | | A CE | 0 | | | <u> </u> | | 1 | | | | | 1 | | 7 | | SURFACE | 2 | - | | | | | | | | | | | | | AND | 4 | - | | | | | A | | | | | _ | | | BELOW LAND | 6 | - | | | | | \land | | | | | _ | | | | 8 | - | | | | ı | / \ | ٨ | _ | | | | - | | FEET | 10 | - | | ۸ - | \sim | $\sim $ | 1/2 | \wedge | | | | _ | - | | Z
Z | 12 | _ | | | | ~ | /\`\ | \ | \checkmark | $\setminus \setminus$ | | | 1 | | WATER, | 14 | - | | <u>\</u> | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | /, | | | | | 10 | 16 | <u> </u> | | | | | | | | | | _ | | | DEPTH | 18 | - | | | | | | | | | | ***** | 1 | | ä | 20 | | | | | | | | | | L | | | | | 19 | 950 | 1955 | 1960 | 1965 | 1970 | 1975 | 19 | 80 19 | 85 | 1990 | 19 | 95 | ## PRICE COUNTY 455448090263401. Local number, PR-40/01W/24-0006. LOCATION.--Lat 45°54'48", long 90°26'34", Hydrologic Unit 07050002. Owner: Wis. Dept. of Natural Resources. AQUIFER.--Sand and gravel. WELL CHARACTERISTICS. -- Jetted unused water-table well, diameter 8 in, depth 13 ft, cased to 13 ft. DATUM.--Altitude of land-surface is 1,510 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 5.00 ft above land-surface datum. PERIOD OF RECORD. -- March 1937 to current year. PR-40/01W/24-0006 EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.41 ft above land-surface datum, June 29, 1946; lowest water level measured, 5.67 ft below land-surface datum, Oct. 31, 1948. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | | WE | TER LEVEL, I | N LEET BEIT | W LAND-SUK | FACE DATU | 1, WATER I | EAR OCTOBE | K 198/ 10 | PELIFWREK | 1988 | | |-------------------------|----------------|------------------------|----------------|-------------------|-----------------------|-------------------|----------------------|-------------------|----------------------|-------------------|--| | DATE | WATER
LEVEL | | OCT 2 | 3.30 | DEC 11
18 | 2.90 | FEB 12
19 | 3.78
3.81 | APR 15 | 2.74
2.80
2.71 | JUN 10
17 | 3.50
4.06 | AUG 12 | 3.38
3.29 | | 16
23
30
NOV 6 | 2 9 9 4 | 25
JAN 1
8
15 | 3.15 | 26
MAR 4
11 | 3.78
3.75
3.02 | 29
MAY 6
13 | 2.58
2.80 | 24
30
JUL 8 | 4.25
4.06
4.57 | 26
31
SEP 2 | 3.38
3.29
3.30
3.45
3.55
3.55
3.60
3.20
3.48 | | 1.3 | 2.46 | 22 | 3.46 | 16
25
APR 1 | 3.14
2.60
2.60 | 20
27
31 | 2.96
3.15
3.39 | 15
22
29 | 4.77
4.52
4.40 | 9
16
23 | 3.55
3.60
3.20 | | 20
27
DEC 4 | 2.95
2.98 | 29
FEB 5 | 3.76 | 8 | 2.68 | JUN 4 | 3.53 | 29
AUG 5 | 3.55 | 30 | 3.48 | | CE | -2 | <u> </u> | | | | | | | 1 | | 7 | | BELOW LAND SURFACE | -1 | | | | | | | | | | 4 | | D SI | 0 | $\overline{}$ | \sim | | ~ | | | | | | | | LAN | | | / \ | \mathcal{N} | | | $1 \wedge$ | | 1 | | | | .0V | 1 - | \vee | / | V | | | | | | | 1 | | BEI | 2 | | | | | | | ^ | | | 4 | | IN FEET | 3 - | | \wedge | ٨ | | \wedge | | | | | 4 | | <u>к</u> | 1/ | \bigvee | | \ | $\setminus \setminus$ | | \wedge | / | | | | | | 4 | | / | \vee | V | \ | | | | | 7 | | DEPTH TO WATER. | 5 - | | | | | | \bigvee | | ` | | \dashv | | ≯
.0 | 6 - | | | | | | | | | | _ | | E | 7 | | | | | | | | | | | | DEP1 | | 1 | ı | 1 | 1 | 1 | ı | | ı | 1 | | | _ - | 1950 | 1955 | 1960 | 1965 | 1970 | 197 | 5 19 | 80 1 | 985 | 1990 | 1995 | YEARLY MAX-MIN WATER LEVEL #### RACINE COUNTY 424202087542301. Local number, RA-03/22E/21-0005. LOCATION.--Lat 42°42'02", long 87°54'23", Hydrologic Unit 04040002. Owner: Chicago, Milwaukee, St. Paul and Pacific Railroad Co. AOUIFER . -- Sandstone . WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 12 in, depth 1,176 ft, cased to 586 ft, 10 in liner 976-1.083 ft. DATUM.--Altitude of land-surface is 730 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land-surface datum. REMARKS.--Water level affected by regional pumping of wells. PERIOD OF RECORD .-- July 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 109.00 ft below land-surface datum, July 29, 1946; lowest water level measured, 285.53 ft below land-surface datum, Aug. 25, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DA | TE | WATER
LEVEL | DATE | WATER
LEVEL | |------------|------|------------------|------------------|------------------|------------------|------------------|------------------|--|---------------|----------------|--------|----------------| | NOV
DEC | 8 | 279.02
278.61 | JAN 27
FEB 28 | 279.29
278.90 | MAR 31
APR 28 | 279.11
279.52 | MAY 26
JUN 18 | 280.03
281.66 | JUL 21 | 285.15 | AUG 25 | 285.53 | | CE | 120 | \subseteq | | | | | | | | Ι | 1 | | | SURFACE | 1 40 | | | | | | | | | | | - | | LAND | 160 | · - | Ì | | | | | | | | | - | | BELOW L | 180 | - | | · | ~ \ | | | | | | • | | | | 200 | · - | | | | | | | | | | - | | FEET | 220
| · - | | | | | | | | | | _ | | Z. | 240 | <u> </u> | | | | | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | | | | WATER, | 260 | · - | | | | | | \ | | | - | _ | | 10 | 280 | - | | | | | | | | | | - | | DEPTH | 300 | - | | | | | | | | | | - | | ۵ | 320 | 950 | 1955 | 1960 | 1965 | 1970 | 197 | 5 19 | 80 1 9 | 85 15 | 990 1 | 995 | | | • | | 3/22E/21-0 | | , 303 | 1970 | 137 | | ARLY MAX | | | | ### RICHLAND COUNTY 431840090203201. Local number, RI-10/01E/26-0023. LOCATION.--Lat 43°18'40", long 90°20'32", Hydrologic Unit 07070005. Owner: Koch Tractor, Inc. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 6 in, depth 160 ft, cased to 135 ft, open end. DATUM.--Altitude of land-surface is 725 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of 1-in breather pipe, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- February 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 9.11 ft below land-surface datum, May 22, 1973; lowest water level measured, 15.70 ft below land-surface datum, Dec. 13, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |------------------|----------------|------------------|----------------|-------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 13
NOV 18 | 13.52
13.14 | JAN 12
FEB 15 | 12.43
12.75 | MAR 3 | 12.42 | MAY 16 | 13.24 | JUN 14 | 13.21 | JUL 25 | 13.45 | #### ROCK COUNTY 423956089022301. Local number, RO-02/12E/02-0003. LOCATION.--Lat 42°39'56", long 89°02'23", Hydrologic Unit 07090001. Owner: School for the Blind, Janesville. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in, depth 470 ft, cased to 113 ft, open end. DATUM.--Altitude of land-surface is 824 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole cap of casing, 1.50 ft above land-surface datum. PERIOD OF RECORD. -- July 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 49.27 ft below land-surface datum, Apr. 2 and 16, 1986; lowest water level measured, 59.51 ft below land-surface datum, June 16, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|-------|----------------|--------|----------------|--------|----------------|-------|----------------| | OCT 1 | 53.36 | NOV 27 | 51.90 | FEB 4 | 54.54 | MAR 31 | 51.99 | MAY 19 | 59.50 | AUG 4 | 57.53 | | 15 | 52.29 | DEC 3 | 51.58 | 11 | 56.91 | APR 7 | 51.44 | 26 | 59.26 | 11 | 56.26 | | 22 | 51.94 | 10 | 51.58 | 18 | 58.03 | 14 | 54.00 | JUN 2 | 59.50 | 18 | 54.67 | | 29 | 54.79 | 25 | 52.27 | MAR 3 | 52.79 | 21 | 57.18 | 9 | 59.50 | 25 | 54.05 | | NOV 5 | 52.70 | JAN 1 | 52.02 | 10 | 51.95 | 28 | 58.38 | 16 | 59.50 | SEP 8 | 55.98 | | 12 | 52.01 | 7 | 52.09 | 17 | 52.12 | MAY 12 | 59.30 | JUL 21 | 56.48 | 22 | 57.99 | | 19 | 51.90 | 14 | 51 85 | 24 | 51 50 | | | | | | | #### RUSK COUNTY 453107090420101. Local number, RU-35/03W/14-0089. LOCATION. -- Lat 45°31'07", long 90°42'01", Hydrologic Unit 07050004. Owner: Hawkins Cemetery. AQUIFER .-- Sand and gravel. WELL CHARACTERISTICS. -- Drilled public-supply water-table well, diameter 6 in, depth 25 ft. DATUM.--Altitude of land-surface is 1,380 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- April 1957 to current year. EXTREMES FOR PERIOD OF RECORD. --Highest water level measured, 7.38 ft below land-surface datum, Oct. 1, 1986; lowest water level measured, 23.50 ft below land-surface datum, Mar. 2, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------------------------|-------------------------|----------------------------|-------------------------|------------------|----------------|------------------|----------------|------------------|----------------|--------------|----------------| | OCT 9
NOV 6
DEC 1 | 15.84
15.47
14.34 | JAN 20
FEB 24
MAR 11 | 13.74
14.66
14.84 | APR 20
MAY 13 | 13.67
13.44 | JUN 16
JUL 13 | 14.10
14.98 | JUL 14
AUG 12 | 15.06
15.72 | SEP 15
20 | 16.78
16.28 | # ST. CROIX COUNTY 450812092223601. Local number, SC-31/16W/29-0094. LOCATION.--Lat 45°08'12", long 92°22'36", Hydrologic Unit 07030005. Owner: Cylon Methodist Church. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled domestic artesian well, diameter 4 in, depth 73 ft, cased to 63 ft, open end. DATUM.--Altitude of land-surface is 1,059 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.90 ft above land-surface datum. PERIOD OF RECORD. -- October 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 28.29 ft below land-surface datum, Sept. 24, 1973; lowest water level measured, 36.04 ft below land-surface datum, Sept. 13, 1961. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | | |-----------------|----------------|-----------------|----------------|-------|----------------|-------|----------------|-----------------|----------------|-------|----------------|--| | OCT 29
DEC 1 | 31.15
31.28 | JAN 10
FEB 3 | 31.39 | MAR 1 | 31.69 | MAY 2 | 31.78 | JUN 30
AUG 1 | 31.90
32.20 | SEP 6 | 32.15 | | #### SAUK COUNTY 432201089460101. Local number, SK-10/06E/03-0001. LOCATION.--Lat 43°22'01", long 89°46'01", Hydrologic Unit 07070005. Owner: Badger Army Ammunition Plant. AQUIFER. -- Sandstone. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 16 in, depth 426 ft, cased to 203 ft, open end. DATUM.--Altitude of land-surface is 865 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.43 ft above land-surface datum. REMARKS. -- Water level affected by pumping of nearby wells. PERIOD OF RECORD. -- March 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 58.45 ft below land-surface datum, May 20, 1953; lowest water level, 93.25 ft below land-surface datum, June 4, 1964. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 #### LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 5
10 | 64.16
65.06 | 64.70
64.86 | 64.85
64.45 | 66.68
66.77 | 66.85
66.83 | 65.70
65.34 | 64.79
65.48 | 64.76
64.74 | 66.92
67.47 | 66.28
65.85 | 66.00
66.25 | 66.11
66.50 | | 15 | 64.76 | 64.85 | 64.56 | 66.31 | 66.67 | 65.65 | 65.31 | 64.47 | 66.77 | 66.51 | 66.49 | 66.38 | | 20
25 | 64.35
64.56 | 64.91
64.84 | 64.80
65.06 | 65.63
65.95 | 66.09
65.97 | 65.55
65.04 | 64.56
64.54 | 65.25
65.58 | 66.82
66.14 | 66.05
66.11 | 66.22
66.16 | 65.89
65.96 | | EOM | 64.63 | 64.53 | 65.34 | 66.19 | 65.82 | 65.08 | 64.66 | 67.25 | 65.84 | 66.67 | 66.05 | 65.65 | WTR YEAR 1988 MAX 67.71 JUN 11 MIN 63.85 OCT 1 #### SHAWANO COUNTY 444203088214601. Local number, SH-26/18E/30-0001. LOCATION. --Lat 44042'03", long 88021'46", Hydrologic Unit 04030103. Owner: Wis. Dept. of Transportation. AQUIFER .-- Prairie du Chien. WELL CHARACTERISTICS. -- Drilled unused water-table well, diameter 6 in, depth 132 ft. DATUM.--Altitude of land-surface is 917 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of plastic pipe, 2.43 ft below land-surface datum. PERIOD OF RECORD. -- April 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 52.75 ft below land-surface datum, Oct. 15, 1986; lowest water level measured, 64.60 ft below land-surface datum, Jan. 11, 1956. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-----------------------|-------------------------|----------------------------|-------------------------|-----------------|----------------|------------------|----------------|-------------|----------------|------------------|----------------| | OCT 9
14
NOV 11 | 60.00
60.17
60.34 | DEC 28
JAN 13
FEB 10 | 59.15
59.10
59.40 | APR 14
MAY 9 | 56.96
57.32 | MAY 25
JUN 14 | 58.20
59.39 | JUL 7
12 | 60.15
60.05 | AUG 25
SEP 30 | 61.40
62.18 | ### TAYLOR COUNTY 450947090483901. Local number, TA-31/04W/13-0001. $\label{location.--Lat 45^009'47'', long 90^048'39'', Hydrologic Unit 07050005. Owner: Village of Gilman. \\$ AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Drilled unused water-table well, diameter 18 in, depth 26 ft, cased to 16 ft, screened 16-26 ft. DATUM.--Altitude of land-surface is 1,200 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.00 ft above land-surface datum. REMARKS. -- Water level affected by pumping of nearby wells. PERIOD OF RECORD. -- April 1957 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 3.93 ft below land-surface datum, Apr. 18, 1982; lowest water level, 13.11 ft below land-surface datum, Oct. 15, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--
--|--|--|---|--|--| | 5
10
15
20
25
EOM | 9.72
9.71
9.73
8.84
8.95
9.15 | 8.88
9.08
9.24
8.67
8.76
8.50 | 8.86
8.76
8.73
9.00
9.14
9.24 | 9.17
9.18
9.31
9.43
9.35
9.38 | 9.42
9.43
9.58
9.62
9.64
9.63 | 9.04
8.13
8.91
9.09
7.78
7.43 | 7.60
7.94
8.55
9.11
9.10
8.86 | 9.10
8.69
8.84
9.19
9.48
9.65 | 9.55
9.79
10.01
10.17
10.28
10.20 | 10.46
10.51
10.45
10.39
10.39 | 10.40
10.43
10.45
10.50
10.47
10.50 | 10.50
10.53
10.52
10.20
10.30
10.27 | WTR YEAR 1988 MAX 10.53 SEP 11 MIN 7.16 MAR 26 ## TAYLOR COUNTY 450830090215201. Local number, TA-31/01E/28-0006. LOCATION.--Lat 45°08'30", long 90°21'52", Hydrologic Unit 07040007. Owner: P. J. Ziehlke. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS. -- Dug domestic water table well, diameter 3.00 ft, depth 35 ft, open end. DATUM.--Altitude of land-surface is 1,460 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of curb, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- August 20, 1957, to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 15.10 ft below land-surface datum, Apr. 9, 1986; lowest water level measured, 27.10 ft below land-surface datum, Mar. 13, 1958. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 #### TAYLOR COUNTY 451919090172401. Local number, TA-33/02E/30-0009. LOCATION. -- Lat 45°19'19", long 90°17'24", Hydrologic Unit 07050005. Owner: Wis. Dept. of Transportation. AQUIFER . -- Sand and grave1. WELL CHARACTERISTICS. -- Drilled domestic water-table well, diameter 6 in, depth 160 ft, cased to 155 ft, open end. DATUM.--Altitude of land-surface is 1,591 ft above National Geodetic Vertical Datum of 1929. Measuring point: 1/4-in hole in pump base, 0.50 ft above land-surface datum. PERIOD OF RECORD. -- December 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 29.30 ft below land-surface datum, July 19, 1979; lowest water level measured, 35.35 ft below land-surface datum, June 2, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 15 | 33.10 | NOV 18 | 32.75 | JAN 28 | 32.77 | JUL 12 | 33.03 | JUL 13 | 33.06 | JUL 27 | 33.40 | #### TREMPEALEAU COUNTY 440422091182901. Local number, TR-19/08W/35-0001. LOCATION.--Lat 44°04'22", long 91°18'29", Hydrologic Unit 07040007. Owner: Mrs. William Davidson. AQUIFER. -- Sandstone. WELL CHARACTERISTICS .-- Drilled unused water-table well, diameter 6 in, depth 195 ft. DATUM.--Altitude of land-surface is 820 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- October 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 133.18 ft below land-surface datum, Jan. 13, 1955; lowest water level measured, 144.95 ft below land-surface datum, Oct. 27, 1966. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-----------------|------------------|------------------|------------------|------------------|----------------|--------|----------------|-------|----------------|--------|----------------| | NOV 18
DEC 7 | 139.07
138.58 | FEB 12
MAR 15 | 138.65
138.46 | APR 21
MAY 26 | | JUL 15 | 140.14 | AUG 5 | 140.46 | SEP 12 | 140.72 | 440414091270401. Local number, TR-19/09W/33-0009. LOCATION.--Lat 44°04'14", long 91°27'04", Hydrologic Unit 07040005. Owner: Village of Centerville. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Drilled public-supply water-table, diameter 6 in, depth 71 ft, cased to 66 ft, screened 66-71 ft. DATUM.--Altitude of land-surface is 740 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of breather pipe, at land-surface datum. REMARKS.--Water level affected by pumping of nearby wells. PERIOD OF RECORD. -- May 1953 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 44.29 ft below land-surface datum, Apr. 2, 1985; lowest water level measured, 57.11 ft below land-surface datum, Mar. 16, 1965. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | | |-----------------|----------------|------------------|----------------|-----------------|----------------|------------------|----------------|-----------------|----------------|--------|----------------|--| | OCT 15
NOV 9 | 44.69
44.26 | JAN 22
FEB 16 | 46.37
44.50 | MAR 10
APR 5 | 45.66
46.00 | MAY 20
JUN 13 | 47.39
48.27 | JUL 6
AUG 24 | 46.87
47.44 | SEP 13 | 47.58 | | ### VILAS COUNTY 455517089144001. Local number, VI-40/10E/28-0033. LOCATION. -- Lat 45°55'17", long 89°14'40", Hydrologic Unit 07070001. Owner: Trees for Tomorrow, Inc. AOUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Drilled observation water table well, diameter 6 in, depth 37 ft, cased to 37 ft. DATUM.--Altitude of land-surface is 1,640 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 0.75 ft above land-surface datum. PERIOD OF RECORD. -- December 1965 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 10.60 ft below land-surface datum, July 21, 1968; lowest water level measured, 14.92 ft below land-surface datum, Aug. 10, 1977. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | | |------------------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--| | OCT 12
NOV 22 | 13.46
13.50 | DEC 14 | 13.43 | FEB 19 | 13.60 | APR 13 | 13.29 | MAY 19 | 13.06 | JUN 14 | 13.33 | | #### WALWORTH COUNTY 423532088254601. Local number, WW-02/17E/36-0037. LOCATION.--Lat 42°35'32", long 88°25'46", Hydrologic Unit 07120006. Owner: Lake Geneva Water Works. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 10 in, depth 820 ft, cased to 10 in 0-214 ft, 8 in 214-227 ft, open end. DATUM.--Altitude of land-surface is 860 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.00 ft above land-surface datum. PERIOD OF RECORD. -- February 1962 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 129.48 ft below land-surface datum, Feb. 14, 1962; lowest water level measured, 211.10 ft below land-surface datum, Sept. 9, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |----------------------------|----------------------------|-------------|------------------|------------------|------------------|------------------|------------------|----------------|------------------|-----------------|------------------| | OCT 29
DEC 22
JAN 14 | 205.93
206.40
206.93 | FEB 4
12 | 206.81
206.94 | FEB 19
MAR 23 | 206.28
206.84 | APR 22
MAY 31 | 206.71
202.27 | JUN 8
JUL 6 | 207.60
210.35 | AUG 31
SEP 9 | 211.43
211.10 | ## WAUKESHA COUNTY 430049088131301. Local number, WK-06/19E/02-0014. LOCATION.--Lat 43°00'49", long 88°13'13", Hydrologic Unit 07120006. Owner: New Tribes Mission, Waukesha. AQUIFER. -- Sandstone. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 8 in, depth 1,300 ft. DATUM.--Altitude of land-surface is 875 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, at land-surface datum. REMARKS. -- Water level affected by pumping of nearby municipal wells. PERIOD OF RECORD. -- September 1946 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 249.86 ft below land-surface datum, July 6, 1947; lowest water level, 502.48 ft below land-surface datum, Sept. 3, 1988. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ## LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----------|--------|------------------|------------------|------------------|--------|--------|--------|------------------|-----|------------------|------------------|------------------| | 5
10 | | 468.60
470.49 | 471.79
472.41 | 466.08
465.42 | | | 462.51 | 469.11
468.09 | | 489.93 | 499.30 | 501.98 | | 15
20 | | | | 463.33
462.24 | | | 466.22 | 473.75 | | 493.60 | 496.97
501.31 | | | 25
EOM | 467.17 | 471.48 | | 463.47 | 468.66 | 463.40 | 467.79 | | | 493.37
496.80 | 502.07 | 500.43
500.60 | WTR YEAR 1988 MAX 502.48 SEP 8 MIN 459.03 MAR 18 #### WAUKESHA COUNTY 425535088131701. Local number, WK-05/19E/02-0031. LOCATION.--Lat 42°55'35", long 88°13'17", Hydrologic Unit 07120006. Owner: William M. Foss. AOUIFER, -- Silurian dolomite. WELL CHARACTERISTICS .-- Drilled unused artesian well, diameter 6 in, depth 508 ft, cased to 434 ft, open end. DATUM.--Altitude of land-surface is 962 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- May 1947 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 126.28 ft below land-surface datum, June 10, 1974; lowest water level, 138.14 ft below land-surface datum, Feb. 2, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT |
NOV | DEC | JAN | FEB | MAR | APR | YAM | JUN | JUL | AUG | SEP | |-----|--------|--------|--------|--------|--------|-----|-----|--------|--------|--------|--------|--------| | 5 | 131.34 | 131.63 | 131.76 | 131.46 | 130.97 | | | | 132.06 | 133.63 | 134.08 | 133.78 | | 10 | 131.50 | 131.70 | 131.58 | 131.31 | 130.84 | | | | 132.27 | 133.84 | 133.95 | 133.88 | | 15 | 131.42 | 131.66 | 131.55 | 131.40 | 130.73 | | | | 132.46 | 133.78 | 133.92 | 133.99 | | 20 | 131.57 | 131.75 | 131.52 | 131.20 | 130.78 | | | 131.29 | 132.65 | 133.50 | 134.03 | 133.87 | | 25 | 131.65 | 131.76 | 131.53 | 131.19 | | | | 131.52 | 132.83 | 133.52 | 133.64 | 133.89 | | | 131.59 | | | | | | | 131.81 | 132.79 | 134.08 | 133.81 | 133.91 | WTR YEAR 1988 MAX 134.08 JUL 31, AUG 5 MIN 130.58 FEB 20 ### WAUPACA COUNTY 441545088522901. Local number, WP-21/13E/25-0002. LOCATION.--Lat 44°15'45", long 88°52'29", Hydrologic Unit 04030202. Owner: Village of Fremont. AQUIFER. -- Sandstone. WELL CHARACTERISTICS.--Drilled unused artesian well, diameter 8 in, depth 205 ft, cased to 109 ft, open end. DATUM.--Altitude of land-surface is 764 ft above National Geodetic Vertical Datum of 1929. Measuring point: hole in cap, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- August 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 8.65 ft below land-surface datum, Apr. 7, 1979; lowest water level measured, 15.91 ft below land-surface datum, Feb. 23, 1954. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|-------|----------------|-------|----------------|-------|----------------|----------|----------------|--------|----------------| | | | | | | | 0 | 10.00 | ***** 14 | 14 00 | 4370 6 | 1/ 00 | | OCT 3 | 14.36 | DEC 5 | 14.01 | FEB 6 | 14.55 | APR 9 | 13.33 | JUN 11 | 14.23 | AUG 6 | 14.83 | | 10 | 14.44 | 12 | 13.99 | 13 | 14.61 | 16 | 13.20 | 18 | 14.44 | 13 | 14.91 | | 17 | 14.42 | 19 | 14.01 | 22 | 14.63 | 23 | 13.34 | 24 | 14.58 | 20 | 14.73 | | 24 | 14.36 | 26 | 14.04 | 27 | 14.66 | 30 | 13.37 | JUL 2 | 14.74 | 27 | 14.80 | | 31 | 14.26 | JAN 2 | 14.20 | MAR 5 | 14.68 | MAY 7 | 13.41 | 9 | 14.93 | SEP 3 | 14.76 | | NOV 7 | 14.22 | 9 | 14.41 | 12 | 14.18 | 14 | 13.57 | 16 | 14.81 | 10 | 14.74 | | 14 | 14.29 | 16 | 14.52 | 19 | 13.90 | 20 | 13.80 | 23 | 14.69 | 17 | 14.78 | | 21 | 14.25 | 23 | 14.48 | 26 | 13.88 | 28 | 13.88 | 30 | 14.75 | 24 | 14.56 | | 28 | 13.97 | 30 | 14.51 | APR 2 | 13.81 | JUN 4 | 13.94 | | | | | ## WAUSHARA COUNTY 440713089320801. Local number, WS-19/08E/15-0008. LOCATION.--Lat 44⁰07'13", long 89⁰32'08", Hydrologic Unit 07070003. Owner: University of Wisconsin Experiment Farm, Hancock. AQUIFER. -- Sand and gravel. DATUM.--Altitude of land-surface is 1,080 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- May 1951 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level, 5.88 ft below land-surface datum, July 5, 1973; lowest water level, 15.71 ft below land-surface datum, June 10, 1959. WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | T OUTGOM | 37 A T 1117 | |----------|-------------| | LOWEST | VALUE | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |-----|------|------|-------|-------|-------|-------|------|------|-------|-------|-------|-------| | 5 | 9.45 | 9.76 | 10.04 | 10.01 | 10.16 | 10.37 | 9.94 | 9.61 | 10.00 | 10.89 | 11.14 | 11.53 | | 10 | 9.53 | 9.84 | 10.00 | 10.02 | 10.19 | 10.20 | 9.87 | 9.61 | 10.17 | 11.06 | 11.27 | 11.48 | | 15 | 9.55 | 9.90 | 10.02 | 10.03 | 10.23 | 10.04 | 9.80 | 9.65 | 10.26 | 11.09 | 11.39 | 11.51 | | 20 | 9.58 | 9.95 | 9.97 | 10.04 | 10.26 | 10.04 | 9.69 | 9.80 | 10.42 | 10.67 | 11.40 | 11.53 | | 25 | 9.62 | 9.98 | 9.99 | 10.09 | 10.31 | 10.02 | 9.65 | 9.82 | 10.55 | 10.83 | 11.47 | 11.30 | | EOM | 9.73 | 9.99 | 9.97 | 10.12 | 10.33 | 10.01 | 9.62 | 9.95 | 10.72 | 11.14 | 11.46 | 11.18 | WTR YEAR 1988 MAX 11.61 SEP 4 MIN 9.42 OCT 1, 2. #### WAUSHARA COUNTY 441414089091101. Local number, WS-20/11E/02-0053. $\label{location.--Lat 44014'14'', long 89009'11'', Hydrologic Unit 04030202. Owner: Merle Knox. \\$ AQUIFER . - - Sand and gravel. WELL CHARACTERISTICS.--Drilled domestic water-table well, diameter 6 in, depth 177 ft, cased to 172 ft, screened 172-177 ft. DATUM.--Altitude of land-surface is 923 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 1.00 ft above land-surface datum. PERIOD OF RECORD. -- February 1956 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 32.78 ft below land-surface datum, Oct. 18, 1986; lowest water level measured, 40.41 ft below land-surface datum, Mar. 4, 1959. ### WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | OCT 15 | 34.55 | DEC 15 | 34.75 | FEB 17 | 34.98 | APR 17 | 34.62 | JUN 19 | 35.50 | AUG 22 | 35.80 | | NOV 17 | 34.64 | JAN 18 | 34.89 | MAR 12 | 35.00 | MAY 15 | 34.56 | JUL 16 | 35.45 | SEP 20 | 36.00 | #### WINNEBAGO COUNTY 440122088324601. Local number, WI-18/16E/23-0006. LOCATION.--Lat 44°01'22", long 88°32'46", Hydrologic Unit 04030201. Owner: City of Oshkosh. AOUIFER. -- Sandstone. WEIL CHARACTERISTICS .-- Drilled unused artesian well, diameter 8 in, depth 200 ft. DATUM.--Altitude of land-surface is 765 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of 1 in pipe, at land-surface datum. REMARKS. -- Water level affected by pumping of nearby wells. PERIOD OF RECORD. -- August 1950 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 17.20 ft below land-surface datum, Apr. 26, 1979; lowest water level measured, 39.75 ft below land-surface datum, Sept. 1, 1960. # WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | WATER
LEVEL | |-------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------| | NOV 2 | 21.12 | DEC 29 | 19.88 | FEB 26 | 20.38 | APR 29 | 18.64 | JUN 30 | 22.52 | AUG 31 | 22.44 | | 25 | 20.60 | JAN 29 | 20.20 | MAR 30 | 19.78 | JUN 6 | 21.76 | AUG 2 | 24.75 | SEP 28 | 21.56 | # WOOD COUNTY 444106090085801. Local number, WD-25/03E/04-0528. LOCATION.--Lat 44°41'06", long 90°08'58", Hydrologic Unit 07070002. Owner: U.S. Geological Survey. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Drilled observation water-table well, diameter 3 in, depth 44 ft, cased to 30 ft, screened 30-44 ft. DATUM.--Altitude of land-surface is 1,180 ft above National Geodetic Vertical Datum of 1929. Measuring point: top of casing, 2.00 ft above land-surface datum. PERIOD OF RECORD. -- August 1986 to current year. EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 20.72 ft below land-surface datum, Oct. 26, 1987; lowest water level measured, 27.23 ft below land-surface datum, June 23, 1988. ## WATER LEVEL, IN FEET BELOW LAND-SURFACE DATUM, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 ### LOWEST VALUE | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|----------------------------------|-----|-----|-----|-----|-----|-----|-----|---| | 5
10
15
20
25
EOM | 20.91
20.93
20.83
20.78
20.83
20.80 | 20.86
20.98
21.09
21.30
21.51
21.64 | 21.80
21.69
22.16
22.43
22.67
23.05 | 23.31
23.57
23.80
23.87 | | | | | | | | 25.08
25.08
25.07
25.07
25.05 | WTR YEAR 1988 MAX 25.08 SEP 15 MIN 20.72 OCT 26 # QUALITY OF GROUND WATER # WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 GEOLOGICAL UNIT.--110QRNR, rocks of the Quaternary System of the Cenzoic Erathem. | STATION NUMBE | LOCAL
IDENT-
I-
ER FIER | GEO-
LOGIC
UNIT | DATE | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PHOS-
PHOROUS
DIS-
SOLVED
(MG/L
AS P)
(00666) | |---|---|---|--|--|--|---| | | | POLK COUNTY | | | | | | 452716092254701
452749092280101
452752092241101
452800092231601
452805092270701 | PK-34/17W/02-0161
PK-34/17W/03-0159
PK-34/16W/06-0163
PK-34/16W/06-0164
PK-34/17W/03-0160 | 110QRNR
110QRNR
110QRNR
110QRNR
110QRNR | 03-08-88
03-08-88
03-08-88
03-08-88
03-08-88 | 6.30
6.10
5.10
5.50
5.40 | 370
410
410
223
320 | <0.002
0.013
0.045
0.006
0.014 | | 452806092252001
452826092235801
452828092263901
452845092262301
452856092270101 | PK-34/17W/01-0158
PK-35/16W/31-0162
PK-35/17W/35-0157
PK-35/17W/35-0156
PK-35/17W/34-0155 | 110QRNR
110QRNR
110QRNR
110QRNR
110QRNR | 03-08-88
03-08-88
03-08-88
03-08-88
03-08-88 | 5.00
3.90
6.60
6.10
3.70 | 229
279
310
250
295 | 0.008
0.020
0.006
0.005
0.035 | | 452918092273001
452918092273002
452922092273801 |
PK-35/17W/27-0001
PK-35/17W/27-0002
PK-35/17W/27-0154 | | 03-07-88
03-07-88
03-07-88 | 4.60 | 310
218
290 | 0.006
0.044
0.003 | Figure 7. Location of acid-deposition sites in Wisconsin. Figure 8. Location of data-collection sites at acid-depositon sites in Wisconsin. Lake stages, precipitation quantity, ground-water levels, and water quality for acid deposition investigations in northern Wisconsin. ## STAGE RECORDS ## 454622088324801 MORGAN LAKE NEAR FENCE, WI LOCATION.--Lat 45°46'22", long 88°32'48", in NE 1/4 NW 1/4 SW 1/4 sec.18, T.38 N., R.16 E., Florence County, Hydrologic Unit 04030108, at southwest end of lake on dirt road off Forest Service Road 2161, 6 mi west northwest of Fence. DRAINAGE AREA. -- Not determined. Area of lake, 44 acres. PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder. Datum of gage is approximately 1,400.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Daily stages estimated: Oct. 3-6, 15-19, 22, and 25, Nov. 1-17, 1987; and Aug. 12 to Sept. 7, 1988. Records good. Lake does not have surface inlet or outlet. EXTREMES FOR CURRENT YEAR.--Maximum observed gage height, 65.17 ft, Apr. 7-9, 11-13; minimum observed gage height, 64.06 ft, Aug. 26-Sept. 2. | | | | GAGE 1 | EIGHT, FI | | YEAR OCT | TOBER 1987
UES | TO SEPTI | EMBER 1988 | 3 | | | |-------|---------|---------|---------|-----------|---------|----------|-------------------|----------|------------|---------|---------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 64.82 | 64.80 | 64.95 | 65.02 | 65.02 | 64.92 | 65.07 | 65.10 | 64.79 | 64.36 | 64.12 | 64.06 | | 2 | 64.82 | 64.80 | 64.95 | 65.02 | 65.02 | 64.92 | 65.07 | 65.09 | 64.78 | 64.35 | 64.11 | 64.06 | | 3 | 64.81 | 64.81 | 64.95 | 65.01 | 65.02 | 64.92 | 65.09 | 65.08 | 64.77 | 64.34 | 64.10 | 64.10 | | 4 | 64.80 | 64.83 | 64.94 | 65.00 | 65.02 | 64.92 | 65.11 | 65.06 | 64.76 | 64.33 | 64.14 | 64.14 | | 5 | 64.79 | 64.83 | 64.94 | 65.00 | 65.01 | 64.92 | 65.12 | 65.05 | 64.74 | 64.31 | 64.18 | 64.13 | | 6 | 64.78 | 64.82 | 64.94 | 65.00 | 65.00 | 64.91 | 65.16 | 65.01 | 64.73 | 64.30 | 64.17 | 64.12 | | 7 | 64.78 | 64.82 | 64.94 | 65.00 | 65.00 | 64.90 | 65.17 | 65.00 | 64.72 | 64.29 | 64.16 | 64.11 | | 8 | 64.78 | 64.82 | 64.94 | 64.99 | 65.00 | 64.91 | 65.17 | 64.99 | 64.69 | 64.26 | 64.13 | 64.11 | | 9 | 64.78 | 64.81 | 64.94 | 64.99 | 65.00 | 64.92 | 65.17 | 65.00 | 64.67 | 64.26 | 64.13 | 64.10 | | 10 | 64.78 | 64.81 | 64.95 | 64.98 | 65.00 | 64.92 | 65.16 | 65.00 | 64.65 | 64.26 | 64.11 | 64.08 | | 11 | 64.78 | 64.81 | 64.95 | 64.97 | 65.00 | 64.92 | 65.17 | 64.99 | 64.63 | 64.25 | 64.10 | 64.07 | | 12 | 64.78 | 64.81 | 64.96 | 64.97 | 65.00 | 64.92 | 65.17 | 64.99 | 64.61 | 64.24 | 64.08 | 64.09 | | 13 | 64.78 | 64.80 | 64.97 | 64.97 | 65.00 | 64.94 | 65.17 | 64.99 | 64.59 | 64.23 | 64.12 | 64.10 | | 14 | 64.78 | 64.80 | 64.97 | 64.97 | 65.00 | 64.94 | 65.15 | 64.98 | 64.58 | 64.21 | 64.14 | 64.08 | | 15 | 64.79 | 64.80 | 64.98 | 64.97 | 64.97 | 64.94 | 65.14 | 64.97 | 64.55 | 64.24 | 64.12 | 64.07 | | 16 | 64.81 | 64.80 | 64.99 | 64.97 | 64.98 | 64.95 | 65.14 | 64.95 | 64.53 | 64.28 | 64.10 | 64.08 | | 17 | 64.81 | 64.85 | 64.99 | 64.98 | 64.97 | 64.95 | 65.13 | 64.94 | 64.52 | 64.28 | 64.13 | 64.10 | | 18 | 64.81 | 64.91 | 64.99 | 64.98 | 64.97 | 64.94 | 65.11 | 64.94 | 64.51 | 64.29 | 64.16 | 64.09 | | 19 | 64.81 | 64.91 | 65.00 | 64.98 | 64.97 | 64.94 | 65.11 | 64.93 | 64.51 | 64.26 | 64.14 | 64.12 | | 20 | 64.81 | 64.89 | 65.02 | 65.02 | 64.95 | 64.94 | 65.09 | 64.91 | 64.50 | 64.25 | 64.13 | 64.13 | | 21 | 64.81 | 64.90 | 65.03 | 65.03 | 64.95 | 64.94 | 65.09 | 64.91 | 64.49 | 64.27 | 64.11 | 64.12 | | 22 | 64.82 | 64.90 | 65.03 | 65.03 | 64.95 | 64.94 | 65.08 | 64.92 | 64.49 | 64.26 | 64.10 | 64.14 | | 23 | 64.82 | 64.90 | 65.03 | 65.03 | 64.94 | 64.93 | 65.10 | 64.92 | 64.46 | 64.24 | 64.10 | 64.13 | | 24 | 64.82 | 64.91 | 65.03 | 65.03 | 64.94 | 64.94 | 65.10 | 64.88 | 64.44 | 64.23 | 64.08 | 64.12 | | 25 | 64.80 | 64.91 | 65.03 | 65.03 | 64.94 | 65.02 | 65.10 | 64.87 | 64.43 | 64.22 | 64.07 | 64.11 | | 26 | 64.80 | 64.91 | 65.03 | 65.03 | 64.94 | 65.03 | 65.10 | 64.85 | 64.40 | 64.20 | 64.06 | 64.11 | | 27 | 64.80 | 64.91 | 65.03 | 65.03 | 64.93 | 65.02 | 65.11 | 64.84 | 64.38 | 64.18 | 64.06 | 64.10 | | 28 | 64.80 | 64.91 | 65.03 | 65.03 | 64.93 | 65.02 | 65.11 | 64.83 | 64.39 | 64.18 | 64.06 | 64.09 | | 29 | 64.80 | 64.92 | 65.02 | 65.03 | 64.92 | 65.05 | 65.11 | 64.83 | 64.40 | 64.16 | 64.06 | 64.08 | | 30 | 64.80 | 64.94 | 65.02 | 65.03 | | 65.06 | 65.10 | 64.81 | 64.39 | 64.14 | 64.06 | 64.08 | | 31 | 64.80 | | 65.02 | 65.03 | | 65.06 | | 64.80 | | 64.12 | 64.06 | | | TOTAL | 2008.77 | 1945.64 | 2014.56 | 2015.12 | 1884.34 | 2013.55 | 1953.67 | 2013.43 | 1937.10 | 1991.79 | 1987.39 | 1923.02 | | MEAN | 64.80 | 64.85 | 64.99 | 65.00 | 64.98 | 64.95 | 65.12 | 64.95 | 64.57 | 64.25 | 64.11 | 64.10 | | MAX | 64.82 | 64.94 | 65.03 | 65.03 | 65.02 | 65.06 | 65.17 | 65.10 | 64.79 | 64.36 | 64.18 | 64.14 | | MIN | 64.78 | 64.80 | 64.94 | 64.97 | 64.92 | 64.90 | 65.07 | 64.80 | 64.38 | 64.12 | 64.06 | 64.06 | | | | 000 | , | | 07.72 | 07.70 | 03.37 | 050 | 550 | | | -,,,,,, | WTR YR 1988 TOTAL 23688.38 MEAN 64.72 MAX 65.17 MIN 64.06 # PRECIPITATION QUANTITY ## 454526088334001 MORGAN LAKE RAIN GAGE NEAR FENCE, WI LOCATION.--Lat 45°45'26", long 88°33'40", in NW 1/4 NW 1/4 SE 1/4 sec.24, T.38 N., R.15 E., Florence County, Hydrologic Unit 04030108, at end of dirt road off Forest Service Road 2159, 6 mi west northwest of Fence. PERIOD OF RECORD. -- October 1987 to September 1988. GAGE. -- Water-stage recorder. REMARKS .-- Records good. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 1.55 in., Sept. 3. | | | RAIN | FALL ACCU | MULATED | (INCHES), | WATER YEAR
SUM VALUES | OCTOBER | 1987 TO | SEPTEMBER | 1988 | | | |-----------|------|------|-----------|---------|-----------|--------------------------|---------|--------------|-----------|--------------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .34 | . 05 | | | | | | | .02 | .00 | .00 | .00 | | $\bar{2}$ | .03 | .02 | | | | | | | .02 | .00 | . 03 | .00 | | 3 | .00 | .52 | | | | | | | .02 | . 00 | . 14 | 1.55 | | 4 | .00 | .05 | | | | | | | .00 | .00 | . 88 | . 07 | | 5 | . 22 | .02 | | | | | | | .00 | .00 | . 56 | .03 | | 6 | . 25 | .00 | | | | | | | .00 | .00 | .00 | .00 | | 7 | .00 | .00 | | | | | | .00 | .00 | .00 | .00 | .03 | | 8 | .02 | .00 | | | | | | . 27 | .12 | .20 | . 07 | .00 | | 9 | .00 | .00 | | | | | | .00 | .00 | . 22 | .00 | .00 | | 10 | .00 | .00 | | | | | | .02 | .00 | .00 | .02 | .00 | | 11 | .00 | .00 | | | | | | .02 | .00 | . 02 | .00 | .00 | | 12 | .00 | .00 | | | | | | .00 | .00 | .00 | .07 | .39 | | 13 | .00 | .00 | | | | | | .00 | .00 | .10 | 1.05 | | | 14 | .00 | .00 | | | | | | .03 | .00 | .00 | .00 | | | 15 | .51 | .00 | | | | | | .00 | .00 | 1.27 | .00 | | | 16 | . 15 | . 37 | | | | | | .00 | .07 | .03 | .02 | | | 17 | . 24 | . 95 | | | | | | .02 | .00 | .00 | 1.23 | | | 18 | .00 | | | | | | | .00 | .00 | .00 | .00 | | | 19 | .00 | | | | | | | . 0 0 | .42 | .00 | .00 | | | 20 | .03 | | | | | | | .00 | .00 | . 44 | .00 | | | 21 | .08 | | | | | | | .00 | .02 | .10 | .00 | | | 22 | . 24 | | | | | | | . 0 0 | . 08 | . 00 | . 17 | | | 23 | .02 | | | | | | | .02 | .00 | .00 | .08 | | | 24 | .02 | | | | | | | .00 | .00 | .02 | .00 | | | 25 | .00 | | | | | | | .02 | .00 | .00 | .00 | | | 26 | . 22 | | | | | | | .00 | .00 | . 0 0 | .00 | | | 27 | .02 | | | | ~ | | | .00 | .00 | .00 | . 27 | | | 28 | .00 | | | | | | | .00 | .66 | .00 | .00 | | | 29 | .00 | | | | | | | .00 | .02 | . 15 | . 12 | | | 30 | .00 | | | | | | | .00 | .00 | .08 | .00 | | | 31 | .00 | | | | | | | .00 | | .03 | .00 | | | TOTAL | 2.39 | | | | | | | | 1.45 | 2.66 | 4.71 | | ## GROUND-WATER LEVELS ### 454622088324802 WELL FL-38/15E/18-0093 LOCATION.--Lat 45°46'22", long 88°32'48", in NE 1/4 NW 1/4 SW 1/4 sec.18, T.38 N., R.16 E., Florence County, Hydrologic Unit 04030108, at southwest end of Morgan Lake, 6 mi west northwest of Fence. AQUIFER .-- Sand and gravel. $\label{thm:well characteristics.--Augered water-table observation well, diameter 3 in. \\$ PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder. Datum of gage is approximately 1,400.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Daily stages estimated: Nov. 17, 1987; Jan. 9-17, Feb. 9-15, and Sept. 11-22, 1988. Records good. EXTREMES FOR CURRENT YEAR.--Maximum observed water level, 63.77 ft, Apr. 6; minimum observed water level, 62.49 ft, Sept. 29-30. | | | | GAGE H | EIGHT, FE | | YEAR OCT | OBER 1987
JES | TO SEPTE | MBER 1988 | | | | |----------------------------------|---|---|---|---|---|--|---|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 63.24 | 63.17 | 63.25 | 63.17 | 63.11 | 63.02 | 63.30 | 63.49 | 63.41 | 63.00 | 62.74 | 62.55 | | 2 | 63.24 | 63.18 | 63.24 | 63.16 | 63.11 | 63.02 | 63.33 | 63.49 | 63.40 | 62.99 | 62.73 | 62.54 | | 3 | 63.23 | 63.19 | 63.24 | 63.15 | 63.10 | 63.02 | 63.51 | 63.49 | 63.39 | 62.98 | 62.72 | 62.57 | | 4 | 63.23 | 63.19 | 63.24 | 63.15 | 63.09 | 63.02 | 63.62 | 63.49 | 63.38 | 62.97 | 62.70 | 62.63 | | 5 | 63.23 | 63.19 | 63.23 | 63.15 | 63.09 | 63.01 | 63.68 | 63.50 | 63.37 | 62.96 | 62.71 | 62.61 | | 6 | 63.23 | 63.18 |
63.22 | 63.14 | 63.09 | 63.01 | 63.77 | 63.50 | 63.35 | 62.94 | 62.71 | 62.59 | | 7 | 63.22 | 63.17 | 63.22 | 63.14 | 63.08 | 63.01 | 63.73 | 63.50 | 63.34 | 62.93 | 62.69 | 62.58 | | 8 | 63.22 | 63.16 | 63.22 | 63.14 | 63.08 | 63.00 | 63.68 | 63.50 | 63.32 | 62.92 | 62.68 | 62.56 | | 9 | 63.21 | 63.16 | 63.22 | 63.14 | 63.07 | 63.00 | 63.65 | 63.51 | 63.31 | 62.91 | 62.67 | 62.55 | | 10 | 63.21 | 63.16 | 63.23 | 63.14 | 63.07 | 63.00 | 63.62 | 63.51 | 63.29 | 62.91 | 62.66 | 62.54 | | 11 | 63.20 | 63.15 | 63.24 | 63.14 | 63.07 | 63.00 | 63.60 | 63.51 | 63.27 | 62.90 | 62.65 | 62.54 | | 12 | 63.20 | 63.15 | 63.24 | 63.14 | 63.06 | 63.01 | 63.58 | 63.51 | 63.26 | 62.89 | 62.64 | 62.53 | | 13 | 63.19 | 63.14 | 63.23 | 63.14 | 63.06 | 63.01 | 63.57 | 63.51 | 63.24 | 62.88 | 62.64 | 62.53 | | 14 | 63.19 | 63.14 | 63.22 | 63.14 | 63.06 | 63.01 | 63.55 | 63.52 | 63.22 | 62.87 | 62.66 | 62.52 | | 15 | 63.19 | 63.17 | 63.23 | 63.14 | 63.06 | 63.01 | 63.54 | 63.53 | 63.20 | 62.87 | 62.65 | 62.52 | | 16 | 63.20 | 63.23 | 63.22 | 63.14 | 63.05 | 63.01 | 63.53 | 63.51 | 63.18 | 62.88 | 62.63 | 62.51 | | 17 | 63.21 | 63.24 | 63.22 | 63.13 | 63.05 | 63.01 | 63.53 | 63.51 | 63.17 | 62.87 | 62.67 | 62.51 | | 18 | 63.21 | 63.25 | 63.22 | 63.13 | 63.05 | 63.00 | 63.51 | 63.51 | 63.15 | 62.86 | 62.69 | 62.50 | | 19 | 63.20 | 63.26 | 63.21 | 63.13 | 63.05 | 63.00 | 63.50 | 63.51 | 63.14 | 62.85 | 62.67 | 62.56 | | 20 | 63.19 | 63.26 | 63.21 | 63.13 | 63.05 | 63.00 | 63.50 | 63.50 | 63.13 | 62.84 | 62.65 | 62.56 | | 21
22
23
24
25 | 63.20
63.20
63.19
63.19
63.19 | 63.24
63.22
63.21
63.21
63.21 | 63.21
63.21
63.21
63.21
63.21 | 63.13
63.13
63.13
63.13 | 63.05
63.05
63.04
63.04
63.04 | 63.00
62.99
62.99
63.00
63.14 | 63.49
63.48
63.48
63.49
63.49 | 63.50
63.50
63.49
63.48
63.48 | 63.11
63.10
63.09
63.07
63.06 | 62.84
62.83
62.82
62.82 | 62.63
62.62
62.62
62.61
62.60 | 62.55
62.54
62.54
62.53
62.52 | | 26
27
28
29
30
31 | 63.19
63.18
63.18
63.17
63.17 | 63.20
63.20
63.19
63.22
63.25 | 63.20
63.20
63.19
63.18
63.18 | 63.13
63.12
63.12
63.12
63.12 | 63.03
63.03
63.03
63.02 | 63.23
63.20
63.19
63.25
63.27
63.28 | 63.48
63.49
63.49
63.49 | 63.47
63.46
63.45
63.44
63.43 | 63.04
63.03
63.02
63.02
63.01 | 62.80
62.80
62.78
62.77
62.76
62.75 | 62.59
62.59
62.58
62.57
62.57
62.56 | 62.51
62.50
62.50
62.49
62.49 | | TOTAL | 1959.29 | 1895.89 | 1959.75 | 1957.22 | 1828.78 | 1954.71 | 1906.16 | 1968.22 | 1896.07 | 1949.03 | 1942.10 | 1876.17 | | MEAN | 63.20 | 63.20 | 63.22 | 63.14 | 63.06 | 63.06 | 63.54 | 63.49 | 63.20 | 62.87 | 62.65 | 62.54 | | MAX | 63.24 | 63.26 | 63.25 | 63.17 | 63.11 | 63.28 | 63.77 | 63.53 | 63.41 | 63.00 | 62.74 | 62.63 | | MIN | 63.17 | 63.14 | 63.18 | 63.12 | 63.02 | 62.99 | 63.30 | 63.42 | 63.01 | 62.75 | 62.56 | 62.49 | WTR YR 1988 TOTAL 23093.39 MEAN 63.10 MAX 63.77 MIN 62.49 ### STAGE RECORDS # 455743089214301 HONEYSUCKLE LAKE NEAR EAGLE RIVER, WI LOCATION.--Lat 45°57'43", long 89°21'43", in NW 1/4 NW 1/4 SW 1/4 sec.10, T.40 N., R.9 E., Vilas County, Hydrologic Unit 07070001, at southwest end of lake on dirt road off County Trunk Highway G, 6 mi northwest of Eagle River. DRAINAGE AREA. -- Not determined. Area of lake, 36 acres. PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder. Datum of gage is approximately 1,600 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Daily stages estimated: June 24 to July 5, 1988. Records good. Lake does not have surface inlet or outlet. EXTREMES FOR CURRENT YEAR.--Maximum observed gage height, 46.44 ft, Apr. 11-13; minimum observed gage height, 45.42 ft, July 31. | | | | GAGE H | EIGHT, FE | | YEAR OCT | | TO SEPTE | MBER 1988 | | | | |----------------------------------|---|---|---|--|---|--|---|--|---|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 45.75 | 45.88 | 46.07 | 46.19 | 46.18 | 46.14 | 46.29 | 46.33 | 46.09 | 45.66 | 45.43 | 45.48 | | 2 | 45.81 | 45.88 | 46.07 | 46.18 | 46.18 | 46.14 | 46.30 | 46.32 | 46.07 | 45.64 | 45.52 | 45.49 | | 3 | 45.80 | 45.90 | 46.07 | 46.18 | 46.18 | 46.14 | 46.33 | 46.31 | 46.05 | 45.62 | 45.54 | 45.62 | | 4 | 45.80 | 45.93 | 46.07 | 46.18 | 46.18 | 46.13 | 46.34 | 46.30 | 46.03 | 45.60 | 45.58 | 45.71 | | 5 | 45.79 | 45.94 | 46.06 | 46.17 | 46.18 | 46.13 | 46.36 | 46.29 | 46.02 | 45.58 | 45.58 | 45.70 | | 6 | 45.80 | 45.93 | 46.06 | 46.16 | 46.18 | 46.13 | 46.41 | 46.28 | 46.01 | 45.57 | 45.56 | 45.70 | | 7 | 45.81 | 45.93 | 46.07 | 46.16 | 46.19 | 46.12 | 46.42 | 46.27 | 45.98 | 45.54 | 45.55 | 45.69 | | 8 | 45.80 | 45.93 | 46.06 | 46.16 | 46.18 | 46.14 | 46.42 | 46.26 | 45.94 | 45.57 | 45.54 | 45.68 | | 9 | 45.79 | 45.92 | 46.09 | 46.16 | 46.18 | 46.14 | 46.43 | 46.29 | 45.91 | 45.62 | 45.52 | 45.67 | | 10 | 45.78 | 45.91 | 46.10 | 46.16 | 46.18 | 46.14 | 46.43 | 46.30 | 45.89 | 45.61 | 45.50 | 45.66 | | 11 | 45.77 | 45.91 | 46.11 | 46.16 | 46.18 | 46.14 | 46.44 | 46.28 | 45.88 | 45.59 | 45.49 | 45.65 | | 12 | 45.77 | 45.91 | 46.12 | 46.17 | 46.17 | 46.15 | 46.44 | 46.28 | 45.86 | 45.58 | 45.50 | 45.65 | | 13 | 45.76 | 45.91 | 46.12 | 46.17 | 46.17 | 46.18 | 46.44 | 46.27 | 45.85 | 45.57 | 45.54 | 45.65 | | 14 | 45.76 | 45.90 | 46.12 | 46.16 | 46.17 | 46.18 | 46.43 | 46.25 | 45.84 | 45.56 | 45.55 | 45.63 | | 15 | 45.78 | 45.90 | 46.13 | 46.17 | 46.17 | 46.18 | 46.42 | 46.25 | 45.80 | 45.59 | 45.53 | 45.62 | | 16 | 45.87 | 45.91 | 46.14 | 46.18 | 46.17 | 46.18 | 46.42 | 46.23 | 45.78 | 45.63 | 45.53 | 45.63 | | 17 | 45.88 | 45.97 | 46.13 | 46.17 | 46.16 | 46.17 | 46.41 | 46.22 | 45.76 | 45.62 | 45.56 | 45.66 | | 18 | 45.87 | 45.99 | 46.15 | 46.17 | 46.17 | 46.17 | 46.41 | 46.21 | 45.75 | 45.59 | 45.56 | 45.65 | | 19 | 45.87 | 45.98 | 46.16 | 46.16 | 46.16 | 46.17 | 46.40 | 46.21 | 45.78 | 45.58 | 45.54 | 45.68 | | 20 | 45.87 | 45.99 | 46.18 | 46.20 | 46.16 | 46.17 | 46.39 | 46.19 | 45.78 | 45.59 | 45.53 | 45.74 | | 21
22
23
24
25 | 45.87
45.88
45.88
45.88 | 45.98
45.98
45.99
46.00
46.00 | 46.18
46.18
46.18
46.18
46.19 | 46.19
46.20
46.20
46.20
46.20 | 46.15
46.15
46.15
46.15
46.14 | 46.17
46.18
46.17
46.19
46.27 | 46.38
46.37
46.37
46.37 | 46.23
46.22
46.22
46.20
46.18 | 45.75
45.74
45.73
45.70
45.68 | 45.58
45.56
45.55
45.53
45.52 | 45.51
45.50
45.54
45.53
45.52 | 45.75
45.75
45.75
45.74
45.73 | | 26
27
28
29
30
31 | 45.87
45.89
45.89
45.89
45.89 | 45.99
45.99
45.99
46.04
46.07 | 46.18
46.19
46.19
46.19
46.19 | 46.20
46.19
46.19
46.20
46.19
46.19 | 46.14
46.14
46.14
46.13 | 46.27
46.28
46.27
46.28
46.28
46.28 | 46.35
46.35
46.35
46.34
46.33 | 46.17
46.16
46.15
46.13
46.12
46.11 | 45.67
45.66
45.69
45.72
45.70 | 45.50
45.49
45.48
45.46
45.45 | 45.51
45.50
45.49
45.48
45.48 | 45.73
45.73
45.71
45.72
45.72 | | TOTAL | 1420.81 | 1378.55 | 1430.11 | 1431.56 | 1338.78 | 1431.68 | 1391.50 | 1433.23 | 1375.11 | 1412.45 | 1411.19 | 1370.29 | | MEAN | 45.83 | 45.95 | 46.13 | 46.18 | 46.16 | 46.18 | 46.38 | 46.23 | 45.84 | 45.56 | 45.52 | 45.68 | | MAX | 45.89 | 46.07 | 46.19 | 46.20 | 46.19 | 46.28 | 46.44 | 46.33 | 46.09 | 45.66 | 45.58 | 45.75 | | MIN | 45.75 | 45.88 | 46.06 | 46.16 | 46.13 | 46.12 | 46.29 | 46.11 | 45.66 | 45.42 | 45.43 | 45.48 | WTR YR 1988 TOTAL 16825.26 MEAN 45.97 MAX 46.44 MIN 45.42 TOTAL 3.70 ## ACID DEPOSITION RECORDS ## PRECIPITATION QUANTITY # 455741089214501 HONEYSUCKLE LAKE RAIN GAGE NEAR EAGLE RIVER, WI LOCATION.--Lat 45°57'41", long 89°21'45", in NW 1/4 NW 1/4 SW 1/4 sec.10, T.40 N., R.9 E., Vilas County, Hydrologic Unit 070700001, at southwest end of Honeysuckle Lake, about 6 mi northwest of Eagle River. PERIOD OF RECORD. -- October 1987 to September 1988. GAGE.--Water-stage recorder. REMARKS.--Records good. EXTREMES FOR CURRENT YEAR.--Maximum daily rainfall, 2.38 in., Sept. 3. | | | RAINI | FALL ACCUM | ULATED | (INCHES), | WATER YEAR
SUM VALUES | | 1987 то | SEPTEMBER | 1988 | | | |-----|------|-------|------------|--------|-----------|--------------------------|-----|---------|-----------|------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .79 | .00 | | | | | | | .00 | .00 | | . 35 | | 2 | . 09 | . 03 | | | | | | | .00 | .00 | | . 25 | | 3 | .01 | . 45 | | | | | | | .00 | .00 | | 2.38 | | 4 | .00 | .08 | | | | | | | .00 | .00 | . 57 | .02 | | 5 | .22 | | | | | | | | .00 | .00 | . 05 | . 07 | | 6 | . 24 | | | | | | | | .00 | | .01 | .01 | | 7 | .02 | | | | | | | .00 | .00 | | . 01 | . 04 | | 8 | .00 | | | | | | | .53 | .05 | | . 09 | .00 | | 9 | .01 | | | | | | | .30 | .00 | | .00 | .00 | | 10 | .00 | | | | | | | .01 | .00 | | .00 | .00 | | 11 | .01 | | | | | | | .03 | .00 | | .00 | .00 | | 12 | .00 | | | | | | | .09 | .00 | | . 59 | . 05 | | 13 | .00 | | | | | | | .01 | .03 | | .55 | .05 | | 14 | .00 | | | | | | | .01 | .00 | | .00 | .00 | | 15 | 1.07 | | | | | | | .00 | .00 | | .00 | .00 | | 16 | . 40 | | | | | | | .01 | .03 | | .00 | .53 | | 17 |
.01 | | | | | | | .00 | .01 | | . 92 | . 04 | | 18 | .01 | | | | | | | . 00 | .00 | | .00 | .00 | | 19 | .01 | | | | | | | .00 | . 62 | | .00 | 1.04 | | 20 | . 05 | | | | | | | .04 | .00 | | .00 | . 28 | | 21 | .13 | | | | | | | .54 | .00 | | .00 | . 06 | | 22 | .19 | | | | | | | .06 | . 03 | | . 69 | .11 | | 23 | .04 | | | | | | | .01 | .00 | | .10 | .02 | | 24 | .00 | | | | | | | .00 | .00 | | .00 | .01 | | 25 | .03 | | | | | | | .00 | .00 | | .07 | .00 | | 26 | . 20 | | | | | | | .00 | .00 | | .01 | .10 | | 27 | . 05 | | | | | -~- | | . 05 | .00 | | .18 | .00 | | 28 | .08 | | | | | | | .00 | .74 | | .00 | .03 | | 29 | .04 | | | | | | | .00 | .00 | | . 12 | . 21 | | 30 | .00 | | | | | | | .00 | .00 | | .01 | . 00 | | 31 | .00 | | | | | | | .00 | | | .00 | | | | | | | | | | | | | | | | 1.51 5.65 ## GROUND-WATER LEVELS ## 455742089213901 WELL VI-40/09E/10-0960 LOCATION.--Lat 45°57'42", long 89°21'39", in NE 1/4 NW 1/4 SW 1/4 sec.10, T.40 N., R.9 E., Vilas County, Hydrologic Unit 070700001, at southwest end of Honeysuckle Lake, about 6 mi northwest of Eagle River. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Augered water-table observation well, diameter 3 in., depth 6 ft, cased to 3 ft, well screened 3-6 ft. PERIOD OF RECORD. -- March to September 1988. GAGE.--Water-stage recorder. Datum of gage is approximately 1,600 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good, except for period of missing record, March 31 to May 10, 1988. EXTREMES FOR CURRENT YEAR.--Maximum observed water level, 46.24 ft, May 11; minimum observed water level, 44.67 ft, July 31. | | | | GAGE HEI | GHT, FEET | | YEAR OCTOBE
EAN VALUES | R 1987 | TO SEPTE | MBER 1988 | | | | |------------|-----|-----|----------|-----------|-----|---------------------------|--------|----------|-----------|---------|---------|---------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | | | | | | | | | 45.75 | 45.02 | 44.68 | 44.77 | | 2 | | | | | | | | | 45.74 | 44.99 | 44.92 | 44.78 | | 3 | | | | | | | | | 45.73 | 44.96 | 44.97 | 45.03 | | 4 | | | | | | | | | 45.68 | 44.94 | 45.00 | 45.36 | | 5 | | | | | | | | | 45.65 | 44.91 | 45.04 | 45.35 | | 6 | | | | | | | | | 45.59 | 44.88 | 44.99 | 45.29 | | 7 | | | | | | | | | 45.54 | 44.86 | 44.92 | 45.23 | | 8 | | | | | | | | | 45.52 | 44.90 | 44.87 | 45.17 | | 9 | | | | | | | | | 45.51 | 45.12 | 44.87 | 45.13 | | 10 | | | | | | | | | 45.47 | 45.11 | 44.82 | 45.08 | | 11 | | | | | | | | 46.24 | 45.43 | 45.04 | 44.78 | 45.06 | | 12 | | | | | | | | 46.16 | 45.39 | 45.00 | 44.81 | 45.05 | | 13 | | | | | | | | 46.16 | 45.35 | 44.97 | 44.91 | 45.06 | | 14 | | | | | | | | 46.14 | 45.32 | 44.93 | 44.99 | 45.03 | | 15 | | | | | | | | 46.12 | 45.28 | 45.01 | 44.93 | 45.01 | | 16 | | | | | | | | 46.11 | 45.26 | 45.18 | 44.86 | 45.02 | | 17 | | | | | | | | 46.08 | 45.25 | 45.11 | 44.93 | 45.15 | | 18 | | | | | | | | 46.05 | 45.21 | 45.03 | 45.02 | 45.13 | | 19 | | | | | | | | 46.05 | 45.29 | 44.97 | 44.97 | 45.18 | | 20 | | | | | | | | 46.01 | 45.25 | 44.94 | 44.91 | 45.39 | | 21 | | | | | | | | 46.01 | 45.18 | 44.93 | 44.85 | 45.42 | | 2 2 | | | | | | | | 46.03 | 45.18 | 44.89 | 44.82 | 45.42 | | 23 | | | | | | 45.71 | | 46.03 | 45.14 | 44.86 | 44.97 | 45.40 | | 24 | | | | | | 45.68 | | 46.02 | 45.12 | 44.83 | 44.95 | 45.35 | | 25 | | | | | | 45,88 | | 45.94 | 45.09 | 44.84 | 44.89 | 45.31 | | 26 | | | | | | 45.94 | | 45.92 | 45.05 | 44.81 | 44.84 | 45.29 | | 27 | | | | | | 45.93 | | 45.89 | 45.02 | 44.79 | 44.82 | 45.28 | | 28 | | | | | | 45.93 | | 45.87 | 45.12 | 44.76 | 44.81 | 45.26 | | 29 | | | | | | 45.95 | | 45.84 | 45.21 | 44.72 | 44.78 | 45.28 | | 30 | | | | | | 45.95 | | 45.81 | 45.10 | 44.69 | 44.78 | 45.30 | | 31 | | | | | | | | 45.78 | | 44.67 | 44.77 | | | TOTAL | | | | | | | | | 1360.42 | 1392.66 | 1391.47 | 1355.58 | | MEAN | | | | | | | | | 45.35 | 44.92 | 44.89 | 45.19 | | MAX | | | | | | | | | 45.75 | 45.18 | 45.04 | 45.42 | | MIN | | · | | | | | | | 45.02 | 44.67 | 44.68 | 44.77 | ### STAGE RECORDS # 455909089405602 VANDERCOOK LAKE NEAR WOODRUFF, WI LOCATION.--Lat 45°59'09", long 89°40'56", in SW 1/4 NE 1/4 SE 1/4 sec.36, T.41 N., R.6 E., Vilas County, Hydrologic Unit 07070001, at north end of lake on dirt road off County Trunk Highway M, 6.1 mi north of Woodruff. DRAINAGE AREA.--1.11 mi². Area of lake, 0.17 mi². PERIOD OF RECORD. -- November 1980 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,600.00 ft above National Geodetic Vertical Datum of 1929. REMARKS. -- Records good. Lake does not have surface inlet or outlet. EXTREMES FOR PERIOD OF RECORD.--Maximum observed gage height, 32.26 ft, Apr. 8-10, 1986; minimum observed gage height, 29.74 ft, Sept. 15, 1988. EXTREMES FOR CURRENT YEAR.--Maximum observed gage height, 30.93 ft, Dec. 25; minimum observed gage height, 29.74 ft, Sept. 15. | GAGE | HEIGHT, | FEET, | WATER | YEAR | OCTOBER | 1987 | TO | SEPTEMBER | 1988 | |------|---------|-------|-------|--------|---------|------|----|-----------|------| | | | | ì. | MEAN V | ALUES | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|---|---|---|---|---|--|--|---| | 1 | 30.77 | 30.78 | 30.85 | 30.90 | 30.89 | 30.81 | 30.87 | 30.72 | 30.44 | 30.03 | 29.84 | 29.76 | | 2 | 30.80 | 30.78 | 30.84 | 30.90 | 30.89 | 30.81 | 30.87 | 30.71 | 30.43 | 30.01 | 29.89 | 29.75 | | 3 | 30.79 | 30.79 | 30.84 | 30.90 | 30.89 | 30.80 | 30.89 | 30.70 | 30.42 | 30.00 | 29.89 | 29.84 | | 4 | 30.78 | 30.80 | 30.84 | 30.89 | 30.87 | 30.80 | 30.89 | 30.69 | 30.41 | 29.98 | 29.93 | 29.89 | | 5 | 30.78 | 30.78 | 30.84 | 30.90 | 30.87 | 30.80 | 30.89 | 30.68 | 30.40 | 29.97 | 29.93 | 29.87 | | 6 | 30.78 | 30.77 | 30.84 | 30.89 | 30.87 | 30.79 | 30.91 | 30.67 | 30.39 | 29.97 | 29.92 | 29.85 | | 7 | 30.78 | 30.77 | 30.83 | 30.89 | 30.87 | 30.79 | 30.91 | 30.66 | 30.37 | 29.94 | 29.91 | 29.84 | | 8 | 30.77 | 30.76 | 30.83 | 30.89 | 30.87 | 30.80 | 30.90 | 30.65 | 30.34 | 29.93 | 29.89 | 29.82 | | 9 | 30.76 | 30.75 | 30.86 | 30.88 | 30.87 | 30.81 | 30.89 | 30.68 | 30.32 | 29.95 | 29.88 | 29.81 | | 10 | 30.75 | 30.74 | 30.86 | 30.88 | 30.87 | 30.80 | 30.91 | 30.67 | 30.30 | 29.95 | 29.86 | 29.79 | | 11
12
13
14
15 | 30.74
30.73
30.72
30.72
30.74 | 30.74
30.73
30.73
30.72
30.72 | 30.86
30.87
30.87
30.87 | 30.88
30.88
30.89
30.88
30.89 | 30.86
30.86
30.86
30.86
30.85 | 30.80
30.80
30.82
30.82
30.83 | 30.91
30.90
30.88
30.87
30.87 | 30.65
30.65
30.64
30.63
30.63 | 30.28
30.26
30.24
30.24
30.21 | 29.93
29.92
29.91
29.89
29.92 | 29.84
29.87
29.90
29.92
29.89 | 29.78
29.78
29.77
29.75
29.74 | | 16
17
18
19
20 | 30.82
30.83
30.82
30.82
30.81 | 30.73
30.78
30.81
30.80
30.79 | 30.89
30.88
30.89
30.89
30.91 | 30.89
30.89
30.88
30.88 | 30.85
30.85
30.85
30.84
30.84 | 30.82
30.82
30.82
30.81
30.81 | 30.86
30.85
30.83
30.82
30.80 | 30.60
30.59
30.58
30.56
30.55 | 30.20
30.19
30.17
30.20
30.19 | 30.00
29.99
29.97
29.96
29.95 | 29.89
29.90
29.88
29.86
29.85 | 29.75
29.79
29.79
29.81
29.83 | | 21 | 30.82 | 30.78 | 30.92 | 30.91 | 30.83 | 30.80 | 30.80 | 30.55 | 30.17 | 29.95 | 29.83 | 29.83 | | 22 | 30.82 | 30.78 | 30.91 | 30.91 | 30.84 | 30.80 | 30.79 | 30.55 | 30.16 | 29.94 | 29.82 | 29.82 | | 23 | 30.82 | 30.79 | 30.91 | 30.91 | 30.84 | 30.80 | 30.79 | 30.54 | 30.13 | 29.92 | 29.88 | 29.81 | | 24 | 30.82 | 30.80 | 30.91 | 30.91 | 30.83 | 30.80 | 30.79 | 30.52 | 30.11 | 29.92 | 29.86 | 29.80 | | 25 | 30.81 | 30.80 | 30.93 | 30.91 | 30.82 | 30.87 | 30.78 | 30.50 | 30.10 | 29.92 | 29.84 | 29.79 | | 26
27
28
29
30
31 | 30.81
30.81
30.80
30.80
30.79
30.78 | 30.79
30.79
30.78
30.83
30.84 | 30.91
30.91
30.91
30.91
30.90
30.91 | 30.90
30.90
30.90
30.90
30.90
30.90 | 30.83
30.82
30.81
30.81 | 30.87
30.87
30.88
30.88
30.88 | 30.76
30.75
30.75
30.74
30.73 | 30.49
30.48
30.47
30.46
30.45 | 30.07
30.05
30.07
30.07
30.05 | 29.90
29.89
29.88
29.86
29.84
29.83 | 29.82
29.82
29.79
29.78
29.77
29.76 | 29.79
29.78
29.76
29.76
29.76 | | TOTAL | 954.39 | 923.25 | 957.27 | 957.73 | 894.71 | 955.47 | 925.20 | 948.41 | 906.98 | 928.02 | 925.71 | 893.91 | | MEAN | 30.79 | 30.77 | 30.88 | 30.89 | 30.85 | 30.82 | 30.84 | 30.59 | 30.23 | 29.94 | 29.86 | 29.80 | | MAX | 30.83 | 30.84 | 30.93 | 30.91 | 30.89 | 30.88 | 30.91 | 30.72 | 30.44 | 30.03 | 29.93 | 29.89 | | MIN | 30.72 | 30.72 | 30.83 | 30.88 | 30.81 | 30.79 | 30.73 | 30.45 | 30.05 | 29.83 | 29.76 | 29.74 | CAL YR 1987 TOTAL 11424.21 MEAN 31.30 MAX 31.85 MIN 30.72 WTR YR 1988 TOTAL 11171.05 MEAN 30.52 MAX 30.93 MIN 29.74 ### PRECIPITATION QUANTITY ## 455909089405603 VANDERCOOK LAKE RAIN GAGE NEAR WOODRUFF, WI LOCATION.--Lat 45°59'09", long 89°40'56", in SW 1/4 NE 1/4 SE 1/4 sec.36, T.41 N., R.6 E., Vilas County, Hydrologic Unit 07070001, at north end of lake on dirt road off County Trunk Highway M, 6.1 mi north of Woodruff. PERIOD OF RECORD. -- March 1981 to current year. GAGE. -- Water-stage recorder. REMARKS. -- Records good. EXTREMES FOR PERIOD OF
RECORD. -- Maximum daily rainfall, 2.98 in., Aug. 10, 1983. EXTREMES FOR CURRENT YEAR. -- Maximum daily rainfall, 1.95 in., Sept. 3. | | | RAINE | FALL ACCUM | ULATED (| | WATER YEAR
SUM VALUES | | 1987 TO | SEPTEMBER | 1988 | | | |-------|------|-------|------------|----------|-----|--------------------------|------|---------|-----------|------|------|------| | DAY | OCT | Nov | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | .78 | .00 | | | | | | .00 | .08 | .00 | .85 | .16 | | 2 | .10 | .04 | | | | | | .00 | .19 | .00 | .04 | .06 | | 3 | .01 | | | | | | | .00 | .00 | .00 | . 07 | 1.95 | | 4 | .00 | | | | | | | .00 | .00 | .00 | .91 | .07 | | 5 | .17 | | | | | | | .00 | .00 | .00 | .04 | .01 | | 6 | .29 | | | | | | | .00 | .00 | .00 | .01 | .00 | | 7 | .03 | | | | | | | .00 | .00 | .00 | .09 | .00 | | 8 | .00 | | | | | | | .80 | .10 | . 47 | .04 | .00 | | 9 | .01 | | | | | | | . 03 | .00 | .22 | .01 | .00 | | 10 | .01 | | | | | | | .00 | .00 | .01 | .00 | .00 | | 11 | .00 | | | | | | | .01 | .00 | .20 | .01 | .00 | | 12 | .00 | | | | | | | .18 | .00 | .01 | . 69 | .15 | | 13 | .00 | | | | | | | .00 | .00 | .02 | .39 | .01 | | 14 | .00 | | | | | | | .00 | .03 | .00 | .00 | .00 | | 15 | 1.03 | | | | | | | .00 | .04 | 1.58 | .00 | .00 | | 16 | .49 | | | | | | | .00 | . 03 | .00 | .00 | .66 | | 17 | .02 | | | | | | | .00 | .00 | .00 | . 50 | .05 | | 18 | .00 | | | | | | -~- | .00 | .03 | .00 | .00 | .00 | | 19 | .00 | | | | | ~ | . 02 | .00 | .55 | .00 | .00 | . 44 | | 20 | .03 | | | | | | .00 | .00 | .00 | .25 | .00 | .15 | | 21 | .19 | | | | | | .00 | .06 | .00 | .03 | .00 | .05 | | 22 | .18 | | | | | | .00 | .03 | .00 | .00 | .78 | .03 | | 23 | .03 | | | | | | .14 | .01 | .00 | .01 | .02 | .00 | | 24 | .01 | | | | | | .00 | .00 | .00 | . 40 | .00 | .00 | | 25 | .01 | | | | | | .00 | .00 | .00 | .01 | .09 | .00 | | 26 | .08 | | | | | | .00 | .03 | .00 | .00 | .01 | .09 | | 27 | .02 | | | | | ~ | . 03 | .11 | .00 | .00 | .11 | .00 | | 28 | .01 | | | | | | .00 | .00 | . 68 | .00 | .00 | .05 | | 29 | .02 | | | | | ~ | .00 | .00 | .00 | . 20 | .01 | .06 | | 30 | .00 | | | | | | .00 | .00 | .00 | .00 | .01 | .00 | | 31 | .00 | | | | | | | .00 | | .12 | .00 | | | TOTAL | 3.52 | | | | | | | 1.26 | 1.73 | 3.53 | 4.68 | 3.99 | ### GROUND-WATER LEVELS ### 455910089403701 WELL VI-41/07E/31-0085 LOCATION.--Lat 45°59'10", long 89°40'37", in SW 1/4 NW 1/4 SW 1/4 sec.31, T.41 N., R.7 E., Vilas County, Hydrologic Unit 07070001, 0.25 mi northeast of Vandercook Lake, about 6.1 mi north of Woodruff. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Augered water-table observation well, diameter 3 in., depth 60 ft, cased to 57 ft, well screened 57-60 ft. PERIOD OF RECORD. -- November 1980 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,600.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Daily stages estimated: Dec. 5, 1987 to Jan. 12, 1988; Mar. 2 to Apr. 4, 1988; and Aug. 14-17, 1988. Records good, except for period of missing record, Apr. 16 to Oct. 12, 1982. EXTREMES FOR PERIOD OF RECORD.--Maximum observed water level, 33.83 ft, Apr. 14, 1986; minimum observed water level, 30.45 ft, Sept. 27-30, 1988. EXTREMES FOR CURRENT YEAR.--Maximum observed water level, 31.49 ft, Oct. 1; minimum observed water level, 30.45 ft, Sept. 27-30. | | | | GAGE HI | EIGHT, FEI | | YEAR OCTO | | TO SEPTE | MBER 1988 | | | | |----------------------------------|--|---|--|--|---|---|---|---|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 31.49
31.46
31.45
31.46
31.47 | 31.34
31.35
31.33
31.31 | 31.14
31.13
31.12
31.10
31.10 | 31.12
31.12
31.11
31.11
31.11 | 30.99
30.99
30.98
30.97
30.96 | 30.83
30.83
30.82
30.82
30.81 | 30.69
30.69
30.69
30.69
30.71 | 30.93
30.93
30.93
30.93
30.93 | 30.87
30.85
30.85
30.85
30.85 | 30.75
30.75
30.74
30.73
30.73 | 30.64
30.64
30.64
30.64
30.64 | 30.53
30.53
30.52
30.52
30.52 | | 6
7
8
9
10 | 31.45
31.44
31.43
31.43
31.42 | 31.31
31.31
31.30
31.28
31.27 | 31.10
31.10
31.10
31.10
31.10 | 31.10
31.10
31.10
31.09
31.09 | 30.95
30.96
30.94
30.93
30.92 | 30.80
30.80
30.79
30.78
30.78 | 30.75
30.80
30.83
30.86
30.89 | 30.92
30.92
30.92
30.92
30.92 | 30.85
30.85
30.85
30.85
30.85 | 30.73
30.72
30.72
30.72
30.70 | 30.64
30.64
30.62
30.62
30.62 | 30.52
30.51
30.50
30.50
30.49 | | 11
12
13
14
15 | 31.42
31.42
31.42
31.41
31.40 | 31.27
31.26
31.27
31.26
31.24 | 31.11
31.11
31.11
31.11
31.11 | 31.09
31.08
31.08
31.07
31.08 | 30.92
30.92
30.91
30.92
30.90 | 30.77
30.77
30.76
30.76
30.75 | 30.91
30.92
30.93
30.95
30.96 | 30.92
30.92
30.92
30.92
30.92 | 30.85
30.85
30.85
30.85
30.83 | 30.70
30.70
30.70
30.70
30.70 | 30.62
30.61
30.61
30.60
30.60 | 30.48
30.48
30.48
30.48
30.48 | | 16
17
18
19
20 | 31.41
31.41
31.40
31.39
31.39 | 31.24
31.25
31.22
31.23
31.21 | 31.12
31.12
31.12
31.12
31.12 | 31.09
31.06
31.05
31.05
31.06 | 30.90
30.89
30.89
30.89
30.87 | 30.74
30.74
30.73
30.73
30.72 | 30.97
30.98
30.98
30.98
30.99 | 30.92
30.91
30.90
30.89
30.89 | 30.83
30.83
30.82
30.79
30.79 | 30.70
30.70
30.70
30.70
30.70 | 30.60
30.60
30.60
30.59
30.59 | 30.48
30.48
30.48
30.48
30.47 | | 21
22
23
24
25 | 31.38
31.38
31.38
31.37
31.37 | 31.19
31.19
31.18
31.17
31.16 | 31.12
31.13
31.13
31.13 | 31.04
31.05
31.05
31.04
31.02 | 30.87
30.87
30.86
30.86
30.85 | 30.72
30.71
30.71
30.71
30.70 | 30.99
30.98
30.98
30.97
30.97 | 30.89
30.89
30.89
30.89
30.89 | 30.79
30.79
30.79
30.79
30.79 | 30.70
30.70
30.70
30.69
30.69 | 30.59
30.59
30.58
30.58
30.58 | 30.47
30.47
30.47
30.47
30.47 | | 26
27
28
29
30
31 | 31.39
31.37
31.36
31.36
31.35
31.34 | 31.15
31.15
31.14
31.16
31.16 | 31.13
31.13
31.13
31.13
31.12
31.12 | 31.02
31.02
31.01
31.01
31.01
31.00 | 30.85
30.83
30.84
30.82 | 30.70
30.70
30.69
30.69
30.69 | 30.96
30.96
30.95
30.94
30.94 | 30.89
30.89
30.89
30.89
30.89 | 30.78
30.76
30.75
30.75
30.75 | 30.69
30.68
30.67
30.67
30.64
30.64 | 30.58
30.57
30.56
30.55
30.55
30.54 | 30.46
30.45
30.45
30.45
30.45 | | TOTAL
MEAN
MAX
MIN | 973.62
31.41
31.49
31.34 | 937.24
31.24
31.35
31.14 | 964.64
31.12
31.14
31.10 | 963.03
31.07
31.12
31.00 | 896.25
30.91
30.99
30.82 | 953.24
30.75
30.83
30.69 | 926.81
30.89
30.99
30.69 | 958.15
30.91
30.93
30.89 | 924.55
30.82
30.87
30.75 | 951.76
30.70
30.75
30.64 | 948.63
30.60
30.64
30.54 | 914.54
30.48
30.53
30.45 | CAL YR 1987 TOTAL 11663.16 MEAN 31.95 MAX 32.87 MIN 31.10 WTR YR 1988 TOTAL 11312.46 MEAN 30.91 MAX 31.49 MIN 30.45 ## VANDERCOOK LAKE # QUALITY OF SURFACE WATER # WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 455909089405602 VANDERCOOK LAKE NEAR WOODRUFF, WI (LAT 45 59 09 LONG 0894056) | DATE
OCT 1987 | TIME | SAM-
PLING
DEPTH
(FEET)
(00003) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | OXYGEN,
DIS-
SOLVED
(MG/L)
(00300) | ACIDITY
(MG/L
AS H)
(71825) | CALCIUM
DIS-
SOLVED
(MG/L
AS CA)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(MG/L
AS MG)
(00925) | SODIUM,
DIS-
SOLVED
(MG/L
AS NA)
(00930) | POTAS-
SIUM,
DIS-
SOLVED
(MG/L
AS K)
(00935) | ALKA-
LINITY
WAT WH
TOT IT
LAB
MG/L AS
CACO3
(00416) | |--|--|---|--|---|---|--|--
--|--|---|--|---| | **07
**07
07
NOV | 1050
1051
1100 | 3.00
3.00
18.0 | 14
14
14 | 5.40
5.50
5.60 | 11.0
11.0
12.0 | 9.4
9.4
9.4 | 0.04
0.04
0.04 | 1.3
1.2
1.2 | 0.40
0.39
0.38 | 0.57
0.59
0.52 | 0.19
0.10
0.16 | 1
1
1 | | 04
04
DEC | 1045
1055 | 3.00
18.0 | 14
14 | 6.10
6.20 | 7.0
6.0 | 10.5
10.5 | 0.04
0.04 | 1.0
1.0 | 0.34
0.35 | 0.43
0.43 | 0.20
0.21 | 1
1 | | 09
**09
**09
JAN 1988 | 1130
1140
1141 | 3.00
18.0
18.0 | 14
14
14 | | 4.0
5.0
5.0 | 12.9
11.3
11.3 | 0.02
0.03
0.03 | 1.4
1.4
1.3 | 0.39
0.38
0.38 | 0.73
0.59
0.49 | 0.03
0.12
0.23 | 1
1
1 | | 11
11
FEB | 1100
1110 | 3.00
18.0 | 16
14 | 5.80
5.80 | 4.0
4.0 | 10.9
8.6 | 0.04
0.04 | 1.4 | 0.43
0.41 | 0.53
0.60 | 0.27
0.20 | 1
1 | | **03
**03
03
MAR | 1500
1501
1510 | 3.00
3.00
18.0 | 17
18
15 | 5.70
5.60
5.70 | 3.5
3.5
4.0 | 12.3
12.3
7.3 | 0.06
0.04
0.03 | 1.3
1.5
1.6 | 0.39
0.47
0.46 | 0.46
0.56
0.64 | 0.31
0.44
0.43 | 1
1
1 | | 02
02
29
29
MAY | 1500
1515
1250
1300 | 3.00
18.0
3.00
18.0 | 17
15
20
25 | 5.80
5.70
5.50
5.30 | 3.0
4.0
4.0
4.5 | 9.3
6.0
8.2
5.3 | 0.05
0.07
0.05
0.03 | 1.2
1.4
1.6
1.2 | 0.37
0.43
0.50
0.38 | 0.42
0.51
0.52
0.38 | 0.34
0.39
0.52
0.38 | 1
1
1 | | 02
02
JUN | 1345
1355 | 3.00
18.0 | 14
14 | 6.50
6.50 | 14.0
10.0 | 10.9
11.2 | 0.03
0.03 | 1.2
1.4 | 0.36
0.39 | 0.47
0.53 | 0.22
0.24 | 1 | | **01
**01
01
27
27 | 1350
1351
1400
1350
1400 | 3.00
3.00
18.0
3.00
18.0 | 15
14
15
16
15 | 6.30
6.40
6.20
6.60
6.30 | 24.0
24.0
18.0
23.0
23.0 | 8.3
8.3
9.4
7.6
7.1 | 0.02
0.02
0.02
0.03
0.02 | 1.2
1.2
1.2
1.5
1.3 | 0.36
0.35
0.37
0.42
0.38 | 0.45
0.48
0.40
0.77
0.72 | 0.23
0.18
0.22
0.18
0.03 | 1
1
1
1 | | 01
01
29
29 | 1355
1405
1400
1405 | 3.00
18.0
3.00
18.0 | 13
17
14
18 | 6.50
6.60
6.40
6.20 | 27.0
25.5
21.0
21.0 | 7.4
7.5
7.5
7.6 | 0.02
0.02
0.03
0.03 | 1.4
1.4
1.4
1.3 | 0.39
0.37
0.37
0.36 | 0.72
0.65
0.48
0.43 | 0.09
0.20
0.22
0.16 | 1
2
2
2 | | | | | | | | | | | | | | | | DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | | OCT 1987
07
07
07 | DIS-
SOLVED
(MG/L
AS SO4) | RIDE,
DIS-
SOLVED
(MG/L
AS CL) | RIDE,
DIS-
SOLVED
(MG/L
AS F) | DIS-
SOLVED
(MG/L
AS
SIO2) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N) | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N) | PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P) | INUM,
DIS-
SOLVED
(UG/L
AS AL) | DIS-
SOLVED
(UG/L
AS FE) | NESE,
DIS-
SOLVED
(UG/L
AS MN) | ORGANIC
DIS-
SOLVED
(MG/L
AS C) | | OCT 1987
07
07
07
NOV
04 | DIS-
SOLVED
(MG/L
AS SO4)
(00945) | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
0.28
0.28 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
0.03
0.03 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
<0.010
<0.010 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
0.018
0.024 | PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<0.001
<0.001 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | DIS-
SOLVED
(UG/L
AS FE)
(01046) | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.2
4.5 | | OCT 1987
07
07
NOV
04
04
DEC
09
09 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
3.8
3.9
3.9
3.7 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
0.28
0.28
0.28 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
0.03
0.03
0.04 | DIS-
SOLVED
(MG/L
AS
SI02)
(00955)
0.09
0.08
0.07 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
<0.010
<0.010 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
0.018
0.024
0.032 | PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<0.001
<0.001
0.003 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
5
3
3 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
5
7 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
5
6
5 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.2
4.5
4.7 | | OCT 1987
07
07
NOV
04
DEC
09
09
JAN 1988
11 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
3.8
3.9
3.7
3.7
4.4 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
0.28
0.28
0.28
0.27
0.27 | RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950)
0.03
0.04
0.05
0.04 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
0.09
0.08
0.07
0.11
0.06 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
7
7
7
6
6 | GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618)
<0.010
<0.010
<0.010
<0.010
0.020
0.020 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
0.024
0.032
0.030
0.026 | PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<0.001
<0.001
<0.001
0.003
0.004 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
5
3
3
6
8 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
5
7
5
7
9 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
5
6
5
4
5 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.2
4.5
4.7
4.8
4.6 | | OCT 1987 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
3.8
3.9
3.7
3.7
4.4
4.0
4.0 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
0.28
0.28
0.28
0.27
0.27
0.27 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.03
0.04
0.05
0.04
0.05
0.05
0.05 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
0.09
0.08
0.07
0.11
0.06 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301)
7
7
7
7 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) <0.010 <0.010 <0.010 <0.010 <0.010 0.020 0.020 0.020 0.030 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.018 0.024 0.032 0.030 0.026 0.025 0.045 0.045 | PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671)
<0.001
<0.001
<0.001
0.003
0.004
0.005
0.004 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
5
3
3
6
8
6
9
6 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
5
7
5
7
9
4
14
6 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
5
6
5
4
5 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.2
4.5
4.7
4.8
4.6
5.5
4.7
4.7 | | OCT 1987 | DIS-
SOLVED
(MG/L
AS SO4)
(00945)
3.8
3.9
3.7
3.7
4.4
4.0
4.0
4.6
3.9
3.9 | RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940)
0.28
0.28
0.27
0.27
0.27
0.27
0.27
0.27 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.03
0.04
0.05
0.04
0.05
0.05
0.05 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
0.09
0.08
0.07
0.11
0.06
0.02
0.07
0.04
0.07 | SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) <0.010 <0.010 <0.010 <0.010 0.020 0.020 0.020 0.030 0.010 0.020 0.030 0.010 | GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608)
0.018
0.024
0.032
0.030
0.026
0.045
0.045
0.060
0.060 | PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS
P)
(00671)
<0.001
<0.001
<0.001
0.003
0.004
0.005
0.004
0.005
0.004
0.0030
0.007
0.015 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
5
3
3
6
8
6
9
6 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
57
57
57
79
4
114
6 | NESE,
DIS-
SOLVED (UG/L
AS MN) (01056)
56
5
4
5
2
17
11
6
6
6 | ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681)
4.2
4.5
4.7
4.8
4.6
5.5
4.7
4.7
3.6 | | OCT 1987 | DIS-
SOLVED (MG/L
AS SO4) (00945)
3.8
3.9
3.7
3.7
4.4
4.0
4.0
4.6
3.9
4.8
4.6
3.9
7.7 | RIDE, DIS- SOLVED (MG/L AS CL) (00940) 0.28 0.28 0.27 0.27 0.27 0.27 0.27 0.34 0.29 0.36 0.34 0.35 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.03
0.04
0.05
0.04
0.05
0.05
0.05
0.05
0.05 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
0.09
0.08
0.07
0.11
0.06
0.02
0.07
0.04
0.07
0.08
0.07 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 7 7 7 6 6 6 7 7 7 7 8 8 7 7 9 9 9 8 7 12 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) <0.010 <0.010 <0.010 0.020 0.020 0.020 0.020 0.030 0.010 0.020 0.030 0.030 0.030 0.040 0.050 0.130 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.018 0.024 0.032 0.030 0.026 0.025 0.045 0.062 0.045 0.060 0.160 0.088 0.099 0.120 0.077 0.160 | PHOROUS ORTHO, DIS- ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.001 <0.001 <0.001 0.003 0.004 0.004 0.005 0.004 0.005 0.001 0.0030 0.007 0.015 0.013 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
5
3
3
6
8
6
9
6
5
8
4
5
20 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
57
57
5
79
414
6 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
56
55
45
57
17
111
66
66
11
3
26
8
14
7 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 4.2 4.5 4.7 4.8 4.6 5.5 4.7 4.7 3.6 4.4 4.8 4.7 3.7 5.1 | | OCT 1987 | DIS-
SOLVED (MG/L
AS SO4) (00945)
3.8
3.9
3.7
3.7
4.4
4.0
4.0
4.6
3.9
4.9
4.8
4.6
3.9
7.7
4.0 | RIDE, DIS- SOLVED (MG/L AS CL) (00940) 0.28 0.28 0.27 0.27 0.27 0.27 0.27 0.34 0.29 0.36 0.34 0.35 0.34 0.27 0.31 0.24 | RIDE,
DIS-
SOLVED (MG/L
AS F) (00950)
0.03
0.04
0.05
0.04
0.05
0.05
0.05
0.05
0.05 | DIS-
SOLVED
(MG/L
AS
SIO2)
(00955)
0.09
0.08
0.07
0.11
0.06
0.02
0.07
0.04
0.07
0.08
0.07
0.08 | SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301) 7 7 7 6 6 6 7 7 7 7 8 8 7 7 9 9 9 8 8 7 12 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | GEN, NITRATE DIS- SOLVED (MG/L AS N) (00618) <0.010 <0.010 <0.010 0.020 0.020 0.020 0.020 0.030 0.010 0.020 0.030 0.030 0.030 0.040 0.050 0.030 0.070 0.030 | GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608) 0.018 0.024 0.032 0.030 0.026 0.025 0.045 0.062 0.045 0.060 0.160 0.088 0.099 0.120 0.077 0.160 0.110 | PHOROUS ORTHO, DIS- ORTHO, DIS- SOLVED (MG/L AS P) (00671) <0.001 <0.001 <0.001 0.003 0.004 0.005 0.004 0.005 0.001 0.015 0.013 0.024 0.017 0.029 0.021 | INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106)
5
3
3
6
8
6
9
6
5
8
4
5
20
7
7
7
10
10 | DIS-
SOLVED
(UG/L
AS FE)
(01046)
57
7
5
7
9
4
14
6
6
12
61
7
<22
<2
2
8
8
8 | NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056)
56
55
45
57
17
111
66
66
11
3
26
8
14
7
7 | ORGANIC DIS- SOLVED (MG/L AS C) (00681) 4.2 4.5 4.7 4.8 4.6 5.5 4.7 4.7 3.6 4.4 4.8 4.7 3.7 5.1 3.7 | ^{**}SAMPLES WITH SAME DATES AND SAMPLING DEPTHS ARE REPLICATES. # VANDERCOOK LAKE # QUALITY OF PRECIPITATION WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | DATE | RAIN CO
FALL DU
ACCUM AN
(IN) (US | E-
FIC
N- PH
CT- (STAN)
CE ARD
/CM) UNITS:
095) (00400 | (MG/L
) AS CA) | DIS-
SOLVED S
(MG/L
AS MG) | ODIUM, SIUM, DIS- DIS- OLVED SOLVED (MG/L (MG/L AS NA) AS K) 00930) (00935) | |---|--|--|--|--|--| | 455911089405903 VANDERCOOK LK | BULK PRECIP | COLL NR WOOI | ORUFF, WI (L | AT 45 59 11 | LONG 089 40 59) | | OCT 07 - NOV 04, 1987 NOV 04 - DEC 09, 1987 DEC 09, 1987 - JAN 11, 1988 JAN 11 - FEB 03, 1988 FEB 03 - MAR 02, 1988 MAR 02 - MAR 29, 1988 MAR 29 - MAY 02, 1988 MAY 02 - JUN 01, 1988 JUN 01 - JUN 27, 1988 JUN 07 - AUG 01, 1988 AUG 01 - AUG 29, 1988 AUG 01 - AUG 29, 1988 | 2.54
3.57
1.51
0.98
0.49
2.74
0.91
1.45
1.20
4.62
4.96
4.62 | 15 4.8
13 4.4
22 4.5
17 4.7
23 4.6
20 5.0
27 6.2
24 6.4
14 5.3
12 4.7
13 4.3 | 0.38
40 0.32
50 0.56
70 0.67
50 0.90
00 0.25
20 1.3
60 1.7
70 0.56 | 0.12
0.06
0.05
0.07
0.12
0.13
0.02
0.32
0.33
0.11
0.19
0.13 | 0.27 0.08
0.20 0.03
0.13 0.05
0.21 0.06
0.25 0.09
0.26 0.11
0.31 0.16
0.30 0.48
0.48 0.49
0.26 0.10
0.25 0.07
0.31 0.07 | | 460307089391203 TROUT LK BULK | PRECIP COLL | NR BOULDER | JCT, WI (LA | T 46 03 07 | LONG 089 39 12) | | DEC 09, 1987 - JAN 11, 1988 | 1.19 | 18 4.4 | 0.36 | 0.06 | 0.15 0.04 | | . DATE | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | DIS-
SOLVED
(MG/L
AS CL) | FLUO-
RIDE, NIT
DIS-
SOLVED SO
(MG/L (M
AS F) AS | TRO- NITRO EN, GEN RATE AMMON. IS- DIS LVED SOLVI G/L (MG/: N) AS N 618) (00606 | , PHOROUS IA ORTHO, - DIS- ED SOLVED L (MG/L) AS P) | | 455911089405903 VANDERCOOK LK | BULK PRECIP | COLL NR WOOL | RUFF, WI (L | AT 45 59 111 | N LONG 089 40 59W) | | OCT 07 - NOV 04, 19 NOV 04 - DEC 09, 19 DEC 09, 1987 - JAN 11, 19 JAN 11 - FEB 03, 19 FEB 03 - MAR 02, 19 MAR 02 - MAR 29, 19 MAR 29 - MAY 02, 19 MAY 02 - JUN 01, 19 JUN 01 - JUN 27, 19 JUN 27 - AUG 01, 19 AUG 01 - AUG 29, 19 AUG 29 - OCT 05, 19 | 87 0.98
88 0.84
88 1.6
88 2.9
88 2.9
88 5.0
88 3.7
88 1.5
88 1.5 | 0.18
0.25
0.16 | 0.03 0
0.02 0
0.05 0
0.04 0
0.04 0
0.04 0
0.05 0
0.03 0
0.03 0
0.04 0 | .380 0.41
.240 0.01
.470 0.11
.620 0.21
.570 0.22
.610 0.77
.880 1.81
.900 1.01
.380 0.61
.390 0.44 | 37 | | 460307089391203 TROUT LK BULK | | | • | | | | DEC 09, 1987 - JAN. 11, 1 | 988 0.83 | 0.15 | 0.01 0 | .470 0.13 | 30 <0.010 | # VANDERCOOK LAKE # QUALITY OF GROUND WATER WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | STATION NUMBER | LOCAL
IDENT-
I-
FIER | GEO-
LOGIC
UNIT | DATE | DEPTH
OF
WELL,
TOTAL
(FEET)
(72008) | SPE-
CIFIC
CON-
DUCT-
ANCE
(US/CM)
(00095) | PH
(STAND-
ARD
UNITS)
(00400) | TEMPER-
ATURE
WATER
(DEG C)
(00010) | |------------------------------------|--|--|--|---|--|--|---| | | VI-41/06E/36-0747
VI-41/06E/36-0088 | 110QRNR
110QRNR
110QRNR
110QRNR
110QRNR | 12-09-87
03-02-88
10-07-87
11-04-87
12-09-87 | 8.00
8.00
18.00
18.00
18.00 | 32
33
58
57
55 | 6.70
6.00
6.50 | 4.0
2.0
8.0
9.0
7.0 | | | | 110QRNR
110QRNR
110QRNR
**110QRNR
**110QRNR | 01-11-88
02-03-88
03-02-88
03-29-88
03-29-88 | 18.00
18.00
18.00
18.00
18.00 | 54
55
53
55
56 | 6.50
6.50
6.50
6.10
6.20 | 5.0
5.0
7.0
5.0
5.5 | | | | 110QRNR
110QRNR
110QRNR
**110QRNR
**110QRNR | 05-02-88
06-01-88
06-27-88
08-01-88
08-01-88 | 18.00
18.00
18.00
18.00
18.00 | 55
60
59
55
55 | 6.50
6.40
6.50
6.40
6.40 | 9.0
10.0
8.0
11.0
11.0 | | 455905089404700 \ | /I-41/06E/36-0961 | 110QRNR
110QRNR
110QRNR
110QRNR
110QRNR | 08-29-88
02-03-88
03-02-88
03-29-88
05-02-88 | 18.00
8.00
8.00
8.00
8.00 | 59
36
30
31
32 | 6.00
6.50
6.60
6.20
6.40 | 10.0
4.0
2.0
3.0
7.0 | | 455906089404800 N | /I-41/06E/36-0962 | 110QRNR
110QRNR
110QRNR
110QRNR
110QRNR | 06-01-88
06-27-88
08-01-88
08-29-88
02-03-88 | 8.00
8.00
8.00
8.00
8.00 | 37
37
37
36
49 | 6.40
6.50
6.60
6.00
5.80 | 11.0
10.0
12.5
13.0
4.0 | | | | 110QRNR
110QRNR
110QRNR
110QRNR
110QRNR | 03-02-88
03-29-88
05-02-88
06-01-88
06-27-88 | 8.00
8.00
8.00
8.00
8.00 | 50
44
44
54
55 | 5.90
5.60
6.30
5.70
5.80 | 3.0
3.0
7.0
11.0
10.0 | | | | 110QRNR
110QWNR | 08-01-88
08-29-88 | 8.00
8.00 | 50
53 | 5.80
5.30 | 15.0
14.0 | | STATION NUMBER | CALCIUM DIS- ACIDITY SOLVED
(MG/L (MG/L AS H) AS CA) (71825) (00915) | MAGNE- SIUM, SODIUM, DIS- SOLVED SOLVED (MG/L AS MG) AS NA (00925) (00930) | DIS-
SOLVED
(MG/L
AS K) | ALKA-
LINITY
WAT WH
TOT IT
LAB
MG/L AS
CACO3
(00416) | SULFATE
DIS-
SOLVED
(MG/L
AS SO4)
(00945) | CHLO-
RIDE,
DIS-
SOLVED
(MG/L
AS CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(MG/L
AS F)
(00950) | | 455903089404720
455904089404711 | 0.03 3.5
0.03 3.4
0.06 6.7
<0.01 6.0
0.02 6.5 | 1.2 1.3
1.2 1.0
1.6 2.2
1.5 2.1
1.5 2.1 | 0.25
0.14
0.30
0.39
0.41 | 12

19
19
19 | 3.8
4.9
8.2
7.9
8.1 | 0.28
0.35
0.36
0.45
0.33 | 0.09
0.10
0.08
0.09
0.10 | | | 0.05 6.5
0.06 6.4
0.03 6.3
0.02 6.6
0.02 6.8 | 1.6 2.0
1.5 2.1
1.5 2.0
1.5 1.9
1.6 1.9 | 0.43
0.23
0.31
0.36
0.37 | 19
19

20
20 | 7.1
7.6
5.6
7.3
7.5 | 0.33
0.34
0.34
0.36
0.36 | 0.07
0.09
0.10
0.07
0.07 | | | 0.06 6.8
<0.01 7.3
0.27 6.9
0.02 6.8
0.01 7.1 | 1.6 1.9
1.7 2.2
1.6 2.1
1.6 2.1
1.6 2.3 | 0.35
0.18
0.29
0.29
0.28 | 20

20

 | 7.7
7.8
7.7
7.8
8.0 | 0.32
0.36
0.35
0.39
0.40 | 0.14
0.08
0.09
0.09
0.08 | | 455905089404700 | 0.05 7.2
0.10 2.1
0.04 1.8
0.03 2.1
0.10 2.5 | 1.6 2.3
0.86 1.6
0.72 1.2
0.83 1.1
0.93 1.2 | 0.22
0.18
0.15
0.14
0.16 | 21
8
4
4
6 | 7.7
5.1
5.1
6.1
6.4 | 0.37
0.31
0.30
0.36
0.34 | 0.08
0.10
0.07
0.07
0.06 | | 455906089404800 | 0.02 2.8
0.02 2.9
0.02 2.9
0.07 2.9
0.13 4.5 | 1.0 1.4
1.1 1.5
1.0 1.6
1.0 1.5
1.7 2.2 | 0.06
0.06
0.19
0.20
0.16 | 6
8
9
9 | 6.5
5.6
5.1
4.8 | 0.31
0.33
0.30
0.31
0.77 | 0.06
0.06
0.09
0.08
0.08 | | | 0.04 4.3
0.04 3.8
0.29 3.5
0.05 4.8
0.08 5.0 | 1.7 2.2
1.5 2.1
1.4 2.2
1.9 2.6
1.9 2.5 | 0.17
0.19
0.17
0.17
0.17 | 13

11
15
16 | 10
14
8.1
9.0
9.6 | 0.56
0.58
0.59
0.58
0.57 | 0.05
0.07
0.06
0.08
0.06 | | | 0.08 5.0 | 1.5 2.5 | | | 7.0 | | | # VANDERCOOK LAKE # QUALITY OF GROUND WATER--CONTINUED WATER-QUALITY DATA, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 | STATION | NUMBER | SILICA,
DIS-
SOLVED
(MG/L
AS
SIO2)
(00955) | SOLIDS,
SUM OF
CONSTI-
TUENTS,
DIS-
SOLVED
(MG/L)
(70301) | NITRO-
GEN,
NITRATE
DIS-
SOLVED
(MG/L
AS N)
(00618) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(MG/L
AS N)
(00608) | PHOS-
PHOROUS
ORTHO,
DIS-
SOLVED
(MG/L
AS P)
(00671) | ALUM-
INUM,
DIS-
SOLVED
(UG/L
AS AL)
(01106) | IRON,
DIS-
SOLVED
(UG/L
AS FE)
(01046) | MANGA-
NESE,
DIS-
SOLVED
(UG/L
AS MN)
(01056) | CARBON,
ORGANIC
DIS-
SOLVED
(MG/L
AS C)
(00681) | |---------------------|--------|--|--|--|--|---|--|---|---|---| | 4559030894 | 04720 | 11 | 21 | <0.010 | 0.006 | 0.004 | 7 | 10 | 20 | 3.7
3.2 | | 4559040894 | 04711 | 6.3
17
17
17 | 18
36
36
36 | 0.050
<0.010
0.050
0.020 | <0.002
0.013
0.002
0.008 | 0.009
<0.001
0.006
0.005 | 5
4
6
7 | <2
3
5
4 | <1
1
<1
4 | 1.6
1.5
1.6 | | | | 17
17 | 36
36 | 0.060
0.080 | 0.032
0.028 | 0.067
0.013 | 6
3 | 3
7 | 2
<1 | $\frac{1.5}{1.2}$ | | | | 17
16 | 34
34 | 0.080 | <0.028
<0.002
0.011 | 0.023
0.031 | 4
8 | <2
2 | <1
<1 | 1.3 | | | | 16 | 35 | 0.060 | 0.009 | 0.023 | 5 | <2 | ₹1 | 2.0 | | | | 16
16 | 35
36 | 0.090
0.100 | 0.014 | 0.038
0.014 | 4
3 | 2
<2 | 3
12 | 1.3
1.5 | | | | 16 | 36 | 0.100 | 0.023 | 0.027 | 4 | <2 | <1 | 3.0 | | | | 15
16 | 34
36 | 0.060
0.070 | 0.011
0.008 | 0.022
0.005 | 8
10 | 7
6 | 5
4 | 1.5
1.6 | | / E E O O E O O O / | 04700 | 16 | 36 | <0.010 | 0.009 | <0.001 | 20 | 6 | 3
54 | 1.1 | | 4559050894 | 04700 | 13
11 | 27
22 | <0.010
<0.010 | 0.060
<0.002 | 0.020
0.027 | 3
7 | 3500
2000 | 27 | 2.4 | | | | 8.9
8.3 | 21
22 | <0.010
<0.010 | 0.015
0.012 | 0.032
0.030 | 7
2 | 1700
1600 | 22
26 | 2.8
2.8 | | | | | | | | | | | | 2.1 | | | | 9.3
10 | 23
24 | <0.010
<0.010 | 0.011
0.040 | 0.017
0.052 | 4
7 | 1600
1900 | 25
18 | 3.5 | | | | 11 | 24 | 0.020 | 0.012 | 0.010 | 10
20 | 1900
1800 | 26
24 | 1.7
1.5 | | 4559060894 | 04800 | 12
16 | 25
36 | 0.020
0.030 | 0.025
0.024 | 0.007
0.013 | 7 | 10 | 32 | 1.6 | | | | 16
18 | 36
42 | 0.240 | 0.009
0.011 | 0.014
0.027 | 10
10 | 110
91 | 35
62 | 1.5
1.8 | | | | 17 | 33 | <0.010 | 0.020 | 0.026 | 8 | 76 | 97 | 2.0 | | | | 16
16 | 35
36 | 0.030
0.030 | 0.005
0.016 | $ \begin{array}{r} 0.018 \\ 0.020 \end{array} $ | 9
10 | 64
79 | 90
53 | 1.5
3.0 | | | | 16
17 | 36
38 | 0.020
<0.010 | 0.012
0.008 | 0.005
<0.001 | 20
20 | 66
73 | 55
52 | 1.4
1.5 | ^{**}SAMPLES WITH SAME DATES ARE REPLICATES. STAGE RECORDS ## 455946089415702 LITTLE ROCK LAKE NEAR WOODRUFF, WI LOCATION.--Lat 45°59'46", long 89°41'57", in NW 1/4 NW 1/4 sec.36, T.41 N., R.6 E., Vilas County, Hydrologic Unit 07070001, 7 mi north of Woodruff, 800 ft west of U.S. Highway 57, and 200 ft southeast of boat landing. DRAINAGE AREA.--0.22 mi². Area of lake, 0.07 mi². PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,600.00 ft above National Geodetic Vertical Datum of 1929. REMARKS. -- Records good. Lake does not have surface inlet or outlet. EXTREMES FOR PERIOD OF RECORD.--Maximum observed gage height, 28.10 ft, Apr. 7-9, 1986; minimum observed gage height, 25.70 ft, July 31, 1988. EXTREMES FOR CURRENT YEAR.--Maximum observed gage height, 26.80 ft, Jan. 24-27; minimum observed gage height, 25.70 ft, July 31. | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988
MEAN VALUES | | | | | | | | | | | | | |---|---|---|--|--|---|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | J AN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 26.58 | 26.61 | 26.67 | 26.73 | 26.78 | 26.64 | 26.65 | 26.58 | 26.30 | 25.86 | 25.72 | 25.80 | | 2 | 26.63 | 26.61 | 26.67 | 26.73 | 26.77 | 26.63 | 26.63 | 26.58 | 26.30 | 25.85 | 25.78 | 25.79 | | 3 | 26.61 | 26.62 | 26.66 | 26.72 | 26.76 | 26.63 | 26.63 | 26.56 | 26.29 | 25.83 | 25.78 | 25.89 | | 4 | 26.60 | 26.64 | 26.66 | 26.73 | 26.76 | 26.62 | 26.65 | 26.55 | 26.27 | 25.81 | 25.83 | 25.95 | | 5 | 26.60 | 26.62 | 26.66 | 26.76 | 26.75 | 26.62 | 26.65 | 26.54 | 26.26 | 25.80 | 25.86 | 25.95 | | 6 | 26.61 | 26.61 | 26.66 | 26.76 | 26.74 | 26.61 | 26.65 | 26.53 | 26.25 | 25.79 | 25.86 | 25.92 | | 7 | 26.61 | 26.60 | 26.65 | 26.75 | 26.75 | 26.60 | 26.64 | 26.51 | 26.24 | 25.77 | 25.84 | 25.91 | | 8 | 26.59 | 26.60 | 26.65 | 26.74 | 26.75 | 26.60 | 26.64 | 26.50 | 26.22 | 25.75 | 25.84 | 25.89 | | 9 | 26.58 | 26.58 | 26.69 | 26.74 | 26.74 | 26.58 | 26.64 | 26.55 | 26.19 | 25.76 | 25.82 | 25.88 | | 10 | 26.57 | 26.58 | 26.71 | 26.74 | 26.73 | 26.57 | 26.65 | 26.55 | 26.17 | 25.77 | 25.80 | 25.86 | | 11 | 26.56 | 26.57 | 26.71 | 26.74 | 26.72 | 26.57 | 26.67 | 26.54 | 26.15 | 25.74 | 25.78 | 25.85 | | 12 | 26.55 | 26.57 | 26.72 | 26.75 | 26.72 | 26.57 | 26.67 | 26.53 | 26.13 | 25.73 | 25.85 | 25.85 | | 13 | 26.55 | 26.56 | 26.72 | 26.76 | 26.72 | 26.58 | 26.67 | 26.53 | 26.11 | 25.72 | 25.88 | 25.84 | | 14 | 26.54 | 26.56 | 26.71 | 26.75 | 26.71 | 26.58 | 26.68 | 26.51 | 26.08 | 25.72 | 25.90 | 25.83 | | 15 | 26.56 | 26.56 | 26.72 | 26.74 | 26.70 | 26.60 | 26.68 | 26.50 | 26.05 | 25.75 | 25.89 | 25.81 | | 16 | 26.65 | 26.56 | 26.73 | 26.76 | 26.70 | 26.60 | 26.68 | 26.49 | 26.03 | 25.83 | 25.87 | 25.82 | | 17 | 26.66 | 26.61 | 26.73 | 26.74 | 26.70 | 26.60 | 26.68 | 26.47 | 26.02 | 25.82 | 25.91 | 25.87 | | 18 | 26.66 | 26.65 | 26.73 | 26.74 | 26.69 | 26.59 | 26.68 | 26.46 | 26.00 | 25.80 | 25.91 | 25.87 | | 19 | 26.65 | 26.65 | 26.73 | 26.76 | 26.68 | 26.59 | 26.68 | 26.45 | 26.02 | 25.79 | 25.88 | 25.88 | | 20 | 26.64 | 26.63 | 26.74 | 26.79 | 26.68 | 26.59 | 26.67 | 26.44 | 26.02 | 25.78 | 25.88 | 25.92 | | 21
22
23
24
25 | 26.65
26.65
26.65
26.65
26.64 | 26.62
26.62
26.63
26.63 | 26.75
26.74
26.73
26.73
26.74 | 26.78
26.78
26.79
26.80
26.80 | 26.68
26.67
26.67
26.66
26.65 | 26.58
26.58
26.58
26.58
26.65 | 26.66
26.64
26.65
26.65
26.65 | 26.43
26.43
26.42
26.41
26.39 |
26.00
25.99
25.96
25.95
25.92 | 25.79
25.78
25.76
25.76
25.78 | 25.88
25.85
25.90
25.90
25.89 | 25.92
25.91
25.91
25.90
25.89 | | 26
27
28
29
30
31 | 26.64
26.64
26.63
26.63
26.63 | 26.62
26.61
26.61
26.65
26.67 | 26.74
26.74
26.74
26.74
26.73
26.74 | 26.80
26.80
26.79
26.79
26.78
26.78 | 26.65
26.64
26.64
26.65 | 26.63
26.64
26.64
26.65
26.65
26.65 | 26.64
26.62
26.62
26.61
26.59 | 26.37
26.36
26.36
26.34
26.33
26.32 | 25.90
25.88
25.89
25.90
25.88 | 25.76
25.74
25.73
25.72
25.71
25.70 | 25.86
25.85
25.85
25.82
25.81
25.80 | 25.88
25.86
25.86
25.86
25.84 | | TOTAL | 825.04 | 798.27 | 828.04 | 829.62 | 774.46 | 824.80 | 799.52 | 820.53 | 782.37 | 798.90 | 801.29 | 776.23 | | MEAN | 26.61 | 26.61 | 26.71 | 26.76 | 26.71 | 26.61 | 26.65 | 26.47 | 26.08 | 25.77 | 25.85 | 25.87 | | MAX | 26.66 | 26.67 | 26.75 | 26.80 | 26.78 | 26.65 | 26.68 | 26.58 | 26.30 | 25.86 | 25.91 | 25.95 | | MIN | 26.54 | 26.56 | 26.65 | 26.72 | 26.64 | 26.57 | 26.59 | 26.32 | 25.88 | 25.70 | 25.72 | 25.79 | CAL YR 1987 TOTAL 9882.04 MEAN 27.07 MAX 27.65 MIN 26.54 WTR YR 1988 TOTAL 9659.07 MEAN 26.39 MAX 26.80 MIN 25.70 #### GROUND-WATER LEVELS ## 455958089420501 WELL VI-41/06E/26-0895 LOCATION.--Lat 45°59'58", long 89°42'05", in NE 1/4 SE 1/4 SE 1/4 sec.2, T.41 N., R.6 E., Vilas County, Hydrologic Unit 07070001, 0.05 mi northeast of Little Rock Lake, about 7 mi north of Woodruff. AQUIFER. -- Sand and gravel. WELL CHARACTERISTICS.--Augered water-table observation well, diameter 3 in., depth 22 ft, cased to 20 ft, screened 20-22 ft. PERIOD OF RECORD. -- October 1983 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,600.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.-- Records good. EXTREMES FOR PERIOD OF RECORD.--Maximum observed water level, 27.08 ft, Apr. 26-28, 1986; minimum observed water level, 23.51 ft, Sept. 30, 1988. EXTREMES FOR CURRENT YEAR.--Maximum observed water level, 24.54 ft, Oct. 1; minimum observed water level, 23.51 ft, Sept. 30. | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 1987 TO SEPTEMBER 1988 MEAN VALUES | | | | | | | | | | | | | |--|---|---|--|--|---|--|---|--|---|---|--|---| | DAY | ост | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 24.54 | 24.42 | 24.33 | 24.32 | 24.22 | 24.10 | 24.05 | 24.40 | 24.22 | 23.91 | 23.63 | 23.55 | | 2 | 24.52 | 24.42 | 24.33 | 24.32 | 24.22 | 24.09 | 24.06 | 24.40 | 24.21 | 23.90 | 23.61 | 23.55 | | 3 | 24.52 | 24.40 | 24.33 | 24.32 | 24.21 | 24.09 | 24.07 | 24.40 | 24.20 | 23.89 | 23.61 | 23.55 | | 4 | 24.52 | 24.39 | 24.32 | 24.32 | 24.21 | 24.08 | 24.09 | 24.39 | 24.19 | 23.89 | 23.60 | 23.55 | | 5 | 24.52 | 24.39 | 24.32 | 24.32 | 24.21 | 24.08 | 24.12 | 24.39 | 24.18 | 23.87 | 23.60 | 23.55 | | 6 | 24.51 | 24.39 | 24.32 | 24.31 | 24.21 | 24.07 | 24.15 | 24.39 | 24.17 | 23.86 | 23.60 | 23.55 | | 7 | 24.50 | 24.39 | 24.32 | 24.31 | 24.21 | 24.07 | 24.18 | 24.38 | 24.16 | 23.85 | 23.60 | 23.56 | | 8 | 24.49 | 24.39 | 24.32 | 24.31 | 24.20 | 24.06 | 24.22 | 24.38 | 24.15 | 23.84 | 23.60 | 23.56 | | 9 | 24.49 | 24.39 | 24.32 | 24.30 | 24.19 | 24.06 | 24.25 | 24.38 | 24.14 | 23.83 | 23.60 | 23.56 | | 10 | 24.48 | 24.38 | 24.32 | 24.30 | 24.19 | 24.06 | 24.27 | 24.38 | 24.13 | 23.82 | 23.60 | 23.56 | | 11 | 24.48 | 24.38 | 24.34 | 24.30 | 24.19 | 24.05 | 24.29 | 24.36 | 24.12 | 23.80 | 23.59 | 23.56 | | 12 | 24.47 | 24.38 | 24.34 | 24.29 | 24.18 | 24.05 | 24.31 | 24.36 | 24.11 | 23.78 | 23.59 | 23.54 | | 13 | 24.46 | 24.37 | 24.34 | 24.28 | 24.18 | 24.05 | 24.33 | 24.36 | 24.10 | 23.78 | 23.59 | 23.54 | | 14 | 24.45 | 24.36 | 24.33 | 24.28 | 24.18 | 24.05 | 24.34 | 24.36 | 24.09 | 23.77 | 23.59 | 23.54 | | 15 | 24.45 | 24.36 | 24.34 | 24.28 | 24.17 | 24.04 | 24.35 | 24.36 | 24.06 | 23.76 | 23.59 | 23.53 | | 16
17
18
19
20 | 24.44
24.44
24.44
24.44 | 24.35
24.35
24.35
24.35
24.35 | 24.34
24.34
24.34
24.34
24.34 | 24.28
24.27
24.26
24.26
24.26 | 24.17
24.16
24.15
24.15
24.15 | 24.04
24.04
24.05
24.05
24.04 | 24.36
24.38
24.38
24.39
24.39 | 24.36
24.35
24.34
24.34
24.33 | 24.04
24.04
24.03
24.01
24.00 | 23.74
23.74
23.74
23.74
23.73 | 23.58
23.58
23.58
23.58
23.58 | 23.53
23.52
23.52
23.52
23.53 | | 21 | 24.44 | 24.35 | 24.34 | 24.25 | 24.15 | 24.04 | 24.39 | 24.33 | 23.98 | 23.73 | 23.58 | 23.53 | | 22 | 24.44 | 24.35 | 24.34 | 24.25 | 24.14 | 24.04 | 24.39 | 24.32 | 23.98 | 23.72 | 23.58 | 23.53 | | 23 | 24.44 | 24.35 | 24.34 | 24.25 | 24.14 | 24.04 | 24.40 | 24.31 | 23.98 | 23.71 | 23.58 | 23.53 | | 24 | 24.44 | 24.34 | 24.34 | 24.25 | 24.13 | 24.03 | 24.40 | 24.30 | 23.97 | 23.70 | 23.59 | 23.53 | | 25 | 24.44 | 24.33 | 24.34 | 24.25 | 24.12 | 24.03 | 24.41 | 24.29 | 23.94 | 23.69 | 23.59 | 23.52 | | 26
27
28
29
30
31 | 24.43
24.43
24.43
24.43
24.43 | 24.33
24.33
24.33
24.33
24.33 | 24.33
24.32
24.32
24.32
24.32
24.33 | 24.24
24.24
24.24
24.23
24.23
24.23 | 24.12
24.11
24.11
24.10 | 24.03
24.03
24.04
24.05
24.05
24.05 | 24.40
24.40
24.40
24.40
24.40 | 24.29
24.28
24.27
24.26
24.25
24.23 | 23.94
23.94
23.93
23.92
23.92 | 23.69
23.68
23.67
23.66
23.64 | 23.58
23.58
23.58
23.58
23.57
23.57 | 23.52
23.52
23.52
23.52
23.51 | | TOTAL | 758.37 | 730.93 | 754.26 | 752.55 | 700.87 | 745.65 | 728.97 | 754.54 | 721.85 | 736.77 | 731.28 | 706.10 | | MEAN | 24.46 | 24.36 | 24.33 | 24.28 | 24.17 | 24.05 | 24.30 | 24.34 | 24.06 | 23.77 | 23.59 | 23.54 | | MAX | 24.54 | 24.42 | 24.34 | 24.32 | 24.22 | 24.10 | 24.41 | 24.40 | 24.22 | 23.91 | 23.63 | 23.56 | | MIN | 24.42 | 24.33 | 24.32 | 24.23 | 24.10 | 24.03 | 24.05 | 24.23 | 23.92 | 23.64 | 23.57 | 23.51 | CAL YR 1987 TOTAL 9126.30 MEAN 25.00 MAX 25.87 MIN 24.32 WTR YR 1988 TOTAL 8822.14 MEAN 24.10 MAX 24.54 MIN 23.51 # DISCONTINUED STATIONS The following streamflow stations have been discontinued in Wisconsin. Continuous daily streamflow records were collected and published for the period of record shown for each station. | Station
number | Station name | Drainage area
(sq mi) | Period of record | |--|--|------------------------------|---| | 04024314
04024315
04024318
04024320
04025000 | Little Balsam Creek at Patzau, WI
Little Balsam Creek near Patzau, WI
Little Balsam Creek Tributary near Patzau, WI
Little Balsam Creek near Foxboro, WI
Amnicon River near Poplar (Amnicon Falls), WI | 5.00
5.18
0.54
6.27 | 1976-78
1975-78
1976-78
1977-78
1914-16 | | 04026000 | Bois Brule (Brule) River near Brule, WI | 153 | 1914-17 | | 04026300 | Sioux River near Washburn, WI | 14.9 | 1964-66 | | 04026347 | Pine Creek at Moquah, WI | 5.90 | 1975-78 | | 04026348 | Pine Creek Tributary at Moquah, WI | 0.57 | 1976-78 | | 04026349 | Pine Creek near Moquah, WI | 21.5 | 1975-78 | | 04026450 | Bad River near Mellen, WI | 83.4 | 1970-75 | | 04026500 | Bad River at Mellen, WI | 101 | 1948-55 | | 04026870 | Alder Creek near Upson, WI | 22.3 | 1972-77 | | 04028500 | Montreal River near Kimball, WI | 109 | 1924-25 | | 04029000 | West Fork Montreal River at Gile, WI | 78 | 1918-25, 1942-47 | | 04029500
04063640
04064000
04064500 | West Fork Montreal River near Kimball, WI
North Branch Pine River at Windsor Dam nr Alvin, WI
Pine River near Florence, WI
Pine River below Pine River Powerplant near
Florence, WI | 96
29.4
500
528 | 1924-25
1966-68
1913-23
1923-75 | | 04066500 | Pike River at Amberg, WI | 253 | 1914-70 | | 04067000 | Menominee River below Koss, MI | 3,730 | 1907-09, 1913-81 | | 04068000 | Peshtigo River at High Falls near Crivitz, WI | 554 | 1912-57 | | 04072000 | Suamico River at Suamico, WI | 57.0 | 1951-52 | | 04072750 | Lawrence Creek near Westfield, WI | 16.0 | 1967-73 | | 04073050 | Grand River near Kingston, WI | 73.7 | 1968-75 | | 04073405 | West Branch White River near Wautoma, WI | 43 | 1963-65 | | 04074538 | Swamp Creek above Rice Lake at Mole Lake, WI | 46.3 | 1977-83, 1984-86 | | 04074548 | Swamp Creek below Rice Lake at Mole Lake, WI | 56.8 | 1977-79, 1982-85 | | 04075000 | Wolf River near White Lake, WI | 482 | 1935-37 | | 04075200 | Evergreen Creek near Langlade, WI | 8.0 | 1964-73 | | 04075500 | Wolf River above West Branch Wolf River, WI | 633 | 1927-62 | | 04076000 | West Branch Wolf River at Neopit, WI | 108 | 1911-17 | | 04076500 | West Branch Wolf River near Keshena, WI | 170 | 1928-31 | | 04078500 | Embarrass River near Embarrass, WI | 384 | 1919-85 | | 04079602 | Little Wolf River near Galloway, WI | 22.5 | 1973-79 | | 04079700 | Spaulding Creek near Big Falls, WI | 4.9 | 1964-66 | | 04080000 | Little Wolf River at Royalton, WI | 507 | 1914-70, 1982-85 | | 04080950 |
Emmons Creek near Rural, WI | 27 | 1968-74 | | 04080976 | Storm Sewer to Mirror Lake at Waupaca, WI | 0.04 | 1971-74 | | 04081000 | Waupaca River near Waupaca, WI | 265 | 1916-66, 1982-85 | | 04081800 | Daggets Creek at Butte Des Morts, WI | 10.3 | 1976-77 | | 04083000 | West Branch Fond du Lac River at Fond du Lac, WI | 84.5 | 1939-54 | | 04083500 | East Branch Fond du Lac River near Fond du Lac, WI | 77.9 | 1939-54 | | 04084200 | Brothertown Creek at Brothertown, WI | 5.59 | 1976-77 | | 04085813 | Onion River at Hingham, WI | 37.2 | 1978-80 | | 04085845 | Onion River near Sheboygan Falls, WI | 94:1 | 1978-82 | | 04086150 | Milwaukee River at Kewaskum, WI | 138 | 1968-81 | | 04086200 | East Branch Milwaukee River near New Fane, WI | 54:1 | 1968-81 | | 04086340 | North Branch Milwaukee River near Fillmore, WI | 148 | 1968-81 | | 04086360 | Milwaukee River at Waubeka, WI | 432 | 1968-81 | | 04086488 | Mud Lake Outlet near Decker Corner, WI | 7.36 | 1982-84 | | 04086500 | Cedar Creek near Cedarburg, WI | 120 | 1930-70, 1973-81, | | 04087010
04087018
04087019 | Milwaukee River above North Avenue Dam at Milwaukee,
Menomonee River at Germantown, WI
Jefferson Park Drainageway at Germantown, WI | | 1983-87
1982-84
1974-77
1976-78 | | 04087040 | Menomonee River at Butler, WI | 60.6 | 1974-79 | | 04087060 | Noyes Creek at Milwaukee, WI | 1.94 | 1974-79 | | 04087070 | Little Menomonee River at Milwaukee, WI | 19.7 | 1974-77 | | 04087119 | Honey Creek at Wauwatosa, WI | 10.3 | 1974-81 | | 04087125 | Schoonmaker Creek at Wauwatosa, WI | 1.94 | 1974-79 | | 04087130 | Hawley Road Storm Sewer at Milwaukee, WI | 1.83 | 1975-77 | | 04087138 | Menomonee River at Milwaukee, WI | 134 | 1981-84 | | 04087160 | Kinnickinnic River at Milwaukee, WI | 20.4 | 1976-82 | | 05332000 | Namekagon River at Trego, WI | 460 | 1914-27 | | 05335010 | Loon Creek near Danbury, WI | 16.9 | 1970-71 | | 05335380 | Bashaw Brook near Shell Lake, WI | 24.9 | 1964-66 | | 05335500 | Clam River near Webster, WI | 364 | 1940-42 | | 05336000 | St. Croix River near Grantsburg, WI | 2,820 | 1923-70 | | 05339000 | Wood River near Grantsburg, WI | 190 | 1939 | | 05342000 | Kinnickinnic River near River Falls, WI | 167 | 1916-21 | | Station
number | Station name | Drainage area
(sq mi) | Period of record | |--|--|--------------------------------|---| | 05355500 | West Fork Chippewa River at Lessards, nr Winter, WI | 577 | 1911-16 | | 05356121 | Couderay River near Couderay, WI | 169 | 1981-83 | | 05357500 | Flambeau River at Flambeau Flowage (Flambeau | 666 | 1927-61 | | 05358000
05358300 | Reservoir), WI
Flambeau River near Butternut, WI
Pine Creek near Oxbo, WI | 737
37.8 | 1914-38
1970-75 | | 05358500 | Flambeau River at Babbs Island near Winter, WI | 1,000 | 1929-75 | | 05359500 | South Fork Flambeau River near Phillips, WI | 615 | 1929-75 | | 05359600 | Price Creek near Phillips, WI | 14.7 | 1964-66 | | 05360000 | Flambeau River near (at) Ladysmith, WI | 1,823 | 1903-06, 1914-61 | | 05361000 | Chippewa River near Holcombe, WI | 3,790 | 1944-49 | | 05361500 | South Fork Jump River near Ogema, WI | 328 | 1944-54 | | 05362500 | Chippewa River at Holcombe, WI | 4,700 | 1942-49 | | 05363000 | Fisher River at (near) Holcombe, WI | 76 | 1944-45 | | 05363500 | O'Neil Creek near Chippewa Falls, WI | 67.1 | 1944-45 | | 05363700 | Yellow River near Hannibal, WI | 91.2 | 1962-63 | | 05364000 | Yellow River at Cadott, WI | 351 | 1942-61 | | 05364500 | Duncan Creek at Bloomer, WI | 49.2 | 1943-51 | | 05365000 | Duncan Creek at Chippewa Falls, WI | 114 | 1942-55 | | 05366000 | Eau Claire River near Augusta, WI | 500 | 1914-26 | | 05366300 | Bridge Creek at Augusta, WI | 34.5 | 1979-80 | | 05366500 | Eau Claire River near Fall Creek, WI | 758 | 1942-55 | | 05367000 | Chippewa River at (near) Eau Claire, WI | 6,630 | 1902-09, 1944-54 | | 05367425 | Red Cedar River near Cameron, WI | 450 | 1966-70 | | 05367426 | Red Cedar River near Cameron, WI | 453 | 1971-73 | | 05367500 | Red Cedar River near Colfax, WI | 1,100 | 1914-61 | | 05369900 | Eau Galle River near Woodville, WI | 39.4 | 1978-83 | | 05369955 | French Creek near Spring Valley, WI | 6.03 | 1980-83 | | 05369970 | Lousy Creek near Spring Valley, WI | 5.97 | 1980-83 | | 05369985 | Lohn Creek near Spring Valley, WI | 2.53 | 1980-83 | | 05370500 | Eau Galle River at Elmwood, WI | 91.9 | 1942-53 | | 05372000 | Buffalo River near Tell, WI | 406 | 1932-51 | | 05379288 | Bruce Valley Creek near Pleasantville, WI | 10.1 | 1979-80 | | 05379305 | Elk Creek near Independence, WI | 99.7 | 1979-80 | | 05379400 | Trempealeau River at Arcadia, WI | 552 | 1960-77 | | 05380000 | Trempealeau River near Trempealeau, WI | 722 | 1931-34 | | 05380806 | Black River at Medford, WI | 47.9 | 1984-87 | | 05380900 | Poplar River near Owen, WI | 157 | 1964-66 | | 05382500 | Little LaCrosse River near Leon, WI | 77.4 | 1934-61, 1978-81 | | 05383000 | LaCrosse River near West Salem, WI | 398 | 1913-70 | | 05386490 | Spring Coulee Creek near Coon Valley, WI | 8.93 | 1978-81 | | 05386500 | Coon Creek at Coon Valley, WI | 78.3 | 1934-40, 1978-81 | | 05386999 | Coon Creek near Stoddard, WI | 120 | 1934-40, 1979-81 | | 05387100 | North Fork Bad Axe River near Genoa, WI | 68.8 | 1964-66 | | 05390180 | Wisconsin River at Conover, WI | 176 | 1966-71 | | 05391226 | Pelican River near Rhinelander, WI | 101 | 1976-79 | | 05392000 | Wisconsin River at Whirlpool Rapids, near
Rhinelander, WI | 1,200 | 1905-61 | | 05392350 | Bearskin Creek near Harshaw, WI | 27.8 | 1964-66 | | 05392400 | Tomahawk River near Bradley, WI | 422 | 1914-27, 1928-29 | | 05393000 | Tomahawk River at Bradley, WI | 545 | 1930-73 | | 05394000 | New Wood River near Merrill, WI | 83.1 | 1952-61 | | 05396000
05396500
05397000
05397110
05398500 | Rib River at Rib Falls, WI
Little Rib River near Wausau, WI
East Branch Eau Claire River near Antigo, WI
Eau Claire River near Antigo, WI
Bull Junior Creek (Bull Creek Junior) near
Rothschild, WI | 309
76
75
200
26.4 | 1925-57
1914-16
1949-55
1974-81
1944-51 | | 05399000 | Big Eau Pleine River near Colby, WI | 79 | 1941-54 | | 05399431 | Hamann Creek near Stratford, WI | 11.3 | 1976-79 | | 05400000 | Wisconsin River at Knowlton, WI | 4,520 | 1920-42 | | 05400500 | Plover River near Stevens Point, WI | 136 | 1914-19, 1944-51 | | 05400600 | Little Plover River near Arnott, WI | 1.5 | 1959-75 | | 05400650 | Little Plover River at Plover, WI | 19.0 | 1959-87 | | 05400840 | Fourmile Creek near Kellner, WI | 51 | 1964-67 | | 05400853 | Buena Vista Creek near Kellner, WI | 44 | 1964-67 | | 05401020 | Tenmile Creek Ditch 5 near Bancroft, WI | 8.8 | 1964-73 | | 05401100 | Fourteenmile Creek near New Rome, WI | 91.9 | 1964-79 | | 05401510 | Big Roche a Cri Creek near Hancock, WI | 9.5 | 1963-67 | | 05401535 | Big Roche a Cri Creek near Adams, WI | 52.8 | 1963-78 | | 05402500 | Yellow River at Sprague, WI | 420 | 1926-40 | | 05403000 | Yellow River at Necedah, WI | 526 | 1940-57 | | 05403630 | Hulbert Creek near Wisconsin Dells, WI | 11.2 | 1970-77 | | Station
number | Station name | Drainage area
(sq mi) | Period of record | |--|---|------------------------------|--| | 05401500 | Wisconsin River near Necedah, WI | 5,860 | 1902-14, 1944-50 | | 05403500 | Lemonweir River at New Lisbon, WI | 507 | 1944-87 | | 05403700 | Dell Creek near Lake Delton, WI | 44.9 | 1957-1965, 1970-80 | | 05404200 | Narrows Creek at Loganville, WI | 40.0 | 1964-66 | | 05406000 | Wisconsin River at Prairie du Sac, WI | 9,180 | 1946-53 | | 05406460
05406470
05406491
05406573 | Black Earth Creek at Cross Plains, WI
Brewery Creek at Cross Plains, WI
Garfoot Creek near Cross Plains, WI
Trout Creek at Confluence with Arneson Creek
near Barneveld, WI | 14.6
10.5
5.39
8.37 | 1984-86
1984-86
1984-86
1975-79 | | 05406574 | Trout Creek at Twin Parks Dam 8 nr Barneveld, WI | 9.02 | 1975-79 | | 05406575 | Trout Creek at County Highway T nr Barneveld, WI | 12.1 | 1975-79 | | 05406577 | Trout Creek near Ridgeway, WI | 13.5 | 1975-79 | | 05406590 | Knight Hollow Creek near Arena, WI | 7.57 | 1976-77 | | 05406640 | Otter Creek near Highland, WI | 16.6 | 1968-69, 1970-75 | | 05407500 | Kickapoo River at Ontario, WI | 151 | 1938-39, 1973-77 | | 05408500 | Knapp Creek near Bloomingdale, WI | 8.47 | 1954-69 | | 05409000 | West Fork Kickapoo River near Readstown, WI | 106 | 1938-39 | | 05409500 | Kickapoo River at Soldiers Grove, WI | 530 | 1938-39 | | 05409830 | North Fork Nederlo Creek near Gays Mills, WI | 2.21 | 1967-79 | | 05409890 | Nederlo Creek near Gays Mills, WI | 9.46 | 1967-80 | | 05410000 | Kickapoo River at Gays Mills, WI | 617 | 1913-34, 1964-77 | | 05413400 | Pigeon Creek near Lancaster, WI | 6.81 | 1964-66 | | 05414894 | Pats Creek near Belmont, WI | 5.42 | 1980-82 | | 05414915 | Madden Branch Tributary near Belmont, WI | 2.83 | 1980-82 | | 05414920 | Madden Branch near Meekers Grove, WI | 15.1 | 1980-82 | | 05418731
05423000
05423100 | Apple River near Shullsburg, WI
West Branch Rock River near Waupun, WI
West Branch Rock River at County Trunk Highway D | 9.34 | 1980-82
1949-70, 1978-81 | | 05424000
05424082 | near Waupun, WI
East Branch Rock River near Mayville, WI
Rock River at Hustisford, WI | 43.9
179
511 | 1978-81
1949-70
1978-85 | |
05425537 | Johnson Creek near Johnson Creek, WI | 1.13 | 1978-79 | | 05425539 | Johnson Creek near Johnson Creek, WI | 13.3 | 1978-79 | | 05425928 | Pratt Creek near Juneau, WI | 3.54 | 1978-80 | | 05426500 | Whitewater Creek near Whitewater, WI | 7.2 | 1926-28, 1946-54 | | 05426900 | Whitewater Creek at Millis Road near Whitewater, WI | 20.6 | 1978-81 | | 05427000 | Whitewater Creek at Whitewater, WI | 22.7 | 1926-28, 1946-54 | | 05427507 | Koshkonong Creek near Rockdale, WI | 150 | 1976-82 | | 05427718 | Yahara River at Windsor, WI | 73.6 | 1976-81 | | 05427800 | Token Creek near Madison, WI | 24.3 | 1975-80 | | 05427900 | Sixmile Creek near Waunakee, WI | 41.1 | 1976-81 | | 05427943 | Pheasant Branch at Airport Road near Middleton, WI | 9.61 | 1977-81 | | 05427945 | South Fork Pheasant Branch at Highway 14 near | | 1977-81 | | 05427950
05427952
05427970 | Middleton, WI
Pheasant Branch at Century Avenue at Middleton, WI
Pheasant Branch at mouth at Middleton, WI
Willow Creek at Madison, WI | 5.74
20.8
24.5
3.15 | 1977-81
1978-81
1973-83 | | 05428665 | Olbrich Park Storm Ditch at Madison, WI | 2.57 | 1976-80 | | 05429040 | Manitou Way Storm Sewer at Madison, WI | 0.22 | 1970-77 | | 05429050 | Nakoma Storm Sewer at Madison, WI | 2.35 | 1971-77 | | 05429118 | Lake Wingra at Madison, WI | 6.08 | 1970-79 | | 05429120 | Lake Wingra Outlet at Madison, WI | 6.08 | 1970-77 | | 05429580 | Door Creek near Cottage Grove, WI | 15.3 | 1975-79 | | 05430000 | Yahara River near Edgerton, WI | 459 | 1916-17 | | 05430030 | Oregon Branch at Oregon, WI | 9.93 | 1979-81 | | 05430100 | Badfish Creek near Stoughton, WI | 43.5 | 1956-66 | | 05433500 | Yellowstone River near Blanchardville, WI | 28.5 | 1954-65, 1977-79 | | 05434000 | Pecatonica River at Dill, WI | 951 | 1914-19 | | 05433510 | Steiner Branch near Waldwick, WI | 5.9 | 1977-79 | | 05434235 | Skinner Creek at Skinner Hollow Road near Monroe, WI | 32.6 | 1978-81 | | 05434240 | Skinner Creek at Klondyke Road near Monroe, WI | 35.0 | 1978-81 | | 05435980 | West Branch Sugar River near Mount Vernon, WI | 32.7 | 1979-80 | | 05436000 | Mount Vernon Creek near Mount Vernon, WI | 16.4 | 1954-65, 1975-80 | | 05545300 | White River near Burlington, WI | 110 | 1973-82 | # WISCONSIN DISTRICT PUBLICATIONS The reports listed below are a partial list of reports prepared by the Wisconsin District in cooperation with other agencies since 1948. The list contains reports that are relevant and contribute significantly to understanding the hydrology of Wisconsin's water resources. The reports published in a U.S. Geological Survey series are for sale by the U.S. Geological Survey, Box 25425, Federal Center, Denver, CO 80225. Prepayment is required. Remittance should be sent by check or money order payable to the U.S. Geological Survey. Prices can be obtained by writing to the above address or by calling (303)236-7476. Copies of reports published by the University of Wisconsin, Geological and Natural History Survey, can be obtained from their office at 3817 Mineral Point Road, Madison, WI 53705. #### WATER-SUPPLY PAPERS - U.S. Geological Survey, 1988, National Water Summary, 1986—Hydrologic events, selected water-quality trends, and ground-water quality: U.S. Geological Survey Water-Supply Paper 2325, 569 p. - _____1986, National water summary, 1985—Hydrologic events and surface-water resources: U.S. Geological Survey Water-Supply Paper 2300, 506 p. ____1985, National water summary, 1984—Hydrologic events, selected water-quality trends, and ground-water resources: U.S. Geological Survey - Batten, W.G., and Hindall, S.M., 1980, Sediment deposition in the White River Reservoir, northwestern Wisconsin: U.S. Geological Survey Water-Supply Paper 2069, 30 p. - Sherrill, M.G., 1978, Geology and ground water in Door County, Wisconsin, with emphasis on contamination potential in the Silurian dolomite: U.S. Geological Survey Water-Supply Paper 2047, 38 p. - Hurtgen, D.C., 1975, Summary of floods, June 29–30 in southwestern Wisconsin, in Summary of floods in the United States during 1969: U.S. Geological Survey Water-Supply Paper 2030, p. 116–119. - Bell, E.A., and Sherrill, M.G., 1974, Water availability in central Wisconsinan area of near-surface crystalline rock: U.S. Geological Survey Water-Supply Paper 2022, 32 p. - Novitzki, R.P., 1973, Improvement of trout streams in Wisconsin by augmenting low flows with ground water: U.S. Geological Survey Water-Supply Paper 2017, 52 p. - Oakes, Edward, Field, S.J., and Seeger, L.P., 1973, The Pine-Popple River basins—hydrology of a wild river area, northeastern Wisconsin: U.S. Geological Survey Water-Supply Paper 2006, 57 p. - Hamilton, L.J., 1971, Water for cranberry culture in the Cranmoor area of central Wisconsin: U.S. Geological Survey Water-Supply Paper 1999–I, 20 p. - Hurtgen, D.C., 1972, Floods of March 27–April 4, 1967, in northwestern and west-central Wisconsin, in Summary of floods in the United States during 1967: U.S. Geological Survey Water-Supply Paper 1880–C, p. 7–10. - Hutchinson, R.D., 1970, Ground-water resources of Racine and Kenosha Counties, Wisconsin: U.S. Geological Survey Water-Supply Paper 1878, 63 p. Olcott, P.G., 1966, Geology and water resources of Winnebago County, Wiscon- - sin: U.S. Geological Survey Water-Supply Paper 1814, 61 p. Weeks, E.P., Erickson, D.W., and Holt, C.L.R., Jr., 1965, Hydrology of the Little Plover River basin, Portage County, Wisconsin, and the effects of water- - resources development: U.S. Geological Survey Water-Supply Paper 1811, 78 p. Green, J.H., and Hutchinson, R.D., 1965, Ground-water pumpage and water- - Green, J.H., and Hutchinson, R.D., 1965, Ground-water pumpage and water-level changes in the Milwaukee-Waukesha area, Wisconsin, 1950–61: U.S. Geological Survey Water-Supply Paper 1809–I, 19 p. - Summers, W.K., 1965, Geology and ground-water resources of Waushara County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1809–B, 32 p. - Holt, C.L.R., Jr., and Knowles, D.B., 1963, The water situation in Wisconsin in the role of ground water in the national water situation: U.S. Geological Survey Water-Supply Paper 1800, p. 943–960. - Cline, D.R., 1965, Geology and ground-water resources of Dane County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1779-U, 64 p. - Holt, C.L.R., Jr., 1965, Geology and water resources of Portage County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1796, 77 p. - Berkstresser, C.F., Jr., 1964, Ground-water resources of Waupaca County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1669–U, 38 p. - Knowles, D.B., 1964, Ground-water conditions in the Green Bay area, Wisconsin, 1950–60: U.S. Geological Survey Water-Supply Paper 1669–J, 37 p. - Cline, D.R., 1963, Hydrology of upper Black Earth Creek basin, Wisconsin, with a section on surface water by M.W. Busby: U.S. Geological Survey Water-Supply Paper 1669–C, 27 p. - Collier, C.R., 1963, Sediment characteristics of small streams in southern Wisconsin, 1954–59: U.S. Geological Survey Water-Supply Paper 1669–B, 34 p. - LeRoux, E.F., 1963, Geology and ground-water resources of Rock County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1619-X, 50 p. - Newport, T.G., 1962, Geology and ground-water resources of Fond du Lac County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1604, 52 p. - Knowles, D.B., Dreher, F.C., and Whetstone, G W., 1964, Water resources of the Green Bay area, Wisconsin: U.S. Geological Survey Water-Supply Paper 1499–G, 66 p. - LeRoux, E.F., 1957, Geology and ground-water resources of Outagamie County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1421, 57 p. - Harger, A.H., and Drescher, W.J., 1954, Ground-water conditions in south-western Langlade County, Wisconsin: U.S. Geological Survey Water-Supply Paper 1294, 39 p. - Foley, F.C., Walton, W.D., and Drescher, W.J., 1953, Ground-water conditions in the Milwaukee-Waukesha area, Wisconsin: U.S. Geological Survey Water-Supply Paper 1229, 96 p. #### HYDROLOGIC INVESTIGATIONS ATLASES - Gebert, W.A., Graczyk, D.J., and Krug, W.R., 1987, Average annual runoff in the United States, 1951–80: U.S. Geological Survey Hydrologic Investigatins Atlas HA-710, 1 sheet. - Hughes, P.E., Hannuksela, J. S., and Danchuk, W.J., 1981, Flood of July 1-5, 1978, on the Kickapoo River, Southwestern Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA-653, 7 sheets. - Oakes, E.L., and Cotter, R.D., 1975, Water resources of Wisconsin—upper Wisconsin River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA-536, 3 sheets - Young, H.L., and Skinner, E.L., 1974, Water resources of Wisconsin—Lake Superior basin: U.S. Geological Survey Hydrologic Investigations Atlas HA-524, 3 sheets. - Hindall, S.M., and Borman, R.G., 1974, Water resources of Wisconsin—lower Wisconsin River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–479, 3 sheets. - Young, H.L., and Borman, R.D., 1973, Water resources of Wisconsin— Trempealeau-Black River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA-474, 4 sheets. - Oakes, E.L., and Hamilton, L.J., 1973, Water resources of Wisconsin— Menominee–Oconto-Peshtigo River basin, U.S. Geological Survey Hydrologic Investigations Atlas HA-470, 4 sheets. - Hindall, S.M., and Skinner, E.L., 1973, Water resources of Wisconsin— Pecatonica-Sugar River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA-453, 3 sheets. - Young, H.L., and Hindall, S.M., 1973, Water resources of Wisconsin—St. Croix River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA-451, 4 sheets. - Skinner, E.L., and Borman, R.G., 1973, Water resources of Wisconsin—Lake Michigan basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–432, 4 sheets. - Shearman, J.O., and Holmstrom, B.K., 1971, Floods on Rock River in south-western Jefferson County, Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA-413, 1 sheet. -
_____1971, Floods on Rock River in northeastern Jefferson County, Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA-394, 1 sheet. - Shearman, J O., 1970, Floods on Rock River in northern Rock County, Wisconsin: U.S. Geological Survey Hydrologic Investigations Atlas HA-393, 1 shoot. - Gebert, W.A., 1971, Low-flow frequency of Wisconsin streams: U.S. Geological Survey Hydrologic Investigations Atlas HA-390, 1 sheet. - Young, H.L., and Hindall, S.M., 1972, Water resources of Wisconsin—Chippewa River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA-386, 4 sheets. - Hindall, S.M., and Flint, R.F., 1970, Sediment yields of Wisconsin streams: U.S. Geological Survey Hydrologic Investigations Atlas HA-376, 1 sheet. - Devaul, R.W., and Green, J.H., 1971, Water resources of Wisconsin—central Wisconsin River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–367, 4 sheets. - Cotter, R.D., Hutchinson, R.D., Skinner, E.L., and Wentz, D.A., 1969, Water resources of Wisconsin—Rock–Fox River basin: U.S. Geological Survey Hydrologic Investigations Atlas HA–360, 4 sheets. - Olcott, P.G., 1968, Water resources of Wisconsin—Fox–Wolf River basin: U.S. Geological Survey Hydrologic Investigations Atlast HA–321, 4 sheets. - U.S. Geological Survey, 1965, Preliminary map of the conterminuous United States showing depth to and quality of shallowest ground water containing more than 1,000 parts per million dissolved solids: U.S. Geological Survey Hydrologic Investigations Atlas HA-199, 31 p., 2 sheets. # PROFESSIONAL PAPERS - Green, J.H., 1968, The Troy Valley of southeastern Wisconsin: U.S. Geological Survey Professional Paper 600–C, p. 135–139. - Carey, K.L., 1967, The underside of river ice, St. Croix River, Wisconsin: U.S. Geological Survey Professional Paper 575–C, p. 195–199. - ——1966, Observed configuration and computed roughness of the underside of river ice, St. Croix River, Wisconsin: U.S. Geological Survey Professional Paper 550–B, p. 192–198. - Weeks, E.P., 1964, Field methods for determining vertical permeability and aquifer anisotropy: U.S. Geological Survey Professional Paper 501–D, p. 193–198. - _____1964, Use of water-level recession curves to determine the hydraulic properties of glacial outwash in Portage County, Wisconsin: U.S. Geological Survey Professional Paper 501–B, p. 181–184. #### WATER-RESOURCES INVESTIGATIONS - Rose, William J., 1988, Water resources of the Apostle Islands National Lakeshore, northern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 87–4220, 44 p. - Field, Stephen J., and Duerk, Marvin D., 1988, Hydrology and water quality of Delavan Lake in southeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 87–4168, 61 p. - Walker, J.F., Osen, L.L., and Hughes, P.E., 1987, Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin. U.S. Geological Survey Water-Resources Investigations Report 86–4125, 44 p. - Krohelski, J.T., Ellefson, B.R., and Storlie, C.A., 1987, Estimated use of ground water for irrigation in Wisconsin, 1984: U.S. Geological Survey Water Resources Investigations Report 86–4079, 18 p. - House, L.B., 1987, Simulation of unsteady flow in the Milwaukee Harbor Estuary at Milwaukee, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 86–4050, 19 p. - Conger, D.H., 1986, Estimating magnitude and frequency of floods for Wisconsin urban streams: U.S. Geological Survey Water-Resources Investigations Report 86–4005, 18 p. - Graczyk, D.J., 1986, Water quality in the St. Croix National Scenic Riverway, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4319, 48 p. - Field, S.J., 1986, Relations between precipitation, streamflow, and water quality in the Galena River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4214, 48 p. - Emmons, P.J., 1987, An evaluation of the bedrock aquifer system in northeastern Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4199, 48 p. - Krug, W.R., and Goddard, G.L., 1986, Effects of urbanization on streamflow, sediment loads, and channel morphology in Pheasant Branch basin near Middleton, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 85–4068, 82 p. - Cotter, R.D., 1986, Hydrogeology and ground-water quality of Lannon-Sussex Area, northeastern Waukesha County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 84–4213, 28 p. - Field, S.J., 1985, Nonpoint-source discharges and water quality of Elk Creek basin, west-central Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 84–4094, 38 p. - Field, S.J., and Lidwin, R.A., 1984, An assessment of nonpoint-source discharges, streamflow, and water quality in Onion River, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 84–4066, 78 p. - House, L.B., 1984, Effects of urbanization on three ponds in Middleton, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 84–4051, 17 p. - Kammerer, P.A., Jr., 1984, An overview of ground-water-quality data in Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 83–4239, 58 p. - Krug, W.R., and House, L.B., 1984, Evaluation of alternative reservoirmanagement practices in the Rock River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Report 83–4186, 21 p. - Duerk, M.D., 1983, Automatic dilution gaging of rapidly varying flow: U.S. Geological Survey Water-Resources Investigations Report 83–4088, 17 p. - Kammerer, P.A., Jr., Lidwin, R.A., Mason, J.W., and Narf, R.P., 1983, Aquatic biology in Nederlo Creek, southwestern Wisconsin: U.S. Geological Survey Water Resources Investigations 82–56, 27 p. - Lawrence, C.L., and Ellefson, B.R., 1982, Water use in Wisconsin, 1979: U.S. Geological Survey Water Resources Investigations 82–444, 98 p. - Wentz, Dennis A., and Graczyk, David J., 1982, Effects of a Floodwater-Retarding Structure on the Hydrology and Ecology of Trout Creek in Southwestern Wisconsin: U.S. Geological Survey Water-Resources Investigations 82–23, 68 p. - Holmstrom, B.K., 1982, Low-flow characteristics of streams in the Lake Michigan basin, Wisconsin: U.S. Geological Survey Water Resources Investigations Open-File Report 81–1193, 102 p. - House, Leo B., 1981, An assessment of streamflow, water quality, and the effects of construction on impoundment on Bridge Creek at Augusta, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 81–1192, 25 p. - Field, S.J., and Lidwin, R.A., 1982, Water-quality assessment of Steiner Branch basin, Lafayette County, Wisconsin: U.S. Geological Survey Water-Resources Investigations 81–52, 58 p. - Gebert, W.A., 1982, Low-flow characteristics of streams in the Central Wisconsin River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 81–495, 99 p. - Conger, Duane H., 1981, Techniques for estimating magnitude and frequency of floods for Wisconsin streams: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–1214, 116 p. - Krug, William R., and House, Leo B., 1980, Streamflow model of Wisconsin River for estimating flood frequency and volume: U.S. Geological Survey Water-Resources Investigations 80–1103, 44 p. - Holmstrom, B.K., 1980, Low-flow characteristics of streams in the Menominee– Oconto-Peshtigo River basin, Wisconsin: Water-Resources Investigations Open-File Report 80–749, 82 p. - Gebert, W.A., 1980, Low-flow characteristics of streams in the upper Wisconsin River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–691, 60 p. - Krug, William R., 1981, Hydrologic effects of proposed changes in management practices, Winnebago Pool, Wisconsin: U.S. Geological Survey Water-Resources Investigations 80–107, 19 p. - House, Leo B., and Skavroneck, Steven, 1981, Comparison of the proponearea tracer method and predictive equations for determination of streamreaeration coefficients on two small streams in Wisconsin: U.S. Geological Survey Water-Resources Investigations 80–105, 18 p. - Kontis, A.L., and Mandle, R.J., 1980, Data-base system for northern Midwest regional aquifer-system analysis: U.S. Geological Survey Water-Resources Investigations 80–104, 27 p. - Grant, R.S., and Goddard, Gerald, 1980, Channel erosion and sediment transport in Pheasant Branch basin near Middleton, Wisconsin, a preliminary report: U.S. Geological Survey Water-Resources Investigations Open-File Report 80–161, 19 p., 11 figs., 3 tables. - 80–161, 19 p., 11 figs., 3 tables. McLeod, R.S., 1980, The effects of using ground water to maintain water levels of Cedar Lake, Wisconsin: U.S. Geological Survey Water Resources Investigations 80–23, 35 p. - Grant, R.S., and Skavroneck, Steven, 1980, Comparison of tracer methods and predictive models for determination of stream-reaertion coefficients on three small streams in Wisconsin: U.S. Geological Survey Water-Resources Investigations 80–19, 36 p. - Hindall, S.M., 1979, Ground-water quality in selected areas of Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 79–1594, 20 p. - Stedfast, D.A., 1979, Low-flow characteristics of streams in the Pecatonica-Sugar River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 79–1274, 92 p. - Grant, R.S., and Goddard, Gerald, 1979, Urban storm-runoff modeling— Madison, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Report 79–1273, 20 p. - Novitzki, R.P., and Holmstrom, B.K., 1979, Monthly and annual water budgets of Lake Wingra, Madison, Wisconsin, 1971–77: U.S. Geological Survey Water-Resources Investigations 79–100, 31 p. - Kammerer, P.A., and Sherrill, M.G., 1979, Hydrology and water quality in the Nederlo Creek basin before construction of two water-retention structures: U.S. Geological Survey
Water-Resources Investigations 79–95, 42 p. - Gebert, W.A., 1979, Low-flow characteristics of streams in Lake Superior basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations 79–38, 74 p. - Holmstrom, B.K., 1979, Low-flow characteristics of Wisconsin streams at sewage-treatment plants and industrial plants: U.S. Geological Survey Water-Resources Investigations 79–31, 123 p. - Gebert, W.A., 1979, Red Cedar River basin, Wisconsin: Low-flow characteristics: U.S. Geological Survey Water-Resources Investigations 79–29, 12 p. - Holmstrom, B.K., 1979, Low-flow characteristics of streams in the Trempealeau–Black River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations 79–9, 79 p. - Sherrill, M.G., 1979, Contamination potential in the Silunan dolomite aquifer, eastern Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–108, 2 pls. - Holmstrom, B.K., 1978, Low-flow characteristics of streams in the Rock–Fox River basin, Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–85, 98 p. - Rathbun, R.E., and Grant, R.S., 1978, Comparison of the radioactive and modified techniques for measurement of stream reaeration coefficients: U.S. Geological Survey Water-Resources Investigations 78–68, 65 p. - Field, S.J., 1978, Ten-year low mean monthly discharge determinations for ungaged streams near waste-stabilization ponds in Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–49, 16 p. - Novitzki, R.P., 1978, Hydrology of the Nevin wetland near Madison, Wisconsin: U.S. Geological Survey Water-Resources Investigations 78–48, 25 p. - Grant, R.S., 1978, Reaeration capacity of the Rock River between Lake Koshkonong, Wisconsin, and Rockton, Illinois: U.S. Geological Survey Water-Resources Investigations 77–128, 33 p. - Gebert, W.A., 1978, Low-flow characteristics of streams in the lower Wisconsin River basin: U.S. Geological Survey Water-Resources Investigations 77–118, 80 p. - Gebert, W.A., and Holmstrom, B.K., 1977, Low-flow characteristics at gaging stations on the Wisconsin, Fox, and Wolf Rivers, Wisconsin: U.S Geological Survey Water-Resources Investigations 77–27, 20 p - Rose, W.J., 1977, Hydrologic considerations associated with dredging spring ponds in Wisconsin: U.S. Geological Survey Water-Resources Investigations 77–18, 35 p. - Krug, W.R., 1976, Simulation of streamflow of Flambeau River at Park Falls, Wisconsin, to define low-flow characteristics: U.S. Geological Survey Water-Resources Investigations 76–116, 14 p. - Grant, R.S., 1976, Reaeration of coefficient measurements of 10 small streams in Wisconsin using radioactive tracers—with a section on the energy-dissipation model: U.S. Geological Survey Water-Resources Investigations 76–96, 50 p. - Novitzki, R.P., 1976, Recycling ground water in Waushara County, Wisconsin: Resource management for cold-water fish hatcheries: U.S. Geological Survey Water-Resources Investigations 76–20, 60 p. - Hindall, S.M., 1976, Measurement and prediction of sediment yields in Wisconsin streams: U.S. Geological Survey Water-Resources Investigations 54–75, 27 p. - Oakes, E.L., Hendrickson, G.E., and Zuehls, E.E., 1975, Hydrology of the Lake Wingra basin, Dane County, Wisconsin: U.S. Geological Survey Water-Resources Investigations 17–75, 31 p. - Gebert, W.A., and Holmstrom, B.K., 1974, Low-flow characteristics of Wisconsin streams at sewage-treatment plants: U.S. Geological Survey Water-Resources Investigations 45–74, 101 p. - Hendrickson, G.E., Knutilla, R.L., and Doonan, C.J., 1973, Hydrology and recreation of selected cold-water rivers of the St. Lawrence River basin in Michigan, New York, and Wisconsin: U.S. Geological Survey Water-Resources Investigations 8–73, 73 p. #### **OPEN-FILE REPORTS** - Gebert, Warren A., Graczyk, David J., and Krug, William R., 1988, Runoff for selected sites in Shenandoah National Park, Virginia, July 18, 1981, through July 17, 1982: U.S. Geological Survey Open-File Report 88–93, 13 p - Ellefson, B.R., Rury, Kraig S., and Krohelski, James T., 1988, Water use in Wisconsin, 1985: U.S. Geological Survey Open-File Report 87–699, 1 pl. - Krug, William R., Ostenso, Nıle A., and Krohelski, James T., 1988, Prediction of the effects of mine dewatering on four lakes near Crandon, Wisconsin, by use of a water-budget model: U.S. Geological Survey Open-File Report 87–471, 63 p. - Graczyk, David J., Gebert, Warren, A., Krug, William R., and Allord, G.J., 1987, Maps of runoff in the Northeastern Region and southern Blue Ridge Province of the United States during selected time periods in 1983–1985: U.S. Geological Survey Open-File Report 87–106, 8 p. - Graczyk, David J., Krug, William R., and Gebert, Warren A., 1986, A history of annual streamflows from the 21 water-resource regions in the United States and Puerto Rico, 1951–83: U.S. Geological Survey Open-File Report 86–128, 30 p.. - Henrich, E.W., 1984, Drainage area data for Wisconsin Streams: U.S. Geological Survey Open-File Report 83–933, 322 p. - Lawrence, C.L., Ellefson, B.R., and Cotter, R.D., 1984, Public-supply pumpage in Wisconsin in 1979: U.S. Geological Survey Open-File Report 83–931, 40 p. - Lawrence, C.L., and Ellefson, B.R., Water use in Wisconsin, 1979, U.S. Geological Survey Open-File Report 82-444, 98 p. - Novitzki, R.P., 1979, Streamflow estimates in selected Wisconsin streams: U.S. Geological Survey Open-File Report 79–1282, 11 p. - Harr, C A., and Novitzki, R.P., 1979, Availability of supplemental water supplies at salmonid fish-propagation stations in Wisconsin: U.S. Geological Survey Open-File Report 79–1179, 13 p. - Krug, W.R., 1979, Simulation of streamflow of Rock River at Lake Koshkonong, Wisconsin, to determine effects of withdrawal of powerplant-cooling water: U.S. Geological Survey Open-File Report 79–253, 21 p - McLeod, R.S., 1978, Water-level declines in the Madison area, Dane County, Wisocnsin: U.S. Geological Survey Open-File Report 78–936, 15 p. - Field, S.J., 1978, Low-flow characteristics of small streams in proposed Public Law 566 basins: U.S. Geological Survey Open-File Report 78–664, 32 p. - Hindall, S.M., 1978, Suspended-sediment transport in the Big Eau Pleine River basin, central Wisconsin: U.S. Geological Survey Open-File Report 78–313, 12 p. - Lawrence, C.L., 1976, Regional flood limits of lower Yahara River, Lake Waubesa and south, in Dane County, Wisconsin: U.S. Geological Survey Open-File Report 76–805, 20 p. - Krug, W.R., 1976, Probable maximum flood at Lake Chippewa near Winter, Wisconsin: U.S. Geological Survey Open-File Report 76-800, 14 p. - Grant, R.S., 1976, Waste-assimilation study of Koshkonong Creek below sewage-treatment plant at Sun Prairie, Wisconsin: U.S. Geological Survey Open-File Report 76–655, 44 p. - Lawrence, C.L., 1976, Regional flood limits of upper Yahara River in Dane County, Wisconsin: U.S. Geological Survey Open-File Report 76–448, 15 p. - Holmstrom, B.K., 1976, Low-flow characteristics and mean annual discharge of North Branch Manitowoc River at Potter, Wisconsin: U.S. Geological Survey Open-File Report 76–204, 20 p. - Krug, W.R., 1976, Flood-plain delineation for regional flood in Dane County, Wisconsin: U.S. Geological Survey Open-File Report 76–164, 168 p. - Field, S.J., 1975, Low-flow study of the Pike River basin, Racine and Kenosha Counties, Wisconsin: U.S. Geological Survey Open-File Report 75–653, 10 p. - Green, J.H., 1975, Flow characteristics of the lower Wisconsin River: U.S. Geological Survey Open-File Report 75–582, 9 p. - Holmstrom, B.K., 1975, Streamflow characteristics of Klawitter Creek basin near Westfield, Wisconsin: U.S. Geological Survey Open-File Report 75–527, 14 p. - Krug, W.R., 1975, Analysis of operational plan for Lake Chippewa near Winter, Wisconsin: U.S. Geological Survey Open-File Report 75–487, 17 p. - Holmstrom, B.K., 1975, Low-flow characteristics of the Eau Claire River basin near Antigo, Wisconsin: U.S. Geological Survey Open-File Report 75–336, 19 p. - Gebert, W.A., 1974, Streamflow characteristics of Little Wolf River–Holt Creek basin near Galloway, Wisocnsin: U.S. Geological Survey Open-File Report, 10 p. - Lawrence, C.L., and Holmstrom, B.K., 1973, Floods on Yahara River tributaries, Dane County, Wisconsin: U.S. Geological Survey Open-File Report, 19 p. - Grant, R.S., Krug, W.R., and Duerk, M.D., 1973, Floodplain and floodway delineation for regional flood in central Marathon County, Wisconsin: U.S. Geological Survey Open-File Report, 33 p. - Holmstrom, B.K., Gebert, W.A., and Borman, R.G., 1973, Alder Creek hydrology, Wisconsin: U.S. Geological Survey Open-File Report, 28 p. - Lawrence, C.L., and Holmstrom, B.K., 1972, Flood in Starkweather Creek basin, Madison, Wisconsin: U.S. Geological Survey Open-File Report, 15 p. - Holmstrom, B.K., 1972, Drainage-area data for Wisconsin streams: U.S. Geological Survey Open-File Report, 74 p. (Updated 1973, 1974, 1978, and 1979.) - Hindall, S.M., 1972, Sediment yields of Wisconsin streams: U.S. Geological Survey Open-File Report, 2 p. - Weeks, E.P., and Stangland, H.G., 1971, Effects of irrigation on streamflow in the central sand plains of Wisconsin: U.S. Geological Survey Open-File Report, 113 p. - Conger, D.H., 1971, Estimating magnitude and frequency of floods in Wisconsin: U.S. Geological Survey Open-File Report, 200 p. - Holmstrom, B.K., and Lawrence, C.L., 1971, Floods on Yahara River, Lake Mendota to Lake Kegonsa, Dane County, Wisconsin: U.S. Geological Survey Open-File Report, 12 p. - Lawrence, C.L., and Holmstrom, B.K., 1971, Floods on Yahara River, Lake Kegonsa dam to countyline, Dane County, Wisconsin: U.S. Geological Survey Open-File Report, 10 p. - Shearman, J.O., and Lawrence, C.L., 1971, Floods on Yahara River upstream from Lake Mendota, Dane County, Wisconsin: U.S. Geological Survey Open-File Report, 7 p. - Gebert, W.A., 1971, Hydrology of Pine Creek: U.S. Geological Survey Open-File Report, 6 p. - _____1971, Hulbert Creek hydrology, southwestern Wisconsin: U.S. Geological
Survey Open-File Report, 11 p. - Gonthier, J.B., 1970, Water resources of southeastern Wisconsin—Milwaukee River basin: U.S. Geological Survey Open-File Report, 138 p. (Extensively used in preparation of "A comprehensive plan for the Milwaukee River watershed", vol. 1 and 2, 1970 and 1971, Southeastern Wisconsin Regional Planning Commission Report No. 13, vol. 1, 514 p., and vol. 2, 623 p.) - Hamilton, L.J., 1970, Availability of ground water in the lower Wisconsin River Valley, Wisconsin: U.S. Geological Survey Open-File Report, 45 p. - Campbell, R.E., and Dreher, F.C., 1970, A proposed streamflow data program for Wisconsin: U.S. Geological Survey Open-File Report, 55 p. - Shearman, J.O., 1969, Evaluation of flood potential, part 2 of Flood-plain management—Lake Koshkonong: U.S. Geological Survey Open-File Report, 6 p. - Young, K.B., 1965, Effect of treated effluent diversion on Yahara River flow: U.S. Geological Survey Open-File Report, 81 p. - ____1965, Supplement to report on flow charactertistics of Wisconsin streams: U.S. Geological Survey Open-File Report, 81 p. - U.S. Geological Survey, 1964, Water-quality records in Michigan and Wisconsin: U.S. Geological Survey Open-File Report, 61 p. - Young, K.B., 1963, Flow characteristics of Wisconsin streams: U.S. Geological Survey Open-File Report, 151 p. - Ericson, D.W., 1961, Floods in Wisconsin, magnitude and frequency: U.S. Geological Survey Open-File Report, 109 p. - _____1961, Wisconsin River near Dekorra, Wisconsin, floodflow characteristics at proposed bridge site on the Wisconsin Freeway in Columbia County: U.S. Geological Survey Open-File Report, 13 p. - Spicer, H.C., and Edwards, G.J., 1955, Electrical resistivity measurements in the Neillsville area, Wisconsin: U.S. Geological Survey Open-File Report, 34 p - _____1954, A resistivity survey to locate an aquifer in the glacial deposits near Marshfield, Wisconsin: U.S. Geological Survey Open-File Report, 76 p. - Drescher, W.J., 1948, Results of pumping tests on artesian wells in the Milwaukee-Waukesha area, Wisconsin: U.S. Geological Survey Open-File Report, 22 p # **OPEN-FILE MAPS** - Gonthier, J.B., 1979, Water-table map of Waukesha County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–43, 1 pl. - Sherrill, M.G., and Erickson, J.R., 1979, Water-table map of Walworth County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–42, 1 pl. - Sherrill, M.G., and Schiller, J.J., 1979, Water-table map of Racine County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–41, 1 pl. - Sherrill, M.G., Schiller, J.J., and Erickson, J.R., 1979, Water-table map of Milwaukee County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–40, 1 pl. - Sherrill, M.G., and Schiller, J.J., 1979, Water-table map of Kenosha County, Wisconsin: U.S. Geological Survey Water-Resources Investigations Open-File Map 79–39, 1 pl. - Borman, R.G., 1976, Thickness of unconsolidated materials of Walworth County, Wisconsin: U.S. Geological Survey Open-File Report 76–465, scale 1:62,500. - _____1976, Water-table map of Walworth County, Wisconsin: U.S. Geological Survey Open-File Report 76-464, scale 1:62,500 - _____1976, Bedrock topography of Walworth County, Wisconsin: U.S. Geological Survey Open-File Report 76–463, scale 1:62,500. _____1976, Bedrock geology of Walworth County, Wisconsin: U.S. - Geological Survey Open-File Report 75–462, scale 1:62,500. Gonthier, J.B., 1975, Bedrock topography of Waukesha County, Wisconsin: - U.S. Geological Survey Open-File Report 75–572, scale 1:62,500. ——1975, Water-table map of Waukesha County, Wisconsin: U.S. Geological Survey Open-File Report 75–571, scale 1:62,500. - _____1975, Bedrock geology of Waukesha County, Wisconsin: U.S. Geological Survey Open-File Report 75–570, scale 1:62,500. - Borman, R.G., 1971, Preliminary map showing thickness of glacial deposits in Wisocnsin: U.S. Geological Survey Open-File Report, scale 1:2,500,000. - _____1971, Preliminary map of probable well yields from bedrock in Wisconsin: U.S. Geological Survey Open-File Report, scale 1:2,500,000. - _____1971, Preliminary map of probably well yields from glacial deposits in Wisconsin: U.S. Geological Survey Open-File Report, scale 1:2,500,000. ### ADMINISTRATIVE REPORTS - Rose, W.J., 1979, Bedload in northwestern Wisconsin's Nemadji River: U.S. Geological Survey Administrative Report, 12 p. - Kammerer, P.A., and Lidwin, R.A., 1977, Water quality in the Pine River basin Richland and Vernon Counties, Wisconsin: U.S. Geological Survey Administrative Report. 93 p. - Novitzki, R.P., 1971, Hydrologic investigations of Heart Lake, Green Lake County, Wisconsin: U.S. Geological Survey Administrative Report, 9 p. - ——1971, Hydrologic investigations for the Woodruff Fish Hatchery, Oneida County, Wisconsin: U.S. Geological Survey Administrative Report, 4 p. - 1971, Hydrologic investigations of a proposed reservoir site in Trempealeau County, Wisconsin: U.S. Geological Survey Administrative Report, #### INFORMATION CIRCULARS - Batten, W.G., 1989, Hydrogeology of Wood County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 60, 33 p., 2 pls. - Patterson, G.L., and Zaporozec, Alexander, 1988, Analysis of water-level fluctuations in Wisconsin wells: Wisconsin Geological and Natural History Survey Information Circular 63, 38 p. - Batten, W.G., 1987, Water resources of Langlade County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 58, 28 p., 1 pl. - Krohelski, J.T., 1986, Hydrogeology and ground-water use and quality, Brown County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 57, 42 p. - House, L.B., 1986, Stage fluctuations of Wisconsin Lakes: Wisconsin Geological and Natural History Survey Information Circular No. 49, 88 p. - Devaul, R.W., Harr, C.A., and Schiller, J.J., 1983, Ground-water resources and geology of Dodge County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 44, 34 p. - Erickson, R.M., and Cotter, R.D., 1983, Trends in ground-water levels in Wisconsin through 1981: Wisconsin Geological and Natural History Survey Information Circular 43, 139 p. - Novitzki, R.P., 1982, Hydrology of Wisconsin Wetlands: Wisconsin Geological and Natural History Survey Information Circular 40, 22 p. - Kammerer, Phil A., Jr., Ground-water quality atlas of Wisconsin: U.S. Geological Survey Information Circular 39, 39 p. - Young, H.L., and Batten, W.G., 1980, Ground-water resources and geology of Washington and Ozaukee Counties, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 38, 37 p. - Harr, C.A., Trotta, L.C., and Borman, R.G., 1978, Ground-water resources and geology of Columbia County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 37, 30 p. - Hindall, S.M., 1978, Effects of irrigation on water quality in the sand plain of central Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 36, 50 p. - Borman, R.G., 1976, Ground-water resources and geology of Walworth County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 34, 45 p. - Borman, R.G., and Trotta, L.C., 1976, Ground-water resources and geology of Jefferson County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 33, 31 p. - Borman, R.G., 1976, Ground-water resources and geology of St. Croix County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 32, 30 p. - Bell, E.A., and Hindall, S.M., 1975, The availability of ground water for irrigation in the Rice Lake-Eau Claire area, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 31, 65 p. - McLeod, R.S., 1975, A digital-computer model for estimating hydrologic changes in the aquifer system in Dane County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 30, 40 p. - Gonthier, J.B., 1975, Ground-water resources of Waukesha County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 29, 47 p. - McLeod, R.S., 1975, A digital-computer model for estimating drawdown in the sandstone aquifer in Dane County, Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 28, 91 p. - Holt, C.L.R., Jr., and Skinner, E.L., 1973, Ground-water quality in Wisconsin through 1972: Wisconsin Geological and Natural History Survey Information Circular 22, 148 p. - Erickson, R.M., 1972, Trends in ground-water levels in Wisconsin, 1967–71: Wisconsin Geological and Natural History Survey Information Circular 21, 40 p. (Supplement to Information Circular 9). - Holt, C.L.R., Jr., Cotter, R.D., Green, J.H., and Olcott, P.G., 1970, Hydrogeology of the Rock–Fox River basin of southeastern Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 17, 47 p. (Prepared for the Annual Meeting of the Geological Society of America-Field Trip Guidebook). - Devaul, R.W., 1967, Trends in ground-water levels in Wisconsin through 1966: Wisconsin Geological and Natural History Survey Information Circular 9, 109 p. - Ryling, R.W., 1961, A preliminary study of the distribution of saline water in the bedrock aquifers of eastern Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 5, 23 p. - Drescher, W.J., 1956, Ground water in Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 3, 37 p. - _____1955, Some effects of precipitation on ground water in Wisconsin: Wisconsin Geological and Natural History Survey Information Circular 1, 17 p. # MISCELLANEOUS PAPERS Patterson, G.L., 1989, Water resources of Vilas County, Wisconsin: Wisconsin Geological and Natural History Survey Miscellaneous Paper B9–1, 52 p., 1 pl. # INDEX | Pag | je | | Page |
---|----|--|-------| | Access of WATSTORE data | 25 | Brule, Bois Brule River near | 354 | | Accuracy of the records | 18 | Brule River near Florence | 48 | | Acid deposition records | | Buffalo River near Mondovi | | | Adams County, ground-water levels in | | tributary near Osseo | . 337 | | Afton, Rock River at | 55 | Buffalo River basin, crest-stage partial-record | 227 | | near Fort Atkinson | 10 | stations in | 169 | | Allen Creek tributary (Menominee–Oconto–Pestigo | | Buncombe, Galena River at | | | River basin), near Alvin | | Burnett County, ground-water*levels in | | | Alma Lake near St. Germain | | Burton, Grant River at | | | Amnicon Lake near South Range | 39 | | | | Anvil Lake near Eagle River | 31 | Cawley Creek near Neillsville | . 338 | | Apple Creek near Kaukauna | | Cedarburg, Milwaukee River near | | | Apple River near Somerset | | Chippewa County, ground-water levels in | | | Appleton, Fox River at | 91 | Chippewa Falls, Chippewa River at | . 152 | | Arkansaw Creek tributary near Arkansaw | | Chippewa River at Bishop's Bridge, near Winter138, near Bruce141, | , 30L | | Ashland, White River near | | at Chippewa Falls | | | Ashland County, ground-water levels in | | at Durand | | | Ashidha County, ground-water levels in | | Chippewa River basin, crest-stage partial-record | . 100 | | Babcock, Yellow River at | | stations in | . 336 | | Bad River, near Mellen | | gaging-station records in | . 138 | | near Odanah4 | 11 | location map of | . 137 | | Bad Axe River, North Fork near Genoa | 88 | miscellaneous sites in | | | Bad Axe River basin, crest-stage partial-record | | water-quality partial-record stations in | | | stations in | 18 | Cisco Branch Ontonagon River at Cisco Lake outlet, Ml | 46 | | Badfish Creek near Cooksville | 55 | Clark County, ground-water levels in | . 373 | | at County Highway A near Stoughton269, 36 | 5 | Clinton, Turtle Creek at Carvers Rock Road near291, | 366 | | Balsam Branch at Balsam Lake | | Cooksville, Badfish Creek near | | | Harder Creek near | | Cooperation | | | Harder Creek at Half Moon Lake Outlet near | | Crivitz, Lake Noquebay near | | | Harder Creek at mouth near | 12 | Crooked Creek near Boscobel | 340 | | Rice Creek near | 30 | Crystal Lake at Strum | . 168 | | Baraboo, Baraboo River near | | , | | | Devils Lake near |)1 | Dakota, Sharon Lake near | 65 | | Baraboo River near Baraboo | 3 | Danbury, St. Croix River near | 359 | | Bark River near Rome | | Dane County, ground-water levels in | | | Barron County, ground-water levels in | | Darlington, Pecatonica River at | | | Bashaw Brook near Shell Lake | | Definition of terms | | | Bear Branch near Platteville | | Delavan, Delavan Lake Outlet at Borg Road near Delavan Lake, near Delavan | | | Bear River near Powell | | at Center near Delavan Lake | | | Bearskin Creek near Harshaw | | at North End near Lake Lawn | | | Beaverdam River at Beaver Dam | | at SW End near Delavan Lake | | | Berlin, Fox River at | 57 | Inlet at US Hwy 50 at Lake Lawn | . 278 | | Big Cedar Lake near West Bend | 7 | Outlet at Borg Road near Delavan | | | Big Eau Pleine River near Stratford | | Dell Creek near Lake Delton | . 339 | | Big Muskego Lake, Bass Bay, near Muskego | 2 | Des Plaines River at Russell, IL | . 304 | | North Site, near Muskego | | Devil Creek near Merrill | | | South Site, near Muskego | | Devils Lake near Baraboo | | | Big Sandy Creek near Wausau | 90 | Discontinued gaging stations, list of Dodge County, ground-water levels in | 274 | | Big Sissabagama Tributary near Stone Lake | | Dodge, Trempealeau River at | | | Bird Creek at Wautoma | | Door County, ground-water levels in | | | Black Earth Creek at Black Earth | 3 | Douglas County, ground-water levels in | .375 | | Black River basin, crest-stage partial-record | | Douglas Creek near Prentice | | | stations in | | Downstream order and station number | | | gaging-station records in | | Duck Creek, 0.3 mi DS Freedom STP near Freedom | | | water-quality partial-record stations in | | at Co Tr Hwy J near Oneida | | | Black River near Galesville | | at Fish Creek Road near Oneida | | | at Neillsville | | at Hillside Park near Oneida | | | tributary near Whittlesey | | 0.25 mi DS Hwy 54 Bridge near Oneida | | | Bois Brule River near Brule | | at Overland Road near Oneida | 355 | | Brodhead, Sugar River near | | Tributary, at Oneida | | | Brown County, ground-water levels in | | Duncan Creek at Bloomer | | | Bruce, Chippewa River near | | Duncan Creek Tributary near Tilden | | | Flambeau River near | | Durand, Chippewa River at | . 156 | | | | | | | Pag | ge | | Page | |--|------------|---|--------------| | Eagle Creek near Fountain City33 | 37 | at mouth near Balsam Lake | . 132 | | Eagle River, Anvil Lake near | | Hay Creek near Prentice | . 336 | | Honeysuckle Lake near |)5 | Hay River at Wheeler | , 361 | | Honeysuckle rain gage near | | Hazel Green, Sinsinawa River near | . 232 | | East Twin River at Mishicot | 57 | Hazelhurst, Bear Lake near | . 185 | | Eau Claire River (Central Wisconsin River basin) | | Honey Creek at Milwaukee | . 336 | | at Kelly | 52 | Honeysuckle Lake, near Eagle River | . 405 | | Eau Claire River (Chippewa River basin) near | 7 | rain gage near Eagle River | 320 | | Fall Creek | 3/
31 | Hulbert Creek near Wisconsin Dells | 335 | | Eau Galle River at Spring Valley | | Hydrologic bench-mark program, explanation of | | | at Low-Water Bridge near Spring Valley | | | | | Elkhorn, Jackson Creek at Petrie Road near | | Illinois River basin, crest-stage partial-record | | | Jackson Creek Tributary near | | stations in | . 341 | | Evergreen Creek near Langlade33 | 35 | gaging-station records in | . 304 | | Explanation of the records | | water-quality partial-records stations in | . 366 | | records of ground-water levels | | Indianford, Rock River at | 364 | | records of ground-water quality | | Introduction | 1 | | records of stage and water discharge | | lowa County, ground-water levels in | .3/8 | | records of surface-water quality | 19 | L. L. Country awarend contain lavele in | 270 | | Fence, Popple River near | 50 | Jackson County, ground-water levels in | 273 | | Morgan Lake near | | tributary near Elkhorn | 274 | | Morgan Lake rain gage near | | Jefferson, Rock River at | 255 | | Fisher Creek tributary at Janesville | | Johnson Creek near Knowlton | 339 | | Flambeau River near Bruce | | Jump River at Sheldon | , 361 | | Florence, Brule River near | 18 | North Fork near Phillips | . 337 | | Menominee River near | | Juneau County, ground-water levels in | . 378 | | Fond du Lac County, ground-water levels in | 76 | | | | Forest County, ground-water levels in | | Kelly, Eau Claire River at | 362 | | Fourmile Creek near Three Lakes | | Kenosha County, ground-water levels in | . 379 | | Fowler Lake (Center) at Oconomowoc24 | | Kewaunee River near Kewaunee | 357 | | Fox River (Lake Michigan basin) at Appleton | | Kickapoo River at La Farge | . 303
262 | | at Berlin | | at Steuben | | | at Wrightstown | | Kinnickinnic River (Lake Michigan basin) at | . 550 | | Fox-Wolf River basin location map | | South 11th Street at Milwaukee | 358 | | Fox River (Illinois River basin) at Waukesha305, 36 | | Kinnickinnic River tributary (St. Croix River basin) | , | | at Wilmot | | at River Falls | . 336 | | Franklin, Root River near | | | | | Root River Canal near | | La Crosse River basin, gaging station records in | . 175 | | Freedom, Duck Creek, 0.3 mi DS Freedom | | La Farge, Kickapoo River at | , 363 | | STP near | | Lafayette County, ground-water levels in | . 379 | | French Creek near Ettrick | | La Grange, Pleasant Lake near | . 331 | | Fulton, Yahara River near | 55 | Lake Koshkonong near Newville | . 257 | | Colone Biver et Buncamba | | Lake Lawn, Delavan Lake at north end near | . 200 | | Galena River at Buncombe | 04 | Delavan Lake inlet at US Hwy 50 near | 266 | | stations in | ın | Lake Michigan, streams tributary to, crest-stage | . 200 | | gaging-station records in | | partial-record stations in | 334 | | water-quality, partial-record stations in | | gaging station records in | . 48 | | Galesville, Black River near | | miscellaneous sites in | 342 | | Gill Creek near Brooklyn | | water-quality partial-record stations in | . 354 | | Gillett, Oconto River near | 54 | Lake Michigan basin location map | . 100 | | Goggle-Eye Creek near Thorp | | Lake Monona at Madison | . 267 | | Graber Pond at Middleton | | Lake Morris near Mt. Morris | 87 | | Grand Marsh, Patrick Lake near | | Lake Noquebay near Crivitz | 57 | | Grant County, ground-water levels in | | Lake Superior, streams tributary to, crest-stage | 22 | | Grant River at Burton | 19 | partial-records in | . 334 | | Grant River basin, crest-stage partial-record | 10 | gaging station records inwater-quality partial-record stations in | 25/ | | stations in | | Lake Superior basin location map | . 33- | | Green County, ground-water levels in | | Lake Tomahawk, Wisconsin River at | | | Green Lake, White Creek at Forest Glen beach near | | Rainbow Lake near | , 362 | | Green Lake Inlet at County Highway A near | | Lake Winnebago at Oshkosh | 89 | | Green Lake Inlet at County Highway A near Green Lake 7 | | near Stockbridge | 90 | | Ground water, chemical analysis | | Lakes: | | | levels of, by counties | | Alma near St. Germain | . 182 | | Gudegast Creek near Starks33 | 38 | Amnicon near South Range | 39 | | Harder Creek, maar Palaam Laks | | Anvil near Eagle River | 181 | | Harder Creek, near Balsam Lake | | Bear near Hazelhurst | 10 | | at rian Moon Lake Outlet near Daisaill Lake |) <u>~</u> | DIG Cedal fleat vvest beflu | 10 | | Page | | Page | |--
--|-------| | Big Muskego, Bass Bay, near Muskego | McGregor, IA, Mississippi River at | . 176 | | North Site, near Muskego | McKenzie Lake near Spooner | | | South Site, near Muskego | Madden Branch near Belmont | | | Big Sissabagama near Stone Lake | Madison, Lake Mendota at | | | Crystal at Strum | Lake Monona at | | | Delavan near Delavan | Spring Harbor Storm Sewer at | . 264 | | at Center near Delavan Lake | Manitowoc County, ground-water levels in | | | at North End near Lake Lawn | Manitowoc River at Manitowoc | | | at SW End near Delavan Lake | Marinette County, ground-water levels in | | | Fowler (Center) at Oconomowoc | Marquette County, ground-water levels in | | | Honeysuckle near Eagle River | Martintown, Pecatonica River at | | | Koshkonong near Newville | Maunesha River near Sun Prairie | | | Little Muskego at Muskego | Menominee-Oconto-Peshtigo River basin | | | Little Rock near Woodruff415 | location map | 47 | | Long (Kee Nong Go-Mong) at Wind Lake | Menominee River below Pemene Creek near | | | McCaslin near Lakewood | Pembine | | | McKenzie near Spooner | near Florence | | | Mendota at Madison 266 Monona at Madison 267 | near McAllister | | | Montello at Montello | Menomonee Falls, Menomonee River at | | | Moon near St. Germain | Menomonee River at Menomonee Falls | | | Morgan near Fence | at Wauwatosa | | | Morris near Mt. Morris | Menomonie, Red Cedar River at | | | Muskego Outlet near Wind Lake | Merrill, Prairie River near | | | Neshonoc at West Salem | Wisconsin River at | 362 | | Noquebay near Crivitz | Middleton, Graber Pond at | | | North near North Lake | Pheasant Branch at | | | Oconomowoc, No. 1 (center) near Oconomowoc245 | Milford, Crawfish River at | | | No. 2 (off Hewitt Point) at Oconomowoc | Milltown, Otter Creek near | | | Okauchee, at Okauchee | Rice Creek at | | | No. 2, at Okauchee | Milwaukee County, ground-water levels in | 387 | | No. 3, at Okauchee | Milwaukee, Kinnickinnic River at South 11th | . 000 | | No. 4, at Okauchee | Street at | 358 | | Patrick near Grand Marsh | Milwaukee River at Milwaukee | . 109 | | Pleasant near La Grange | near Cedarburg | 358 | | Powers at Powers Lake | Mishicot, East Twin River at | | | Redstone near La Valle | Mishonagon Creek near Woodruff | | | Sharon near Dakota | Mississippi River at McGregor, IA | | | Vandercook near Woodruff | at Prescottat Winona, MN | | | Wheeler near Lakewood | Monroe County, ground-water levels in | 384 | | Wind, at Wind Lake | Montello Lake at Montello | | | Outlet at Wind Lake | Montreal River at Saxon Falls near Saxon | 45 | | Winnebago, at Oshkosh | Moon Lake near St. Germain | | | near Stockbridge | Morgan Lake, near Fence | . 402 | | Lakewood, McCaslin Lake near | rain gage near Fence | . 403 | | Wheeler Lake near | Mormon Creek basin, crest-stage partial-record | | | Langlade County, ground-water levels in | stations in | | | Langlade, Wolf River at | Mormon Creek near La Crosse | | | Wolf River at Highway M near | Mount Morris, Lake Morris near | | | La Valle, Redstone Lake near | Mukwonago River at Mukwonago | | | Lily River near Lily | Muscoda, Wisconsin River at | | | Lincoln County, ground-water levels in | Muskego, Big Muskego Lake, Bass Bay, near | | | Little Frog Creek near Minong | Big Muskego Lake, North Site, near | | | Little Menomonee River near Freistadt | Big Muskego Lake, South Site, near | | | Little Muskego Lake at Muskego | Little Muskego Lake at | . 307 | | Little Platte River near Platteville | Muskego Creek at | . 367 | | Little Pine Creek near Irma | Muskego Canal, at Muskego Lake Outlet near | | | Little Popple River near Aurora | Wind Lake | . 318 | | Little River, North Branch near Coleman | Unnamed Tributary to, near Wind Lake | | | Little Rock Lake near Woodruff | Muskego Creek at Muskego | | | Livingston Branch Pecatonica River near Livingston292 | Muskrat Creek at Conover | | | Long (Kee Nong Go-Mong) Lake at Wind Lake | | | | Lloyd Creek near Doering | Namekagon River near Trego | . 123 | | | Narrows Creek at Loganville | | | McAllister, Menominee River near | National stream-quality accounting network, | | | McCaslin Lake near Lakewood | explanation of | 12 | | McFarland, Yahara River near | Neillsville, Black River at | 362 | | | Page | | Page | |---|-------|--|-------| | Nekoosa, Tenmile Creek near | . 194 | Platteville, Little Platte River near | . 225 | | Nemadji River near South Superior | | Pleasant Lake near La Grange | . 331 | | Neshonoc Lake at West Salem | | Polk County, ground-water levels in | . 386 | | Neshota River tributary near Denmark | | quality of ground water in | . 398 | | New London, Wolf River at | 357 | Poplar River near Owen | . 338 | | Newville, Lake Koshkonong near | . 257 | Popple River near Fence | 50 | | Nippersink Creek North Branch tributary near | | South Branch near Newald | . 334 | | Genoa City | . 341 | Portage County, ground-water levels in | . 388 | | North Andover, Rattlesnake Creek near | | Powers Lake at Powers Lake | | | North Lake near North Lake | . 241 | Prairie River near Merrill | | | Numbering system for ground-water, lake, and | | Prescott, Mississippi River at | . 130 | | precipitation data sites | 14 | Price County, ground-water levels in | 226 | | Oak Creek at South Milwaukee | 250 | Publications on techniques of water resources | . 330 | | near South Milwaukee | | investigations | 32 | | Oconomowoc, Fowler Lake (Center) at | | mivestigations | . 0- | | Oconomowoc Lake, No. 1 (center) at Oconomowoc | | Raccoon Creek, East Fork tributary near Beloit | . 341 | | No. 2 (off Hewitt Point) at Oconomowoc | | Racine County, ground-water levels in | . 390 | | Oconto County, ground-water levels in | | Racine, Root River at | 359 | | Oconto River near Gillett | | Pike River near | | | North Branch, near Wabeno | .335 | Radiochemical surveillance network, explanation of | 12 | | Odanah, Bad River near | | Rattlesnake Creek near North Andover | . 212 | | Okauchee Lake, at Okauchee | . 242 | Red Cedar River at Menomonie | . 361 | | No. 1, near Okauchee | | Redstone Lake near La Valle | . 200 | | No. 2, at Okauchee | | Reservoirs in Wisconsin River basin | . 209 | | No. 3, at Okauchee | | Rice Creek, near Balsam Lake | . 130 | | No. 4, at Okauchee | | at Milltown | . 127 | | Oneida, Duck Creek at Co Tr Hwy J, near | | at 155th Street near Milltown | . 128 | | Duck Creek, at Fish Creek Road, near | | Richland County, ground-water levels in | 240 | | Duck Creek, at Hillside Park, near | | Richland Creek near Plugtown | . 340 | | Duck Creek, 0.25 mi DS Hwy 54 Bridge near Duck Creek, 0.5 mi DS Hwy 54 Bridge near | | Robbins Creek at Columbus | 340 | | Duck Creek, at Overland Rd, near | | Rock Branch near Mineral Point | | | Duck Creek Tributary at | | Rock County, ground-water levels in | | | Trout Creek, at CTH J, near | | Rock-Fox River basin, location map | 240 | | Trout Creek, at Melanie Drive, near | | Rock River basin, crest-stage partial-record | | | Trout Creek, at mouth, near | | stations in | . 340 | | Trout Creek, at Sunlite Drive, near | | gaging-station records in | . 241 | | Oneida County, ground-water levels in | | water-quality partial-record stations in | . 364 | | Onemile Creek near Mauston | . 339 | Rock River at Afton | 365 | | Ontonagon River, Cisco Branch at Cisco Lake outlet, Ml | | at Indianford | 364 | | Oshkosh, Lake Winnebago at | | at Jefferson | . 255 | | Otter Creek near Milltown | . 129 | at Rockton, IL | . 303 | | Outagamie County, ground-water levels in | . 386 | at Watertown | 202 | | Detriels Labour and Consul Manuals | 00 | East Branch, tributary near Slinger | 250 | | Patrick Lake near Grand Marsh | | South Branch, at Waupun | 303 | | Pearl Creek at Grandview | | Rockville, Platte River at | 364 | | Pearson Creek near Maple | - | Rocky Branch near Richland Center | | | Pecatonica River, at Darlington | | Rome, Bark River near | . 364 | | at Martintown | | Root River near Franklin | 359 | | East Branch, near Blanchardville | | at Racine | | | Livingston Branch, near Livingston | | Root River Canal near Franklin | 359 | | Pecatonica-Sugar River basin location map | | West Branch, tributary near North Cape | . 336 | | Pembine, Menominee River below | | Rothschild, Wisconsin River at | 362 | | Pemene Creek near | | Rowan Creek at Poynette | . 339 | | Pensaukee River near Pensaukee 61, | | Rusk County, ground-water levels in | . 391 | | near Pulaski | | Russell, IL, Des Plaines River at | . 304 | | Peshtigo River at Peshtigo | | | 201 | | near Cavour | | St. Croix County, ground-water levels in | . 391 | | Pet Brook tributary near Edgar | | St. Croix Falls, St. Croix River at | 250 | | Pheasant Branch at Middleton | - | St. Croix River, near Danbury | 350 | | Pigeon Creek near Lancaster | | St. Croix River basin, crest-stage partial-record | 000 | | Pike Creek near Kenosha | | stations in | 336 | | Pine Creek, East Branch tributary near Dallas | | gaging-station records in | 123 | | Pine River, North Branch at Windsor Dam near Alvin | | location map | . 122 | | Platte River basin, crest-stage partial-record | . 554 | miscellaneous sites in | . 344 | | stations in | .340 | water-quality partial-record stations in | . 359 | | gaging-stations records in | | St. Germain, Alma Lake near | . 182 | | water-quality partial-record stations in | 364 | Moon Lake near | . 183 | | Platte River near Rockville | 364 | Sand River Tributary near Red Cliff | . 334 | | P | Page | | P | Page | |---|------|---|-----|------| | Sauk County, ground-water levels in | 392 | WATSTORE data, access of | | . 25 | | Sawyer Creek at Oshkosh | 335 | Waubeesee Lake at Wind Lake | | 329 | | Saxon, Montreal River at Saxon Falls near | | Waukesha County,
ground-water levels in | | | | Sediment | | Waukesha, Fox River at | | | | Seth Creek near Cadott | 337 | Waumandee Creek basin, crest-stage partial record | | | | Sharon Lake near Dakota | | stations in | | 337 | | Shawano, Wolf River near | | Waupaca County, ground-water levels in | : | 396 | | Shawano County, ground-water levels in | | Waupun, South Branch Rock River at | : | 250 | | Sheboygan River at Sheboygan | | Waushara County, ground-water levels in | | | | Sheldon, Jump River at | | Wauwatosa, Menomonee River at | | | | Silver Creek at South Koro Road near Ripon | | Underwood Creek at | | | | Sinsinawa River Basin, gaging station records in | | Weber Creek near Mercer | | | | Sinsinawa River near Hazel Green | | Webster Creek at New Lisbon | | 107 | | Smith Creek near Parks Falls | | West Salem, Neshonoc Lake at | | 175 | | Somerset, Apple River near | | Wheeler, Hay River at | | 361 | | South Milwaukee, Oak Creek at | | Wheeler Lake near Lakewood | | | | South Range, Amnicon Lake near | | White Creek at Forest Glen beach near Green Lake | | | | South Superior, Nemadji River near | | White River (Illinois River basin), tributary near | | | | Spaulding Creek near Big Falls | | Burlington | | 341 | | Special networks and programs | | White River (tributary to Lake Superior) | | | | Spirit Falls, Spirit River at | 362 | near Ashland4 | 4, | 354 | | Spirit River at Spirit Falls | | Willow Creek near Eau Claire | | | | Spooner, McKenzie Lake near | | Wilmot, Fox River at | | | | Spring Creek near Durand | | Wind Lake, Long (Kee Nong Go-Mong) Lake, at | | | | Spring Harbor Storm Sewer at Madison | | Muskego Canal at Muskego Lake Outlet, near | | | | Spring Valley, Eau Galle River at | | Muskego Lake Outlet, near | | 315 | | Eau Galle River at Low-Water Bridge at | | Unnamed Tributary to Muskego Canal, near | | 367 | | Squaw Creek near Harrison | | Waubeesee Lake, at | | 329 | | Station identification numbers | . IS | Wind Lake, at | | 267 | | Stockbridge, Lake Winnebago near | | Wind Lake Outlet at | | 307 | | Stone Lake, Big Sissabagama Lake near | | Winnebago County, ground-water levels in | | 397 | | Big Sissabagama Tributary near | | Winona, MN, Mississippi River at | | 169 | | Stoney Brook near Superior | | Winter, Chippewa River at Bishop's Bridge near 13 | | | | Stoughton, Badfish Creek at County | | Wisconsin Dells, Wisconsin River near | | | | Highway A near | 365 | Wisconsin District Publications | | | | Stratford, Big Eau Pleine River near 192, | | Wisconsin Rapids, Wisconsin River at | | 193 | | Strum, Crystal Lake at | | Wisconsin River basin, crest-stage partial-record | | | | Sugar Creek at Elkhorn | | stations in | | | | Sugar River near Brodhead | | gaging-station records in | | 181 | | tributary, near Pine Bluff | | location map: | | | | Summary of hydrologic conditions | 3 | upper Wisconsin River basin | | | | Toylor County, ground water levels in | 202 | central Wisconsin River basin | | | | Taylor County, ground-water levels in | | lower Wisconsin River basinreservoirs in | | | | Thorp, North Fork Eau Claire River near | | water-quality partial-record stations in | | | | Tilden, Duncan Creek Tributary near | | Wisconsin River at Merrill | | | | Token Creek near Madison | | at Muscoda | , , | 204 | | Trade River near Frederic | | at Rainbow Lake near Lake Tomahawk | | | | Trappe River tributary near Merrill | | at Rothschild | | | | Trego, Namekagon River near | | at Wisconsin Rapids | | | | Trempealeau County, ground-water levels in | 394 | near Wisconsin Dells | 8, | 363 | | Trempealeau-Black River basin location map | 167 | tributary at Wausau | | 339 | | Trempealeau River basin, gaging-station records in | 170 | Wolf River at Langlade | 32, | 357 | | water-quality partial-record stations in | | at Highway M, near Langlade | | . 83 | | Trempealeau River at Dodge | | at New London | | | | Trout Creek, at CTH J near Oneida | | near Shawano8 | | | | at Melanie Drive near Oneida | | Wood County, ground-water levels in | | | | at mouth near Oneida | | Woods Creek near Fence | | | | at Sunlite Drive near Oneida | | Woodruff, Little Rock Lake nearVandercook Lake near | | | | fulle creek at Carvers mock hoad flear climtoff231, | 300 | Vandercook Lake rain gage near | | 400 | | Underwood Creek at Wauwatosa | 358 | Wrightstown, Fox River at | | | | | | Fox River at Rapide Croche Dam near | | | | Vandercook Lake, near Woodruff | 408 | , 5% three de risplace Ground Balli floai | | | | rain gage near Woodruff | | Yahara River at McFarland | 88, | 365 | | water-quality data at | | near Fulton | | | | Vilas County, quality of ground water in | | Yellow River (central Wisconsin River basin) | | | | Vulcan, MI, Menominee River near | . 53 | at Babcock19 | | | | | 005 | tributary near Pittsville | | | | Walworth County, ground-water levels in | | Yellow River (Chippewa River basin) at Cadott | | 337 | | Watertown, Rock River at | 252 | Yellowstone River near Blanchardville | | 341 | | | | ; | | |---|--|---|--| | | | | | | | | | | | | | | | | • | # FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM UNITS (SI) The following factors may be used to convert the inch-pound units published herein to the International System of Units (SI). | Multiply inch-pound units | Ву | To obtain SI units | |--|------------------------|--| | | Length | | | inches (in) | 2.54x101 | millimeters (mm) | | | 2.54x10 ⁻² | meters (m) | | feet (ft) | 3.048x10 ⁻¹ | meters (m) | | miles (mi) | 1.609x10° | kilometers (km) | | | Area | | | acres | 4.047x10 ³ | square meters (m ²) | | | 4.047x10 ⁻¹ | square hectometers (hm ²) | | | 4.047x10 ⁻³ | square kilometers (km ²) | | square miles (mi ²) | 2.590x10° | square kilometers (km²) | | | Volume | | | gallons (gal) | 3.785x10° | liters (L) | | | 3.785x10° | cubic decimeters (dm ³) | | | 3.785x10 ⁻³ | cubic meters (m ³) | | million gallons | 3.785×10^3 | cubic meters (m ³) | | | 3.785x10 ⁻³ | cubic hectometers (hm³) | | cubic feet (ft ³) | 2.832x101 | cubic decimeters (dm³) | | | 2.832x10 ⁻² | cubic meters (m ³) | | cfs-days | 2.447×10^{3} | cubic meters (m ³) | | | 2.447×10^{-3} | cubic hectometers (hm ³) | | acre-feet (acre-ft) | 1.233x10 ³ | cubic meters (m ³) | | | 1.233x10 ⁻³ | cubic hectometers (hm³) | | | 1.233x10 ⁻⁶ | cubic kilometers (km³) | | | Flow | | | cubic feet per second (ft ³ /s) | 2.832x101 | liters per second (L/s) | | | 2.832x101 | cubic decimeters per second (dm ³ /s) | | | 2.832x10 ⁻² | cubic meters per second (m³/s) | | gallons per minute (gal/min) | 6.309x10 ⁻² | liters per second (L/s) | | | 6.309x10 ⁻² | cubic decimeters per second (dm ³ /s) | | | 6.309x10 ⁻⁵ | cubic meters per second (m ³ /s) | | million gallons per day | 4.381x101 | cubic decimeters per second (dm ³ /s) | | | 4.381x10 ⁻² | cubic meters per second (m³/s) | | | Mass | | | tons (short) | 9.072x10 ⁻¹ | megagrams (Mg) or metric tons | POSTAGE AND FEES PAID U.S. DEPARTMENT OF THE INTERIOR INT 413 U.S. DEPARTMENT OF THE INTERIOR Geological Survey 6417 Normandy Lane Madison, WI 53719 OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300 SPECIAL 4TH CLASS BOOK RATE